
Abstract

All software in use today relies on libraries, including
standard libraries (e.g., C, C++) and application-specific
libraries (e.g., libxml, libpng). Most libraries are loaded in
memory and dynamically linked when programs are
launched, resolving symbol addresses across the applica-
tions and libraries. Dynamic linking has many benefits: It
allows code to be reused between applications, conserves
memory (because only one copy of a library is kept in mem-
ory for all the applications that share it), and allows
libraries to be patched and updated without modifying pro-
grams, among numerous other benefits. However, these
benefits come at the cost of performance. For every call
made to a function in a dynamically linked library, a trampo-
line is used to read the function address from a lookup table
and branch to the function, incurring memory load and
branch operations. Static linking avoids this performance
penalty, but loses all the benefits of dynamic linking. Given
its myriad benefits, dynamic linking is the predominant
choice today, despite the performance cost.

In this work, we propose a speculative hardware mecha-
nism to optimize dynamic linking by avoiding executing the
trampolines for library function calls, providing the benefits
of dynamic linking with the performance of static linking.
Speculatively skipping the memory load and branch opera-
tions of the library call trampolines improves performance
by reducing the number of executed instructions and gains
additional performance by reducing pressure on the instruc-
tion and data caches, TLBs, and branch predictors. Because
the indirect targets of library call trampolines do not change
during program execution, our speculative mechanism never
misspeculates in practice. We evaluate our technique on real
hardware with production software and observe up to 4%
speedup using only 1.5KB of on-chip storage.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Performance of Systems—Design studies

Keywords Dynamic Linking; Hardware Memoization; Instruction
Elision; Branch Prediction

1 Introduction

All computer programs in use today rely on software
libraries. Libraries can be linked dynamically, deferring
much of the linking process to the launch of the program.
Dynamically linked libraries offer numerous benefits over
static linking: they allow code reuse between applications,
conserve memory (because only one copy of a library is kept
in memory for all applications that share it), allow libraries
to be patched and updated without modifying programs,
enable effective address space layout randomization for
security [21], and many others. As a result, dynamic linking
is the predominant choice in all systems today [7].

To facilitate dynamic linking of libraries, compiled pro-
grams include function call trampolines in their binaries.
When a program is launched, the dynamic linker maps the
libraries into the process address space and resolves external
symbols in the program and between the libraries, populat-
ing the symbol addresses in a global lookup table. Subse-
quently, every call to a library function executes a
trampoline that reads the corresponding function address
from a lookup table and jumps to the target library function.
The trampoline execution is an overhead of dynamic linking
compared to static linking, increasing the number of instruc-
tions executed and adding pressure on the instruction cache
and I-TLB for trampoline instructions, the data cache and D-
TLB for storing addresses in lookup tables, and the branch
predictor and branch target buffers.

Several techniques can mitigate the performance degrada-
tion associated with the overhead of dynamic linking. The
entire penalty can be avoided by statically linking libraries.
However, static linking loses the benefits of dynamic linking
and is therefore not used in practice (the design of many
complex applications does not even permit static linking).
Hardware memoization techniques [8, 22] offer an alterna-
tive approach in which trampolines can be skipped by
memoizing trampoline execution; however, these tech-
niques lie on the critical path of instruction fetch. Some
overheads of dynamic linking can be mitigated through pro-
file-driven optimization [17] of data and instruction layout in
memory [14], but these approaches are limited to improving
the cache and TLB behavior; optimization does not eliminate
trampolines or the branch predictor pressure they create.

We observe that much of the performance overhead of
dynamic linking can be avoided. Entries in the dynamic
linker lookup tables are updated only once, when each sym-
bol is resolved, typically at the first execution of the corre-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

ASPLOS '15, March 14 - 18 2015, Istanbul, Turkey
Copyright 2015 ACM 978-1-4503-2835-7/15/03…$15.00
http://dx.doi.org/10.1145/2694344.2694392

Varun Agrawal, Abhiroop Dabral, Tapti Palit, Yongming Shen, Michael Ferdman

Architectural Support for Dynamic Linking

Stony Brook University

COMPAS

sponding library call. All subsequent invocations of the
trampolines are unnecessary and serve only to create perfor-
mance overheads. Noting this, we propose a lightweight
hardware mechanism that leverages existing branch predic-
tor structures to optimize the function calls in dynamically
linked libraries by speculatively skipping trampoline execu-
tion, providing the performance of static linking while
retaining the benefits of dynamic linking. Our technique
does not affect the processor’s critical path, as it uses the
existing branch target buffers and branch predictor update
mechanisms. The approach works on all dynamically linked
library techniques that we are aware of, across architectures
(e.g., ARM and x86) and modern operating systems (e.g.,
Linux, Windows, BSDs).

To demonstrate the effectiveness of our approach, we use
software to model the effect of the proposed hardware tech-
nique on real server hardware running production software,
using existing performance counters to demonstrate the
reduced pressure on the various microarchitectural struc-
tures. For an Apache web server running the SPECweb
2009 workload, for example, approximately 1% of the exe-
cuted instructions are in trampolines for library function
calls. Skipping the execution of the trampolines reduces
instruction cache misses, data cache misses, and branch
mispredictions. As a result, Apache performance (request
processing latency) improves by 4%.

The software technique we use to emulate our proposed
hardware solution incorporates assumptions that prevent its
use in production systems: our software loads all executable
code (including libraries) in a contiguous 2GB of the
address space to limit relative jump offsets, changes page
permissions of executable code on demand, uses profiling to
locate library function call sites, copies executable code
pages after they are patched, and increases load time for
applications. To make a software technique practical, the
software and compiler toolchains need to change signifi-
cantly and security implications must be addressed. Given
these limitations, we advocate a lightweight hardware solu-
tion that works transparently on existing systems, without

requiring software modifications. However, with sufficient
ecosystem change, a software mechanism that leverages our
observations may also become viable.

2 Dynamic Linking

Dynamic linking is the predominant method of linking
libraries in today’s systems. In dynamic linking, external
symbols used in a program and across libraries are pointed
to small trampoline routines automatically inserted into the
binaries by the compiler. The dynamic linker populates the
corresponding symbol addresses into lookup tables refer-
enced by the trampolines. When a program is launched, the
dynamic linker maps the dynamically linked libraries into
the application’s memory space and allocates the corre-
sponding lookup tables. Figure 1 shows the function call
mechanism for dynamically linked libraries; every call to a
library function jumps to a trampoline that reads the address
of the target library function from a lookup table and then
jumps to the function defined in the library’s binary.

Figure 2 shows the instructions that are executed when
calling the printf function in a dynamically linked library on
x86 and ARM architectures with ELF binaries. The trampo-
lines in these systems are defined in the procedure linkage
table (PLT) sections. The trampoline for printf is called
printf@plt. All the call/branch sites in the application and
library binaries that call printf actually call the printf@plt
trampoline. The trampoline comprises an x86 indirect jmp
instruction (or two adds and a branch for ARM). The indi-

��������	
������
���������
���� ���������� ��������	
�����

����
��
�����

�

� �

�

Figure 1. Library function call mechanism for dynamically-
linked libraries.

Figure 2. Library function call examples for a dynamically-linked ELF executable.

(b) ARM

.text: ...
call printf@plt
...

.plt: ...
printf@plt:

jmp *(printf@got.plt)
push 0x10
jmp .plt
...

.text: ...
printf: push %rbp

...
ret

.text: ...
bl printf@plt
...

.plt: ...
printf@plt:

add ...
add ...
ldr pc, [printf@got.plt]
...

.text: ...
printf: push {fp,lr}

...
pop {fp,pc}

(a) x86-64

rect branch instruction reads the global offset table (GOT)
location printf@got.plt and branches to the address loaded
from it. Resolution of function symbols is typically done in a
lazy fashion. Initially, the dynamic linker populates all
entries in the GOT to branch to the dynamic linker’s own
resolver function. Upon the first invocation of each library
function, the resolver updates the GOT lookup table entry
with the real library function’s address, ensuring that subse-
quent executions of the trampoline find the address of printf
when reading printf@got.plt.

Trampoline instructions are not densely packed in the
PLT section. For each trampoline, several additional instruc-
tions follow the indirect branch. These additional instruc-
tions are used only on the first trampoline (resolver)
execution to indicate to the resolver the name of the function
being resolved. Moreover, compilers typically allocate PLT
entries in the order in which the corresponding functions are
defined in the source. Because only a small, random subset
of available library functions are typically called by a pro-
gram, the PLT sections are sparsely used and accesses to the
PLT and GOT entries exhibit practically no spatial locality.

2.1 Benefits of Dynamic Linking

Dynamic linking is considered indispensable in the soft-
ware and OS communities. The performance overheads are
well worth the benefits, some of which we outline below.

Flexibility Dynamically linked libraries greatly enhance por-
tability, particularly with standard libraries that provide a
common system interface.

Dynamically linked libraries allow bug and security fixes
to be incorporated systemwide by simply restarting applica-
tions with updated library binaries, without requiring modifi-
cations to each application.

With dynamically linked libraries, users can customize
application execution by specifying which libraries to use
and by selecting different implementations of specific func-
tions from different libraries.

Memory conservation Libraries grow over time with the addi-
tion of new interfaces and functionality. Although most of
the functions of any given library are not used by any single
application that links against that library, the full library code
must still be loaded in memory. Dynamic linking allows for
a single read-only copy of the library binary to be mapped
into all processes that need it, potentially saving gigabytes of
memory on systems with large numbers of processes [19].

Security Shared libraries enable vital security measures, such
as address space layout randomization [21]. The position-
independent nature of dynamic libraries allows programs to
randomly map shared libraries into application virtual
address spaces. This means that the locations of program and
library code change with each process invocation, limiting
the ability of malicious users to mount attacks.

2.2 Penalties Incurred by Dynamic Linking

Dynamic linking incurs many penalties that reduce sys-
tem performance. The source of these penalties is the tram-
polines; a trampoline is executed for every call to a library
function, performing an extra memory load and an extra
indirect branch. Complex applications that use many librar-
ies (e.g., Apache, Memcached, MySQL and Firefox) fre-
quently perform library calls from within the application and
between shared libraries, resulting in significant overheads
from trampoline execution and its side effects.

Instructions Calling library functions puts pressure on the
instruction cache [20], as one cache line is occupied for each
trampoline. On x86-64 systems using ELF binaries, trampo-
lines are 16 bytes, allowing only four trampolines per 64-
byte instruction cache line [9]. However, because the tram-
polines are sparsely spread throughout the PLT sections, an
instruction cache line is effectively dedicated to each library
call made by the application and each library. For example, if
an application and four libraries against which it is linked
frequently call write, five instruction cache lines are dedi-
cated to the trampolines for this write library function (one in
each PLT). The trampoline instructions put similar pressure
on the instruction translation lookaside buffer (I-TLB).

Data working set Every trampoline performs a load operation
that reads the library function pointer from the linker’s
lookup table. As in the instruction cache, the lookup tables
(e.g., GOT) occupy data cache lines and data TLB entries.
Although function pointers are more densely packed in
memory than are the trampolines, storing eight pointers in
each 64-byte cache line, the storage is similarly sparse and
one cache line is needed for each library function called from
the application and one for each calling library.

Branch prediction accuracy Branch predictor storage is
extremely limited due to its critical nature; conflicts in the
branch predictor structures lead to direction and target mis-
predictions, reducing system performance [15]. Statically
linked function calls require one branch for their invocation;
dynamically linked libraries require two branches for each
library call—one to branch to the trampoline and a second
one to branch to the actual function. Thus, dynamically
linked libraries occupy two entries in the branch predictor
tables and branch target buffers (BTB) per call, creating
greater pressure on these structures. As a result, dynamic
linking has an increased conflict rate and reduced accuracy
compared to static linking.

Although the benefits of dynamic linking overshadow the
penalties, the penalties are substantial, particularly in com-
plex applications. The hardware technique we propose in
this work ameliorates those penalties by skipping trampoline
execution entirely, avoiding the allocation of instruction
cache lines for trampolines, data cache lines for lookup
tables, and branch predictor entries for trampoline branches.
By reducing the number of executed instructions and conse-

quently the pressure on these microarchitectural structures,
our approach retains all the benefits of dynamic linking and
achieves the performance of static linking.

2.3 Challenges of a Software Solution

In dynamic linking, library function addresses are
unknown when a program’s code is compiled, preventing
the program binary from directly calling the target func-
tions. This necessitates the use of trampolines, which read a
resolved target address from the GOTPLT and branch to the
appropriate location. A dynamic resolver, which executes
on the first invocation of each library function, identifies the
target address and installs it into the GOTPLT. Although it
is functionally effective, this approach hampers perfor-
mance because the trampoline remains in the call path of
each subsequent library function invocation.

At first glance, it seems possible to create an alternative
dynamic resolver that avoids trampoline overheads. Rather
than dynamically populating the GOTPLT with the target
function’s address, the dynamic resolver could directly
modify the instruction at the call site with the target address.
Future executions of the same call site would then call the
needed library function directly, avoiding the performance
overheads associated with executing the trampoline. How-
ever, this naive approach presents a number of challenges.

First, although library functions called from the applica-
tion binary are similar to functions called from other librar-
ies, they would be affected differently by the naive software
solution. Real systems load libraries above the heap and far
from their call sites in the virtual address space. As a result,
the distance between the target address and the call site is
much more than 2GB. For example, the x86 ISA encodes
relative call targets using an offset from the call site; the
instruction encoding is limited to an offset of 2GB. As a
result, either the ISA has to change to support larger offsets
or the software, including the conventional process memory
map, must change to allow dynamically linked libraries to
be loaded between the text and heap sections.

Another challenge arises from unconventional tricks for
calling functions, such as using a jump instead of a call
instruction to invoke a function. In a conventional scenario,
a dynamic resolver can examine the stack to determine the
location of the call site to patch. However, when the uncon-
ventional approach is used, the stack does not contain the
address to patch (the address of a jump), instead pointing to
the address of the preceding call; patching this call instruc-
tion would result in incorrect execution. A software solution
would therefore need to address this possibility; either addi-
tional mechanisms would have to be added to disassemble
the call site pointed to by the stack to verify that it is the
appropriate location to patch, or toolchain changes would
have to be made to enable the compiler to communicate a
list of valid patch sites to the resolver.

The software solution could also create enormous mem-
ory overheads. Dynamic linking uses a copy-on-write
(COW) mechanism to share a single executable read-only
copy of each library between all applications in the system.
However, the libraries are mapped at a different address in
each application’s virtual address space. Further, when a
process is forked, the executable code is shared by the par-
ent and child processes. Patching the call sites both in the
libraries (when they call other libraries) and in the applica-
tion binary will have different effects based on whether
child processes are forked before or after patching. Patching
before fork will retain the COW property, retaining just one
copy of each code page. However, patching after fork will
force allocation of a new physical memory page for each
process. Busy servers with thousands of processes and thou-
sands of library function call sites could waste multiple
gigabytes of RAM on these unnecessary page copies.
Avoiding this memory overhead with a software solution
would require patching all call sites before the fork, which
precludes the traditional lazy resolver mechanisms and
requires modifying the compiler toolchain to include lists of
all library function call sites to patch.

Even if the memory overheads associated with lazy reso-
lution in this scenario were acceptable, the software solution
would still have significant performance implications
because an application can have thousands of library func-
tions (including library functions calling other libraries), a
fraction of which are actually used. Lazy resolution sup-
ports fast application load times by resolving functions only
when they are called for the first time, regardless of which
call site triggers the resolution. Thus, a single library func-
tion will be resolved only once in the traditional dynamic
linking approach. By contrast, the naive software solution to
avoid dynamic linking overheads would need to perform
binary patching for each call site, even if all call sites
pointed to one library function. The software solution may
therefore incur significant performance overheads, espe-
cially considering that for each call site patch, the OS must
be involved to unprotect the code page and make it writable
and the resolver must keep track of all patched call sites for
the rare case of library unload.

Even if these implementation challenges could be over-
come, the software approach introduces a number of secu-
rity challenges. The benefits of address-space layout
randomization would be eroded because shared libraries
would have to be placed within 2GB from call sites. Addi-
tionally, because the loader must unprotect code pages to
patch call sites, the system creates an opportunity for attack-
ers to inject malicious code [2].

2.4 Similar Techniques

The mechanism of dynamic linking is a special case of a
lookup table, in which the address of a function is looked up
in a table (here, the PLT) and control flow jumps to that

function address. We describe two related techniques that
use lookup tables to change program control flow.

2.4.1 GNU Indirect Functions

New processors include specialized instructions that opti-
mize particular computations. Many commonly used func-
tions can benefit from these specialized instructions if they
are available. In order to support different hardware, and
thus allow access to these specialized instructions, libraries
usually include several different implementations of a func-
tion, choosing the best implementation based on the hard-
ware available when the application is loaded. The GNU
linker provides a feature, called ifunc, which chooses from
among the different candidate implementations using a
resolver function that determines the hardware capabilities.
Because the compiler is not aware of which function will be
selected at load time, calls to ifuncs are made using the PLT
in the same way that dynamically linked functions are called.
Available in GNU libc since version 2.10, this mechanism is
used extensively for common library routines (e.g., string
manipulation functions) and is also available to software
developers, who use it to incorporate platform-specific ifunc
implementations directly in executable binaries.

2.4.2 C++ Virtual Functions

Declaring C++ member functions virtual allows objects
to access them even if the object’s pointer is passed as a
pointer of the superclass. Virtual function addresses are
dereferenced from the object’s data structure, which then
performs a direct call to the function address. This mecha-
nism is similar to calls to dynamically linked functions, as
both look up the target function in a table and then branch to
it. However, the instruction sequence for address resolution
and invocation of C++ virtual functions differ significantly
from that of dynamic library calls.

3 Architectural Support for Dynamic Linking

Calls to functions in dynamically linked libraries occur
with sufficiently high frequency to warrant hardware support
in high-performance systems. In this work, we describe a
speculative hardware mechanism to improve the perfor-
mance of dynamic linking by skipping trampoline execution.

On an x86-64 system, trampolines comprise a complex
indirect branch instruction that performs both load and
branch operations. When a call instruction is fetched, the
branch predictor provides the address of the trampoline in
the PLT section. The trampoline virtual address is then trans-
lated to its physical address using the I-TLB and the trampo-
line instruction is fetched from the L1 instruction cache. The
indirect branch instruction performs a load operation that
uses the D-TLB to translate the GOT entry address and
fetches the function pointer from the L1 data cache. Finally,
the retrieved pointer is translated using the I-TLB to deter-
mine the address of the actual function.

Although the trampoline indirect branch instruction per-
forms two expensive operations [13], the result of these
instructions does not change after the first trampoline invo-
cation (the pointer loaded from the GOT and the library
function address do not change during program execution).
The behavior of the proposed mechanism relies on this fact,
skipping the trampolines whenever possible while maintain-
ing an architectural state identical to the unmodified system.

3.1 Hardware Overview

Our mechanism uses existing hardware of the processor
front end to trick instruction fetch into skipping the fetching
of the trampoline (in turn, tricking the back end into skipping
its execution). This is accomplished by storing the address of
each library function in the BTB entry that would normally
store the address of the trampoline corresponding to that
function. The processor front end does not require any modi-
fications to perform this operation, as the target address is set
using the standard branch predictor feedback mechanism
from the back end [24]. In the back end, the branch resolu-
tion and misprediction identification mechanism are modi-
fied to check whether the real branch target is the address of
a trampoline; if it is, the processor treats the predicted
address as correct if the predicted target matches the target of
the trampoline’s branch. To facilitate this comparison, a
retire-time alternate BTB (ABTB) structure stores a mapping
of trampoline addresses to library function addresses.

To ensure correctness in the rare event that the trampoline
targets change, we use a bloom filter [1] to store the
addresses of the GOT entries that represent trampoline tar-
gets corresponding to the entries in the ABTB. If an entry in
the GOT is modified and the GOT entry hits in the bloom fil-
ter, then the target of the ABTB may be incorrect. In this
case, we clear the entire ABTB table and rely on the standard
branch misprediction logic to ensure correct execution (in
practice, this happens only once per library call, at the start
of a program’s execution, making this overhead irrelevant).

Entries are added to ABTB and the bloom filter during
the retire stage of the processor pipeline. We use the charac-
teristic of a trampoline (call instruction followed by indirect
branch instruction) to populate the ABTB and bloom filter.
The ABTB and bloom filter entries are context specific and
can be directly tied to the mechanisms and optimizations
available for maintaining (or flushing) the BTB and TLB
entries on context switch.

3.2 Speculative Trampoline Skip

Front end In the front end, we use the existing branch pre-
dictor mechanism to skip trampoline execution. When fetch-
ing a library function call instruction, the branch predictor
provides the target of the call instruction. During normal
execution, the target would be the function’s trampoline; we
change the branch prediction update mechanism to make the
actual function address the target of the call instruction. The

function address is read from a BTB entry that is indexed
using the call instruction’s program counter. The target is
speculative; the branch predictor update mechanism cor-
rects any mispredictions. Modifying the BTB entry in this
way means the trampoline does not get executed, reducing
the pressure on the instruction cache, data cache, I-TLB,
and D-TLB, as well as on the BTB and branch predictor.

Back end In the back end, our hardware solution modifies
the branch predictor update mechanism to use the target of
the library call instruction and not the trampoline address.
Branch prediction is speculative; the processor executes the
instructions as they are fetched, whether the branch predic-
tor provides the function address or the trampoline address.
When the target of the call instruction is resolved, the
branch predictor update mechanism tests whether the target
was predicted correctly. If a misprediction is identified, the
BTB entry is corrected. As long as the address in the GOT is
not modified, the target of the trampoline does not change
and the modified branch target prediction remains correct.

Figure 3 shows our hardware mechanism with an ABTB
table. The ABTB maps the real target of the call instruction
(the trampoline’s address) to the target of the trampoline
(the library function address). When the back end resolves
the target of a branch instruction, the address is looked up in
ABTB. If the target is not found in ABTB, the branch pre-
dictor operates without modification, updating the BTB
with the real branch target. However, if the target matches
an ABTB entry, the branch resolution mechanism uses the
result of the ABTB lookup as the correct branch target.

Entries in ABTB are valid as long as the corresponding
entries in the GOT section are not modified. A small bloom
filter that contains the GOT addresses corresponding to the
entries in ABTB is sufficient to detect when any GOT entry
is updated. When the processor retires a store instruction to
an address that hits in the bloom filter (or an invalidation for
such an address is received from the coherence subsystem),

all entries in ABTB and the bloom filter are cleared. At pro-
gram startup, when GOT entries are initially populated,
clearing the ABTB prevents the program from skipping the
trampolines until the ABTB is populated with the correct
final targets, at which point the addresses are never updated
again in practice.

Populating the ABTB Library function calls have a distin-
guishing pattern: a call instruction is followed by an indirect
branch. When a call instruction is retired, the resolved target
of the call instruction is noted. On retiring the subsequent
instruction, if that instruction is an indirect branch, the pre-
ceding call’s target is used as the index into the ABTB and
the target of the indirect branch instruction is used as the
value. The bloom filter is updated with the source address
from which the indirect branch’s address is loaded. In all
other cases, no new entries are added to the ABTB.

3.3 Handling Misspeculation

All speculative hardware mechanisms need to ensure that
the processor recovers the correct execution state gracefully
in case of misspeculation. In most cases, this recovery is
expensive, as it requires flushing the pipeline to remove
instructions following the misspeculation. In our proposed
hardware, misspeculation happens when the result of the
BTB doesn’t match the result of a matching ABTB entry.
There are four possible cases where this can happen:

Conflicts in BTB entries When there are conflicts in the BTB
entries, the branch predictor mispredicts and the processor
fetches the wrong instructions following the library function
call. To recover from such misspeculation, the hardware
mechanism described in Section 3.2 fetches instructions
from the library function instead of its trampoline. Because
the program binary is unmodified, conflicts in BTB are not
significantly affected by our approach. In fact, skipping
trampolines reduces pressure on the BTB, reducing the
probability of conflicts occurring in the first place.

GOT entry of library function modified The address of a
library function is resolved on the first call to that function
from a given module (application or library). It is then
stored in the GOT entry for the module corresponding to
that function. On the first invocation of a call instruction,
the branch predictor cannot predict correctly, so the first call
always results in a branch misprediction. Once the function
address is resolved and stored in the GOT, it remains
unmodified for the life of the program (unless the module is
unloaded, which does not occur in practice).

In our hardware, the second invocation of a call instruc-
tion to a library function will also mispredict, as the trampo-
line has never branched to the function before. This is also
true in the base system, as the branch predictor can predict
the call instruction target (trampoline) correctly, but cannot
predict the trampoline target correctly. On subsequent invo-
cations, however, the branch targets are correctly predicted

��������

���	
 ��	���

���	
������	���

�	����

���	
���������

����������	���������� ���	������������

����
���

�����

�����������	������������

Figure 3. Speculative trampoline skip mechanism.

both by the base system and by our proposed hardware. In
summary, we do not introduce any branch mispredictions
that were not present in the base system.

Missing ABTB entry after a hit in bloom filter As discussed in
Section 3.2, all ABTB entries are removed if the address of a
store operation hits in the bloom filter. Modification of func-
tion addresses after the first invocation is rare, and thus,
entries in ABTB stabilize rapidly and do not get cleared in
practice. However, when the ABTB is cleared, the system
behaves in exactly the same way as a base system without
hardware support for dynamic linking, hence incurring
exactly the same number of misspeculations.

Missing ABTB entry after context switch In an OS context
switch, the processor starts executing a different program
having a different virtual to physical address mapping.
Addresses in the ABTB are virtual and become invalid after
a context switch in the same way that the TLB entries do. If,
however, a mechanism is employed to retain TLB entries on
a context switch (e.g., using address space IDs), the same
mechanism applies to the ABTB, avoiding misspeculation.

3.4 Alternate Implementation

The mechanism we describe introduces no architecturally
visible changes to the hardware. If, however, architecturally
visible changes can be introduced, the hardware cost of the
proposed technique can be reduced by avoiding the bloom
filter and requiring the software to explicitly invalidate the
ABTB. This process is analogous to architectures that do not
enforce coherence between the instruction and data caches,
requiring an explicit instruction cache flush when instruc-
tions in memory are updated [16].

4 Methodology

To measure the impact of our technique, we conduct
experiments on a real system and mimic the behavior of the
proposed hardware technique by modifying the dynamic
linker software so that it changes the targets of call instruc-
tions from the trampoline routines to the function address.
Although this approach enables us to measure the effects of
the proposed hardware, it is functionally similar to static
linking, in that it loses all of the benefits of dynamic linking.
Removing or updating a library could result in dangling call
instruction targets. Thus, this implementation, which is
designed solely for the purpose of evaluation, doesn’t sup-
port unloading or replacing libraries; on the other hand, the
hardware we propose implicitly supports these operations.

4.1 Hardware

Our experiments were conducted on a Dell server with
two Intel® Xeon® E5450 [11] CPUs and 32 GB of memory.
The CPUs run at 3.0 GHz. L1 and L2 caches are private to
each core and a 12MB L3 cache is shared among all cores.
To avoid interference during measurement, we bind server
and client processes on two different sets of cores.

4.2 Software

The software configuration is shown in Table 1. We use
Intel® VTune™ to measure L1D misses, L1I misses, DTLB
misses, ITLB misses, and branch mispredictions.1 Together,
these measurements show how skipping library call trampo-
lines affects the pressure on the various hardware compo-
nents of the CPU. Performance counters are aggregated
across all cores that run the processes under study.

4.3 Experimental Dynamic Linker

Intel® Pin® is used to collect library call information,
identifying all library call sites and their corresponding tram-
poline targets after they are resolved during program execu-
tion. When a call instruction followed by an indirection
branch instruction is observed, the pintool records the
instruction addresses and the branch targets.

We modify the dynamic linker in glibc to support skip-
ping library call trampolines. The modified dynamic linker
uses the pintool output to determine the locations of the call
sites and patches them directly in the text section. Every
recorded “call and indirect branch” sequence is replaced
with a call to the corresponding target. To achieve this goal,
our modified linker removes application security restrictions
by making the entire address space writable. To ensure con-
sistent behavior across the various application runs (with and
without the pintool, the base case and the experimental case),
we disable address space randomization and use a custom
allocator in glibc to load all libraries within the 32-bit reach
of the patched call instructions in the original application and
library binaries.

4.4 Workloads

We measure the performance of four applications in our
experiment; three server applications and one desktop appli-
cation. For server applications, we measure the Apache web
server, Memcached, and MySQL. For the desktop applica-
tion, we measure the Firefox web browser.

Apache web server We use Apache web server version 2.2.25
with the prefork MPM module. The PHP module is installed

1. The CPU has two performance counter registers. We use two counters
per analysis run, one for the instruction count and one for the target metric.
Multiplexing all counters within the same analysis run increases interfer-
ence from VTune, especially when measuring DTLB misses.

Table 1. Software Versions

CentOS 6.5 x86-64

Linux Kernel 2.6.32-431.el6.x86_64

glibc 2.12.1

gcc 4.4.7

Intel® Pin® x86 64 bit, Rev. 65163

Intel® VTune™ XE 2013 Update 17 (build 353306)

as a shared library. To measure the server’s performance, we
use SPECweb 2009 1.20 [23] as the workload.

To measure performance, we instrument the Apache
server to measure the latency of each request type from the
arrival of the first packet of a request until the transmission
of the last reply packet. To plot a smooth distribution curve
of the measured latencies, we run the experiment for 10
hours at close to peak load. For every 10,000 requests, we
observe 5 to 6 outlier measurements of significantly longer
request latency caused by perturbations in the system (e.g.,
the performance counter interrupts). The outliers exist in
both the base and experimental case and we omit them from
the plots for clarity.

Memcached We use Memcached [6] version 1.4.15 with
Libevent version 2.0.21. The client and dataset are taken
from CloudSuite [4]. Parameters for Memcached are taken
from the CloudSuite web site; we use a client with four
threads and a target of 100,000 requests per second.

To measure performance, we instrument the Memcached
server to measure the latency of the get and set requests.
Due to the short execution duration of the requests, the
timestamp counter register (RDTSC [10]) is used to collect
timestamps without triggering system calls. We benchmark
for one hour to get data for smooth and stable plots.

MySQL We use the TPC-C benchmark from OLTP-
Bench [3] to measure the response time of the server for dif-
ferent request types. We present results only for the most
popular requests types, New Order and Payment.

Firefox To measure desktop application performance, we
use the official x86-64 Linux Firefox version 30.0
binary [5]. The Peacekeeper [18] browser benchmark suite
runs an array of HTML5 and JavaScript performance tests
that are representative of typical browser usage. We use the
cumulative and individual scores for each test run to evalu-
ate performance improvement with the proposed hardware.

5 Results

We evaluate the performance of an x86-64 processor
running our workloads under a dynamic linker that emulates
the proposed hardware by patching the binaries in memory
to skip trampolines. Results show that our proposed hard-
ware increases overall performance by eliminating the exe-
cution of expensive trampoline instructions and reducing
pressure on the caches, TLBs, and branch predictor.

5.1 Opportunity

All programs use dynamically linked libraries; however,
the extent to which each application depends on libraries is
different. For our hardware approach to affect the perfor-
mance of a program, the number of library function calls
must be significant. In Table 2, we show the percentage of
executed instructions that lie in a function trampoline. In a
complex application like Apache, the number of library

calls is much higher than in Memcached, which provides
relatively simple functionality. The number of library calls
in desktop applications such as Firefox is even lower, as
execution is dominated by small computation kernels.

Table 3 shows the number of distinct trampolines
accessed during the measurement period. Apache has a
large number of trampolines, exercising many library calls
across many libraries. Firefox uses an even larger number of
distinct library calls, but they are exercised less frequently.
On the other hand, even though Memcached has a higher
frequency of library calls, there are only 33 distinct trampo-
lines used, owing to the limited functionality of the server.

We further break down the distinct trampolines by their
relative execution frequency in Figure 4. The steep cutoffs
visible for Apache and Memcached indicate that a very spe-
cific set of library calls was made for every request ser-
viced, whereas the Firefox curve is much less steep, as the
program accesses many different libraries to execute the
diverse functionality exercised by the benchmark tests. For
Memcached, the majority of library calls are made to fewer
than 10 library functions.

5.2 Microarchitectural Benefits

In addition to the instructions executed within the library
call trampolines, Section 2.2 discusses the additional micro-
architectural penalties of dynamic linking. We use perfor-
mance counters to measure the effect of our technique on
the instruction cache, data cache, I-TLB, D-TLB, and
branch prediction behavior. The results are presented in
Table 4. As expected, the greatest impact on the microarchi-
tecture is observed when running Apache, which makes the
largest number of library calls to the largest number of
library functions among the three workloads. Cache miss
rates, TLB miss rates, and branch mispredictions drop
across all workloads when trampolines are skipped. The
improvements in Apache are so significant that the second-
order performance impact of these microarchitectural

Table 2. Instructions in trampoline per kilo instruction

Workload Trampoline Instructions (PKI)

Apache 12.23

Firefox 0.72

Memcached 1.75

MySQL 5.56

Table 3. Number of trampolines used by program execution

Workload Distinct Trampoline Count

Apache 501

Firefox 2457

Memcached 33

MySQL 1611

improvements is actually greater than the first-order impact
of skipping the trampoline instructions. In Memcached,
although there are only a small number of distinct library
function calls, skipping the trampolines is sufficient to elimi-
nate all I-TLB conflict misses.

5.3 Hardware Cost

Every microarchitectural enhancement must be judged by
the tradeoff between its benefit and its cost. Our experiments
demonstrate the benefits of the proposed hardware support
for dynamic linking, in terms of reducing the number of exe-
cuted instructions and alleviating microarchitectural pres-
sure. We now estimate the size of the ABTB needed to
achieve these benefits.

Every entry in the ABTB consumes 12 bytes, six bytes
for the call instruction’s target and six bytes for the function
address.2 To estimate the required size of ABTB, we collect
traces of our workloads and count the number of library call
trampolines that can be skipped for different ABTB sizes.
Figure 5 shows the distribution (number of entries in log
scale) of the percentage of library call trampolines skipped
for different sizes of the ABTB. We see that with just 16
entries (192 bytes), we can skip more than 75% of the tram-

polines in any of the three workloads. With a 256-entry
ABTB, totaling less than 1.5KB, nearly all actively used
trampolines can be skipped.3

Figure 5 provides an interesting additional insight into the
instruction patterns of the workloads. A steep slope in the
plot indicates that there is a repeating sequence of library
functions that are called frequently. A small ABTB can skip
all trampolines within that repeating sequence, as long as it
is large enough to cover the full sequence. This implies the
existence of ABTB “working sets” that can be used to reason
about application behavior.

5.4 Performance

In Figure 6, we present the cumulative distribution func-
tion (CDF) of the percentage of requests served as a function
of the response time for each request type in the SPECweb
2009 workload. We measure the response time of the server
in microseconds; the CDF shows the fraction of requests
served within the particular response time. When the Apache
server runs without executing the trampolines (enhanced),
the tail latencies are unaffected while the average response
times are improved up to 4% over the base case.

2. x86-64 supports distinct virtual addresses up to 48 bits.

Figure 4. Frequency of trampolines.

Table 4. Performance counters (values are per kilo instruction)

Performance Counter Apache Firefox Memcached MySQL

Base Enhanced Base Enhanced Base Enhanced Base Enhanced

I-$ Misses 109.31 104.22 10.70 10.38 51.99 51.42 25.21 24.93

I-TLB Misses 1.78 1.18 0.87 0.79 0.03 0 2.41 2.36

D-$ Misses 7.96 7.56 2.66 2.67 12.25 12.16 8.48 8.46

D-TLB Misses 4.03 4.62 1.54 1.75 4.74 4.73 2.86 2.77

Branch Mispredictions 13.46 12.32 4.84 4.77 5.48 5.30 14.44 14.40

3. We do not consider additional savings made possible by offset encoding.

Figure 5. Percentage of library function call trampolines
skipped for different sizes of ABTB.

Table 5 presents Firefox web browser performance
scores (higher is better). Performance improved for all
workload categories included in the Peacekeeper bench-
mark. In rendering and DOM operations, the main tasks per-
formed by web browsers in normal operation, we observed
improvements of more than 2.7% and 1.8%, respectively.
Text parsing performance improved by 0.8% due to the
heavy use of string operations from shared libraries.

Figure 7 presents the performance improvement for
Memcached under the proposed hardware technique. The
two plots show histograms of request processing time for
the Memcached GET and SET requests. Because the service
experiences a wide range of request latencies, we plot the
buckets within the largest peak, which accounts for the
majority of requests (we omit other minor peaks for clarity,
as they follow similar trends). For both request types, the
peaks of the histograms for the enhanced version (skipping
the trampolines) are shifted to the left, indicating an average
reduction in request processing time.

Figure 8 shows the CDF of requests served vs. response
time of the requests for MySQL. This data is summarized in

Table 6, which demonstrates that more time is required to
serve a given percentage of requests in the base system than
in the enhanced system.

5.5 Memory Savings

Multithreaded server software shares code pages across
threads, allowing a software approach to patch the call
instructions in shared pages with target addresses (in our
test suite, Firefox, Memcached, and MySQL fall into this
category). However, many server applications use the pre-
fork model to serve requests. For example, the main Apache
web server spawns child processes to handle requests, but
does not itself perform any request processing. A software
approach to patching code pages for prefork software pre-
cludes the OS copy-on-write mechanism, increasing mem-
ory consumption. Our hardware solution has no memory
overheads in the prefork case, allowing code pages to
remain unmodified and shared across processes.

If call site patching is applied to all processes in a sys-
tem, the patched code pages in all libraries would be copied
to each running process, resulting in memory overhead that

Figure 6. Cumulative distribution of the percentage of Apache requests served within the specified response time.

Table 5. Firefox Peacekeeper scores (higher is better)

Workload Base Enhanced

Rendering (fps) 49.31 50.64

HTML5 Canvas (fps) 37.47 37.94

Data (ops) 22,499 22,727

DOM operations (ops) 16,547 16,850

Text parsing (ops) 214,897 216,625

Table 6. Response Time of MySQL Requests in milliseconds
(lower is better)

Requests New Order Payment

Base Enhanced Base Enhanced

50% 43.5 43.0 17.9 17.7

75% 57.3 56.9 27.9 27.2

90% 72.8 72.3 37.2 35.9

95% 87.1 86.8 44.4 43.0

can easily exceed multiple gigabytes. Even if patching is
only applied to processes of the server application, signifi-
cant overhead can still occur. For example, busy Apache
servers have hundreds or even thousands of processes run-
ning concurrently. With dynamic patching (Apache binary,
PHP, and supporting libraries) on the first invocation of each
library call, approximately 280 code pages will be copied,
resulting in 1.1MB of wasted memory for each process, or
on the order of 0.5GB of RAM for a typical busy server.

6 Related Work

Sodani and Sohi proposed an instruction reuse technique
to improve application performance by skipping the execu-
tion of instructions that repeat their work [22]. In their tech-
nique, a buffer stores the results of instructions indexed by
the inputs of the instruction and its PC. During instruction
fetch, inputs of an instruction are used in a lookup, skipping
execution if a previous result is found. In a modern out-of-
order processor, there can be more than 100 instructions in
flight and the inputs of the fetched instruction are unavail-
able. Moreover, reading values from memory is expensive

and is therefore not done by this technique. Thus, this
approach cannot be used to skip dynamically linked library
trampolines. Even if it is modified to consider memory
inputs, simply fetching the trampoline instructions and per-
forming the memory lookup would lose most of the microar-
chitectural benefits of the hardware we propose.

Huang and Lilja propose a hardware memoization tech-
nique that records the results of basic blocks and reuses
entire blocks [8]. To store results, an entry needs to be large,
supporting storage of multiple inputs and outputs. Library
call trampolines are small basic blocks (one instruction on
x86-64), making this technique excessively expensive for
the benefits achieved. Moreover, both memoization tech-
niques lie on the critical path of the instruction fetch and may
impact the system’s clock frequency [12], whereas the hard-
ware support for dynamic linking that we propose operates
primarily at retire time, off the critical path.

Kistler and Franz propose continuous optimization of
programs using profile-guided optimization [14]. They pro-
pose load-time optimization to make use of as much infor-

48 50 52 54 56 58 60 62 64
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
GET Requests

Processing Time (TSC Unit x 1000)

%
 R

eq
ue

st
s

Se
rv

ed

Enhanced
Base

55 60 65 70 75 80
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
SET Requests

Processing Time (TSC Unit x 1000)

%
 R

eq
ue

st
s

Se
rv

ed

Enhanced
Base

Figure 7. Histogram of Memcached requests served for a given request processing time.

Figure 8. CDF of MySQL requests served within the specified response time.

Response Time (microseconds) ×104
5 6 7 8 9 10

%
 R

eq
ue

st
s

Se
rv

ed

50

55

60

65

70

75

80

85

90

95

New Order

Enhanced
Base

Response Time (microseconds) ×104
2 2.5 3 3.5 4 4.5 5

%
 R

eq
ue

st
s

Se
rv

ed

50

55

60

65

70

75

80

85

90

95

Payment

Enhanced
Base

mation about the system as possible. Profiling helps
restructure code and data in memory to increase the likeli-
hood of cache hits. This approach can benefit dynamic link-
ing by collocating frequently used PLT and GOT entries
close to each other to reduce their footprint in the caches
and TLBs. However, it does not reduce the number of
instructions executed or the number of branch predictor and
target buffer entries used, as the trampoline instructions
must still be fetched and executed.

7 Conclusions

Although static linking yields higher performance,
dynamic linking has become the predominant choice for
integrating libraries into today’s complex applications, due
to its myriad benefits, from flexibility in development and
deployment, to memory conservation across processes and
system security. The software community has embraced
dynamic linking, largely ignoring the costs that arise from
the use of trampolines that perform function pointer table
lookups and execute additional indirect branches.

In this work, we showed that a simple hardware mecha-
nism, working in tandem with existing branch predictor
structures, can improve performance by speculatively skip-
ping trampoline execution. The mechanism relies on the
fact that the lookup result and indirect branch target of the
trampoline do not change after their first invocation. We
evaluated our proposed hardware technique by emulating
the behavior of the hardware on a real system, demonstrat-
ing that using only 1.5KB of storage, a retire-time (off criti-
cal path) mechanism can eliminate the overheads of
dynamic linking, reducing instruction cache, data cache, I-
TLB, D-TLB, BTB, and branch predictor pressure to
achieve performance improvements of up to 4%.

8 References
[1] Burton H. Bloom. Space/time trade-offs in hash coding with allow-

able errors. Commun. ACM, 13(7):422–426, July 1970.

[2] Willem De Groef, Nick Nikiforakis, Yves Younan, and Frank Pies-
sens. Jitsec: Just-in-time security for code injection attacks. In
Benelux Workshop on Information and System Security (WISSEC),
2010.

[3] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe
Cudré-Mauroux. Oltp-bench: An extensible testbed for benchmarking
relational databases. PVLDB, 7(4):277–288, 2013.

[4] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the
Clouds: A Study of Emerging Scale-out Workloads on Modern Hard-
ware. In 17th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2012.
recognized as Best Paper by the program committee and recognized
as Top Pick of 2013 by IEEE Micro.

[5] Firefox. https://www.mozilla.org/en-US/firefox/new/.

[6] Brad Fitzpatrick. Distributed caching with memcached. Linux J.,
2004(124):5–, August 2004.

[7] Michael Franz. Dynamic linking of software components. Computer,
30(3):74–81, March 1997.

[8] Jian Huang and David Lilja. Exploiting basic block value locality
with block reuse. In Proceedings of the 5th International Symposium
on High Performance Computer Architecture, HPCA ’99, pages 106–
, Washington, DC, USA, 1999. IEEE Computer Society.

[9] Intel Corporation. extregistered 64 and IA-32 Architectures Optimiza-
tion Reference Manual. Intel, March 2009.

[10] Intel Corporation. extregistered 64 and IA-32 Architectures Software
Developer’s Manual. Intel, December 2009.

[11] Intel Xeon Processor E5450 (12M Cache, 3.00 GHz, 1333 MHz
FSB). http://ark.intel.com/products/33083/Intel-Xeon-Processor-
E5450-12M-Cache-3_00-GHz-1333-MHz-FSB.

[12] Daniel A. Jiménez. Reconsidering complex branch predictors. In
Proceedings of the 9th International Symposium on High-Perfor-
mance Computer Architecture, HPCA ’03, pages 43–, Washington,
DC, USA, 2003. IEEE Computer Society.

[13] Hyesoon Kim, José A. Joao, Onur Mutlu, Chang Joo Lee, Yale N.
Patt, and Robert Cohn. Vpc prediction: Reducing the cost of indirect
branches via hardware-based dynamic devirtualization. In Proceed-
ings of the 34th Annual International Symposium on Computer
Architecture, ISCA ’07, pages 424–435, New York, NY, USA, 2007.
ACM.

[14] Thomas Kistler and Michael Franz. Continuous program optimiza-
tion: A case study. ACM Trans. Program. Lang. Syst., 25(4):500–548,
July 2003.

[15] Pierre Michaud, AndréSeznec, and Richard Uhlig. Trading conflict
and capacity aliasing in conditional branch predictors. In Proceedings
of the 24th Annual International Symposium on Computer Architec-
ture, ISCA ’97, pages 292–303, New York, NY, USA, 1997. ACM.

[16] S. Owicki and A. Agarwal. Evaluating the performance of software
cache coherence. In Proceedings of the Third International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems, ASPLOS III, pages 230–242, New York, NY,
USA, 1989. ACM.

[17] David A. Padua and Michael J. Wolfe. Advanced compiler optimiza-
tions for supercomputers. Commun. ACM, 29(12):1184–1201,
December 1986.

[18] Peacekeeper - The universal Browser Test. http://peacekeeper.future-
mark.com/.

[19] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky,
and Galen C. Hunt. Rethinking the library os from the top down. In
Proceedings of the Sixteenth International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
ASPLOS XVI, pages 291–304, New York, NY, USA, 2011. ACM.

[20] Parthasarathy Ranganathan, Kourosh Gharachorloo, Sarita V Adve,
and Luiz Andre Barroso. Performance of database workloads on
shared-memory systems with out-of-order processors. In Proceedings
of the 8th International Conference on Architectural Support for
Programming Languages and Operating Systems, October 1998.

[21] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the effectiveness of address-space
randomization. In Proceedings of the 11th ACM Conference on
Computer and Communications Security, CCS ’04, pages 298–307,
New York, NY, USA, 2004. ACM.

[22] Avinash Sodani and Gurindar S. Sohi. Dynamic instruction reuse. In
Proceedings of the 24th Annual International Symposium on
Computer Architecture, ISCA ’97, pages 194–205, New York, NY,
USA, 1997. ACM.

[23] SPEC - Standard Performance Evaluation Corporation. http://
www.spec.org/.

[24] Tse-Yu Yeh and Yale N. Patt. Two-level adaptive training branch
prediction. In Proceedings of the 24th Annual International Sympo-
sium on Microarchitecture, MICRO 24, pages 51–61, New York, NY,
USA, 1991. ACM.

