Temporal Stream Branch Predictor

Yongming Shen

Michael Ferdman

Stony Brook University

Abstract

Branch predictors play an important role in high per-
formance processors. Designing a branch predictor
that balances simplicity, resource usage, and accura-
cy remains a challenge today.

In this paper, we present the temporal stream (TS)
branch predictor, a branch predictor that adds tem-
poral streaming on top of a base predictor to deliver
improved accuracy. Experiments show that when
using gshare as the base predictor, the TS predictor
can achieve far better accuracy than gshare alone by
correcting gshare’s mistakes. While a 512KB gshare
predictor achieves 4.675 MPKI on the championship
traces, TS with 32KB gshare as base predictor can
achieve 3.695 MPKI.

Introduction

Today’s deeply pipelined super-scalar out-of-order
processors require high accuracy branch predictors
to achieve peak performance. Designing a branch
predictor requires striking a balance between sim-
plicity, resource usage, and accuracy.

In this paper, we present the temporal stream (TS)
branch predictor, a branch predictor that adds tem-
poral streaming on top of a base predictor to deliver
improved accuracy. The TS predictor is based on the
observation that a simple predictor often repeats its
mistakes. To take advantage of this fact, the TS pre-
dictor first records the base predictor’s mistakes and
then uses the recording to prevent the same mis-
takes from happening again, thus achieving higher
overall branch-prediction accuracy.

In the implementation of the TS predictor, we record
the correctness of the base predictor in a circular
buffer of bits (“1” for correct, “0” for incorrect).
Whenever the base predictor makes a mistake, TS
looks up a table to check if there is an appropriate
point to start replay. TS also records the current
buffer tail pointer in the table for future use. When
replaying, a “1” in the buffer means to pass on the

base prediction, and a “0” in the buffer means to flip
the base prediction. If the TS predictor makes a mis-
take, replay is stopped until the base predictor
makes a mistake again.

For this unlimited size submission, the TS predictor
uses a 512KB gshare predictor as the base predictor.
While gshare alone achieves 4.675 MPKI on the
championship traces, the TS predictor improves ac-
curacy to 3.487 MPKI. This demonstrates that tem-
poral streaming is effective in achieving better
branch prediction accuracy.

Motivation and Solution

To better explain the TS branch predictor, we will
first discuss a TS predictor without a base predictor
(one can also think of this as a TS predictor with an
always-taken base predictor).

The fundamental idea behind temporal stream
branch prediction is to record a sequence of condi-
tional branch outcomes and then to replay the out-
comes as predictions at an appropriate time. Be-
cause a sequence of branch outcomes is highly re-
petitive, the recording of past outcomes serves as an
accurate predictor of future outcomes. The main
challenge for the TS predictor is to figure out a past
location within the recorded sequence from which
to begin replaying the branch outcomes.

To visualize how the predictor works, imagine an
application whose body is made up of a large loop
containing complex program logic. At the beginning
of the first loop iteration, the TS predictor begins
sequentially recording the outcomes of the condi-
tional branches, writing a “1” to indicate that a con-
ditional branch was taken and a “0” to indicate that
a conditional branch was not taken. When the first
loop iteration completes, there is an opportunity to
replay previously observed outcomes and make cor-
rect predictions, given the assumption that the
branch outcomes of the second loop iteration are
the same as the outcomes of the first. The TS pre-

dictor can take advantage of this opportunity if it
starts replay at the appropriate time and place.

In practice, the power of the TS predictor lies in lev-
eraging extensive historical context to determine the
outcome of hard-to-predict branches. Once replay
of a temporal stream starts, the further the stream
gets without making a mistake, the more likely the
stream is to correctly predict future outcomes.
However, for branches that are easy to predict, long
history is not needed or is harmful because of in-
creased training time.

To mitigate the long training time problem, we cou-
ple the TS predictor with a simple base predictor,
allowing the base predictor to handle most common
cases but leverage the temporal stream for cases
where the base predictor makes mistakes. When
coupled with a base predictor, rather than recording
the outcomes of each conditional branch, the TS
predictor records whether or not the base predictor
made a mistake. Recording a “1” in the sequence
indicates that the base predictor was correct; re-
cording a “0” indicates that the base predictor made
a mistake. When the TS predictor is not replaying a
temporal stream, the base predictor’s output is used
directly. When the TS predictor is replaying the tem-
poral stream, a “1” indicates that the base prediction
should be used, while a “0” indicates that the base
predictor’s prediction is likely incorrect and should
be reversed.

Design and Implementation

Our implementation of the TS predictor comprises
three structures: (1) a base branch predictor, (2) a
circular buffer for recording base predictor mistakes,
and (3) a head table containing pointers to locations
in the circular buffer.

The TS predictor maintains a tail pointer, pointing to
the location where the next base correctness bit is to

be recorded; a head pointer, pointing to the location
from where the next base correctness bit is to be
read; and a replaying flag to indicate whether or not
the predictor is in replay mode. The overall predic-
tor’s operation is described in the following algo-
rithms:

predict () :
base outcome = base predict();
if (replaying && buffer[head++]==0)
return !base outcome;
else
return base outcome;

update () :
update base predictor();
update features();//e.g., global history
buffer.append (
base outcome == actual outcome) ;
if (TS_outcome != actual_ outcome)
replaying = false;
if (base outcome != actual outcome) {
key = key from features();
if (!replaying &&
lempty (head tablelkey]) {
head = head tablelkey];
replaying = true;
}
head tablelkey] = tail;

}

For the purpose of the competition submission, we
use a gshare predictor as the base predictor, an infi-
nitely large buffer for recording base predictor cor-
rectness, and an infinitely large head table for map-
ping keys to replay starting points. The
key_from_features function simply concatenates the
current PC and global history bits.

Results

In our experiments, gshare predictors with memory
sizes from 16KB to 4MB are used. For the head table,
concatenations of 140-bit global histories and PC
values are used as keys. Table 1 and Figure 1 com-
pare the MPKI scores of gshare predictors with
gshare-based TS predictors. Our results indicate that

Table 1: Predictor Accuracies (MPKI)

gshare memory size 16KB 32KB 64KB

128KB | 256KB | 512KB 1MB 2MB 4MB

gshare 5.530 | 5.196 | 4.971

4.823 4.768 4.675 4.643 | 4.612 | 4.586

TS (gshare) 3.897 | 3.695 | 3.575

3.517 3.505 3.487 3.507 | 3.537 | 3.577

TS can consistently provide better accuracy than
gshare alone, with the best accuracy being at 3.487
MPKI, when the base gshare predictor uses 512KB of
memory.

Figure 1: Predictor Accuracies (MPKI)

S S S S SN U\ N
x‘°°9’<ovq’,»‘°<,)x \,w v

MPKI
[N w B

o

gshare memory size
BMgshare MTS (gshare)

Related Work

Prior work on temporal streaming was done in the
context of data prefetching [2][3] and instruction
prefetching [1]. In this work, we find that temporal
streaming is also a promising technique for branch
prediction. In many ways, our work is also similar to
stream compression using branch prediction [4].
Overriding branch prediction [5] also uses the idea of
correcting a simple predictor’s mistakes, but correc-
tion is made after the simple predictor’s output is
used, whereas the TS predictor corrects mistakes
immediately.

Conclusions

We find that using temporal streaming for branch
prediction is promising. Experiments show that
gshare-based TS predictors consistently provide bet-
ter accuracy than gshare predictors. In this submis-
sion, we do not place restrictions on the size of the
head table and the circular buffer. However, there
are numerous techniques that can be used to con-
vert the current implementation to one that uses a
reasonable amount of memory. Additionally, our
submission simply uses global history and PC bits to
compute keys for the head table, whereas further

accuracy improvements should be achievable with
more complex keys.

References

[1] Ferdman, Michael, et al. "Temporal instruction
fetch streaming." Microarchitecture, 2008. MICRO-
41. 2008 41st IEEE/ACM International Symposium on.
IEEE, 2008.

[2] Wenisch, Thomas F., et al. "Practical off-chip me-
ta-data for temporal memory streaming." High Per-
formance Computer Architecture, 2009. HPCA 2009.
IEEE 15th International Symposium on. IEEE, 2009.

[3] Wenisch, Thomas F., et al. "Temporal streaming
of shared memory." Computer Architecture, 2005.
ISCA'05. Proceedings. 32nd International Symposium
on. IEEE, 2005.

[4] Burtscher, Martin, et al. "The VPC trace-
compression algorithms." Computers, IEEE Transac-
tions on 54.11 (2005): 1329-1344.

[5] Seznec, André, et al. "Design tradeoffs for the
Alpha EV8 conditional branch predictor." Computer
Architecture, 2002. Proceedings. 29th Annual Inter-
national Symposium on. IEEE, 2002.

