
Escher: A CNN Accelerator with Flexible Buffering
to Minimize Off-Chip Transfer

Yongming Shen
Stony Brook University

yoshen@cs.stonybrook.edu

Michael Ferdman
Stony Brook University

mferdman@cs.stonybrook.edu

Peter Milder
Stony Brook University

peter.milder@stonybrook.edu

Abstract—Convolutional neural networks (CNNs) are used to
solve many challenging machine learning problems. Interest in
CNNs has led to the design of CNN accelerators to improve CNN
evaluation throughput and efficiency. Importantly, the bandwidth
demand from weight data transfer for modern large CNNs causes
CNN accelerators to be severely bandwidth bottlenecked, prompting
the need for processing images in batches to increase weight reuse.
However, existing CNN accelerator designs limit the choice of batch
sizes and lack support for batch processing of convolutional layers.

We observe that, for a given storage budget, choosing the best batch
size requires balancing the input and weight transfer. We propose
Escher, a CNN accelerator with a flexible data buffering scheme that
ensures a balance between the input and weight transfer bandwidth,
significantly reducing overall bandwidth requirements. For example,
compared to the state-of-the-art CNN accelerator designs targeting a
Virtex-7 690T FPGA, Escher reduces the accelerator peak bandwidth
requirements by 2.4× across both fully-connected and convolutional
layers on fixed-point AlexNet, and reduces convolutional layer
bandwidth by up to 10.5× on fixed-point GoogleNet.

I. INTRODUCTION

Convolutional neural networks (CNNs) are being used to solve
a wide array of challenging machine learning problems, such as
recommendation systems [1], natural language processing [2], and
computer vision [3]–[5]. In particular, CNNs achieve unprecedented
image object recognition accuracy, setting new records for object
detection and classification competitions every year. However, the
high accuracy of CNNs comes with a high computational cost. CPUs
cannot provide sufficient performance, leading to increasing popu-
larity in the use of hardware accelerators [6]–[9]. Among the acceler-
ators, FPGAs are emerging as an appealing option, as they hold the
promise of simultaneous high performance and energy efficiency.

CNNs comprise a series of computation layers, where each layer
takes the output of the preceding layer as its input. Each layer scales
inputs by a set of weights (parameters that are found through learn-
ing). A modern CNN contains hundreds of megabytes of weights,
leading to a severe off-chip bandwidth bottleneck [7], [10]–[14].

Importantly, although each weight is needed at least once per
image, the same weights are used for evaluating every image.
State-of-the-art CNN accelerators leverage this by batching the
processing of multiple images, bringing weights on chip in blocks
and reusing them across batches of inputs. For the fully-connected
(FC) layers, where the off-chip weight transfer is a clear bottleneck,
batching of images effectively reduces memory bandwidth
requirements by a factor of the batch size.

Previous batch processing schemes limit the batch size by
connecting it to other aspects of the accelerator’s architecture. For

example, to support batching, [7] must buffer many outputs on
chip, limiting the accelerator to small batch sizes due to constrained
on-chip memory capacity. The weight-major method in [11]
requires the batch size to match the number of vector dot product
units in the accelerator, also limiting the design to small batch sizes.
On the other hand, the input-major method in [11] supports large
batch sizes, but limits the amount of output data stored per image;
this alleviates the weight bandwidth bottleneck, but creates a new
bandwidth bottleneck from re-transferring input data multiple times.

We observe that, for a given on-chip storage budget, increasing the
batch size necessarily reduces the amount of data buffered per image
because data for all images in the batch must be stored. Therefore,
increasing the batch size reduces the weight bandwidth, but increases
the bandwidth required for transferring input/output data because
less on-chip storage is allocated to them. The result is that one must
strike a careful balance between weight bandwidth and input/output
bandwidth. Therefore, we propose a CNN accelerator design that
allows flexible batching by allowing independent adjustment of the
batch size and the amount of data buffered per image. This allows
a design to operate close to the optimal trade-off point between
weight transfer and input/output data transfer, significantly reducing
the bandwidth required relative to prior designs.

Moreover, we find that reducing the bandwidth requirement of
fully-connected layers exposes a new bandwidth bottleneck: the
convolutional layers, for which the prior work has no solution.
Unlike previous approaches, our method is flexible enough to also
support batching on the convolutional layers. Using the same amount
of on-chip storage, our approach enables larger batch sizes without
unnecessary penalties in input/output re-transfer. We achieve a sig-
nificant reduction in the bandwidth requirements of the entire CNN,
which includes both the fully-connected and convolutional layers.

In this work, we propose Escher, a CNN accelerator architecture
that emphasizes flexibility in controlling how data are buffered
on chip. The batch size and the amount of data stored per image
can be adjusted independently and can change from layer to layer.
For Escher, we develop an optimization strategy that determines
the appropriate buffer sizes, per-layer batch size, and per-layer data
tiling parameters for all fully-connected and convolutional layers
of a CNN. The result of the optimization produces an Escher design
that makes near-optimal use of the on-chip buffers to minimize
overall accelerator bandwidth requirements.

We demonstrate the effectiveness of Escher by designing FPGA
accelerators for three modern CNNs (AlexNet [3], VGGNet-E [4],
and GoogleNet [5]) in floating point and fixed point configurations.



On a Xilinx Virtex-7 690T FPGA, using our approach for batching
both the fully-connected and convolutional layers, Escher reduces
the peak bandwidth requirements by up to 2.4× (AlexNet, fixed
point) compared to the state of the art, while using essentially
equivalent FPGA resources. Escher also demonstrates that batch
processing can reduce the bandwidth requirements of convolutional
layers by up to 10.5× (GoogleNet, fixed point). In contrast to
conventional wisdom, our results demonstrate that batch processing
of convolutional layers is needed to avoid bandwidth bottlenecks.
For example, batching both fully-connected and convolution layers
can reduce the peak bandwidth consumption by 1.7× (VGGNet-E,
fixed point) compared to batching only the fully-connected layers.

II. BACKGROUND AND MOTIVATION

A CNN is a pipeline that takes an input and passes it through
multiple stages, called layers, producing a vector as the final output.
In the context of object detection, the input is an image and the
output vector identifies an object found in the image.

Convolutional layers, responsible for feature extraction, compute
Y output feature maps from X input feature maps, where each
feature map is an R×C matrix. An output feature map is computed
by 3D-convolving the X ×Rin×Cin inputs with X ×K ×K
filters, stepping with stride S. Critically, there are Y filters, one
for each output feature map. Every convolutional layer may have
different dimensions, each defined by the tuple (X,Y,R,C,K,S).

Fully-connected (FC) layers, responsible for classification,
compute an output feature vector of size Y from an input feature
vector of size X. Each value in the output feature vector is
the dot product of the input vector and a weight vector. As for
convolutional layers, different weight vectors are used to compute
each of the values in the output vector. Every fully-connected layer
may have different (X,Y) dimensions. Critically for our work, a
fully-connected layer can also be thought of as a convolutional
layer defined by the tuple (X,Y,R=1,C=1,K=1,S=1).

A. The Weight Transfer Bottleneck

Modern CNNs use hundreds of megabytes of filter weights, far
exceeding the on-chip memory capacity of any FPGA. To process
an image, each weight must be read from off-chip memory at least
once. If images are processed in isolation, weight transfer alone
will cause severe memory bandwidth bottlenecks.

For example, using a 512-bit 100MHz interconnect between an
FPGA accelerator and the memory controller can provide at most
6GB/s bandwidth. For AlexNet, which uses 233MB of weights
(assuming 32 bits per weight), this limits the throughput to 26.4
images/s. For VGGNet-E, which uses 548MB of weights, the
limit is 11.2 images/s. In practice, peak accelerator throughput is
even lower, because some bandwidth is used to transfer input and
output feature maps, and because actual DRAM access patterns
and refresh limit the peak achievable bandwidth.

B. Batch Processing CNN Layers

To reduce the off-chip bandwidth requirements of weight transfer,
images can be processed in batches [7], [11]1. Buffering data for

1Here, batching refers to buffering data on chip for reuse. This is different from the
mini-batch used in network training, which controls the gradient descent algorithm.

a batch of images on chip enables transferred weights to be reused
for processing all images in the batch. Thus the number of weights
transferred is reduced linearly with the batch size.

However, existing designs fail to realize the full potential of batch
processing. The Caffeine [11] weight-major method constrains the
batch size to the number of vector dot product units in the accelerator.
For the CNNs we evaluate, the best throughput is achieved at
approximately 70 dot product units, but larger batch sizes are desired
to mitigate the weight transfer bandwidth bottleneck. The Caffeine
input-major method stores a small amount of output data per image
(corresponding to the number of vector dot product units) to enable
large batch size. However, a typical fully-connected layer output
vector size of 4096 causes each input to be re-transferred approx-
imately 4096/70=59 times, which creates a bandwidth bottleneck
due to input feature vector transfers. In [7], an alternative strategy
of storing complete output vectors is used, however this approach
limits batch size due to its high per-image on-chip storage overhead.

The state-of-the-art designs are too inflexible in their data buffer-
ing schemes and control logic to effectively balance between on-chip
buffer capacity and off-chip transfer bandwidth. Furthermore, all
prior designs consider batch processing only for the fully-connected
layers. Because the fully-connected layers typically contain more
than 90% of the CNN weights, this yields the most benefit compared
to unbatched designs. However, after the weight transfer of fully-
connected layers is reduced, the weight transfer of convolutional
layers becomes a new bottleneck and calls for batch processing.

III. ANALYSIS OF BATCHING

In this section, we use a simple serial CNN accelerator model
to show that the key to efficient batch processing is the trade-off
between weight transfer and input transfer, and we show how to
choose the best batch size. In Section IV, we extend this idea to
construct a practical and scalable CNN accelerator.
A. Modeling Batching CNN Accelerators

Figure 1 shows a model of a simple batch processing CNN
accelerator. To simplify analysis, this model has only one multiplier
and adder. (We remove this restriction in Section IV.) In each cycle, a
value from the input buffer (I) is multiplied with one from the weight
buffer (W), and the result is accumulated into the output buffer (O).
The system processes a batch of G images at once, so the input
and output buffers are evenly divided into G partitions, and data for
different images are marked by different colors. The weight buffer
is not partitioned because weights are shared by the entire batch.
Batch Processing Fully-Connected Layers. Listing 1 shows the
pseudocode for evaluating a fully-connected layer for one image.
The yi loop iterates over all Y output vector values, while the xi
loop iterates over all X input vector values. Each weight Wt[yi][xi]
is used only once.

When computing fully-connected layers, each cell in Figure 1 (a
cell is a square marked with I, O, or W ) stores one value. Without
batching (G=1), the accelerator reads one input value and reuses
it to update all currently buffered outputs, and then advances to the
next input. A new weight is read for each output, because weights
are not reused within an image. After all inputs are traversed, values
in the output buffer are finalized and written to off-chip memory.
Computation then moves to the next tile of outputs, until all Y



Out[Y] //output feature vector
In[X] //input feature vector
Wt[Y][X] //weight vectors
Bias[Y] //biases
for(yi = 0; yi < Y; yi++)
Out[yi] = Bias[yi]
for(xi = 0; xi < X; xi++)
Out[yi] += In[xi] * Wt[yi][xi]

Listing 1: Pseudocode of an unbatched fully-connected layer.

output values are complete. When a batch comprises more than one
image (G>1), computations for different images are interleaved so
that each weight is reused G times after being read into the W cell.
Batch Processing Convolutional Layers. A convolutional layer
can be viewed as a generalization of a fully-connected layer by
replacing each value in the input/output vectors (X and Y ) with
2D feature maps and replacing each weight with a 2D kernel.
Then, instead of multiplying an input value with a weight value,
we convolve a 2D input feature map with a 2D kernel.

For convolutional layers, output feature maps can be partitioned.
For example, a layer with output feature maps of size R × C
can be partitioned into dR/Tre×dC/Tce sub-layers with output
feature maps of size Tr×Tc. (Sub-layers at boundaries can have
smaller feature map sizes). When considering the nested-loop
implementation of convolutional layers, this corresponds to tiling
the R and C loop with factor Tr and Tc [15].

In summary, when batch processing convolutional layers using
the model in Figure 1, an O cell stores Tr×Tc words, an I cell
stores Tri×Tci words (Tri = (Tr−1) ·S+K, and the same for
Tci), and a W cell stores K×K words. Computations for different
images are interleaved as in fully-connected layers.

B. Choosing Batch Size for FC Layers

To increase batch size within a given storage budget, one must
reduce the data buffered per image. Increasing weight reuse reduces
the bandwidth required for weights, but increases transfers of the
input data, becoming a critical trade-off for minimizing bandwidth.
Storage per Image vs. Input Transfer. We consider how reducing
the storage used by each image affects the amount of input transfer
required. In Figure 1, if all Y words are buffered for an image
(where Y is the size of the output feature vector), then the inputs
only need to be loaded once to compute all Y outputs. This
minimizes the input transfer. However, if we store Y/2 output
words, then the input feature vector must be transferred twice,
doubling the input bandwidth required. We define parameter H
to control this trade-off. If the output buffer holds Y/H words per
image, the processor must read its input H times from off-chip
memory. Therefore, H=1 represents the minimum input transfer
and H=Y represents the minimum on-chip buffer size.

Batch size G requires an output buffer of size G·Y/H. The G
input feature vectors (each of size X) must each be transferred H
times, incurring a total of G·XH words transferred per batch, and

Inputs transferred per image=XH. (1)
For a fixed storage budget, the input transferred per image grows
linearly with the decrease in the amount of buffered output.
Storage Per Image vs. Weight Transfer. Next, we examine the
relationship between the storage that an accelerator uses for each
image and the amount of weight data that must be transferred per

G

G

Tri I

Tci

I

Tci

Tri I

Tci

Tr O

Tc

O

Tc

Tr O

Tc

K W

K

W

K

K W

K

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

I I II I I

W

Fig. 1: A simple batch processing CNN accelerator model.

image. We define Mo as the storage budget for the output buffer.2

Because the output buffer holds G·Y/H words, we require that G·
Y/H≤Mo. From this, we can see that the maximum batch size is

G=MoH/Y. (2)
The maximum possible batch size increases linearly with H. Note
that (2) allows us to re-write (1) in terms of G: XH=XYG/Mo.

Recall that each fully-connected layer uses XY weights. When
batching G images, this requires a total of XY/G weights to be
transferred per image. Combining this with (2),

Weights transferred per image=
XY

G
=

XY 2

MoH
. (3)

X and Y are constants dictated by the layer’s dimensions. Therefore,
for a fixed storage budget, the number of weights transferred per
image scales with 1/G (or equivalently, 1/H).
Trade-off: Input vs. Weight Transfer. Equations (1) and (3)
describe a trade-off: given a fixed on-chip storage budget, reducing
the amount of output data buffered per image allows increasing the
batch size G, scaling the per-image input transfer up by a factor
of G, while scaling the per-image weight transfer down by G.

Figure 2 illustrates this behavior by showing the total number
of inputs and weights transferred per image (summing (1) and (3),
while expressing (1) in terms of G: XH = XYG/Mo). We
examine the first fully-connected layer of VGGNet-E for four
different storage budgets, assuming each word is 32 bits. Note
that, when G= 1 (no batching used), the y-axis goes to 392MB
per image; we truncate the y-axis for readability.

When G is small, increasing it is extremely beneficial. On
the left side of the graph, weight transfer XY/G (3) dominates;
increasing G dramatically reduces the data transferred. However,
as G increases, all storage curves reach an inflection point, where
the input transfer XYG/Mo (1) begins to dominate. Beyond these
points, input transfer outweighs the benefits of increasing G.

These results have an interesting implication on how to choose the
best batch size. For example, storing all Y outputs for each image
and setting the batch size to be G=Mo/Y is sub-optimal, because
it limits the batch size to stay to the left of the inflection point.
Alternatively, using the largest batch size allowed within the acceler-
ator’s latency constraint is also likely sub-optimal, because this may
increase the batch size to be on the right of the inflection point.

Analytically, assuming continuous variables, one can show that
the optimal batch size (which minimizes the sum of (1) and (3))

2We focus on the output storage Mo because the buffers required for inputs and
weights are much smaller, only 1+G words in fully-connected layers.



0

4

8

12

16

20

0 200 400 600 800 1000

M
B	
tra

ns
fe
rrr
ed
	p
er
	im

ag
e

G	(Batch	Size)

160	KB
320	KB

640	KB

1280	KB

Fig. 2: Sum of input and weight transferred per image vs. batch size G,
for different storage budgets Mo, for the first FC layer of VGGNet-E.

is G=
√
Mo. However, actual designs are discrete in nature and

require multiple buffer banks for parallel computation. (One may
also need to limit the maximum batch size due to its effect on the
overall latency of the system.) So, rather than setting G=

√
Mo,

we use an exhaustive search to determine the best value of G.
Interpretation as Matrix-Matrix Multiplication. Another way
to understand batching of fully-connected layers is to think of it
as a matrix-matrix multiplication. In this case, the two matrices are
MW and MI , where MW is the weight matrix, with Y rows and
X columns, and MI is the input matrix, with X rows and as many
columns as there are possible input images (typically unbounded).
Batching can then be viewed as a blocking problem, partitioning
MW into blocks of Y/H rows and MI into blocks of G columns.
Viewed this way, the trade-off we identify between the bandwidth
of weights and input data becomes equivalent to the trade-off found
when blocking the MW and MI matrices [16].

C. Batching for Convolutional Layers

Because we can view a convolutional layer as a generalization
of an FC layer (see Section III-A), the trade-off between input
transfer and weight transfer observed for fully-connected layers
also exists for convolutional layers. That is, in an FC layer, each
of the I, O, and W cells in Figure 1 consists of a single value,
whereas in a convolutional layer, each cell is a 2D structure. As
a result, batch processing of convolutional layers is analogous to
the fully-connected layers: a batch of G independent inputs share
weights, amortizing the weight transfer bandwidth across the inputs.

However, because multiply-add operations in fully-connected
layers are generalized to 2D-convolution operations in convolutional
layers, the details of how G affects input and weight transfer
in convolutional layers are more complicated than the case of
fully-connected layers. To be specific, two more parameters must be
considered: Tr and Tc dictate the tiling of the convolutional layer’s
two-dimensional inputs and outputs. These parameters affect the on-
chip storage, input transfer, and weight transfer requirements [15].
For convolutional layers, the goal of our optimization is not merely
to find the best value of G (as for FC layers), but to find the best
set of (Tr,Tc,G). Given a layer’s parameters and memory budget,
we use an exhaustive search to find the best combination.

IV. ESCHER CNN ACCELERATOR

In Section III, we demonstrated the importance of controlling the
batch size and the amount of data stored per image, using a simple
accelerator model with only one multiplier and one adder as compute

O O

I I I

I I I

O O O O

O OO O O O

O OO O O O

W

W

Py

G

Qy

G

Px

Tri I

Tci

Tr O

Tc

K W

K

Fig. 3: Structure of an Escher CNN accelerator.

units. We now extend this idea to design a practical CNN accelerator
that uses an array of vector dot product units and adders to exploit
parallelism in CNN computations, while retaining the flexibility in
data buffering to enable the accelerator to balance input transfer
and weight transfer. Similar to Section III, we first consider only
fully-connected layers and then generalize to convolutional layers.

A. Practical FCLP Design

Figure 3 presents our Escher FCLP (Fully-Connected Layer
Processor) design. Analogous to prior work [17], this design
exploits two forms of parallelism. First, multiple values from a
single input feature vector can be accumulated into one output value
using a parallel vector dot product unit (input parallelism). Px is
used to represent the number of inputs that each vector dot product
unit takes from a single input feature vector. Second, multiple output
values can be computed in parallel by using multiple parallel vector
dot product units (output parallelism). Py is used to represent the
number of parallel vector dot product units. We note that, to provide
sufficient access bandwidth, the organization of the FCLP’s on-chip
buffers must match the data access pattern of its compute units: the
input buffers are split into Px banks, the output buffers are split into
Py banks, and the weight buffer is partitioned into Px×Py banks.

Listing 2 shows the pseudocode corresponding to Figure 3. There
are four parameters: G (batch size), Py (output parallelism), Px

(input parallelism), and Qy, where Qy×Py outputs are buffered
for each image. Out, In, Wt, and Bias are in off-chip memory,
while obuf , ibuf , and wbuf are on-chip buffers. All on-chip storage
uses double-buffering to overlap computation with data transfer.
The unrolled py and px loops correspond to the parallel compute
units. Parameter H is computed based on the analysis presented
in Section III-B. Note that the off-chip data array declarations are
written for readability in the pseudocode; an actual implementation
may use a different layout to optimize for DRAM access locality.

B. Optimizing an FCLP Design

For a given fully-connected layer, the parameters in Listing 2 are
optimized to find the best performance (throughput) within a set of
resource constraints (i.e., bandwidth, on-chip storage, and multiplier
and adder units). The following formulas are used to estimate the
characteristics of the candidate designs during optimization:

• Throughput is derived from the clock frequency and cycle
count; it takes Sy ·Sx·Qy ·G clock cycles to process one batch
of G input vectors.



• Computation resources are based on the template structure,
which uses Py×Px multipliers and adders.

• On-chip storage for the input buffers holds G·Px words, but
requires G·Px·2 words because it is double buffered.

• On-chip storage for the output buffers requires G·Qy ·Py ·2
words and the weight buffers require Px·Py ·2 words.

• Memory bandwidth is computed from the data transferred
per batch of images and the design throughput. For one batch
G, the system loads the input buffers Sy · Sx times, each
time reading G·Px words. The output buffers are loaded and
stored Sy times, with Qy ·Py words loaded and G ·Qy ·Py

words stored. The weight buffers are loaded Sy ·Sx ·Qy times,
reading Py×Px words each time.

The goal of the optimization is to find the (G,Qy, Py, Px)
combination with the highest throughput within the given resource
limit. The set of possibilities is small enough that the best option
can be easily found through an exhaustive search. It is also possible
to jointly optimize an FCLP for multiple fully-connected layers.
In this case, the same (Py, Px) are used for all layers because
they dictate the number and organization of the compute units and
memories, but Qy and G can change from layer to layer because
changing them only affects the runtime-adjustable control logic
parameters. When jointly optimizing for multiple fully-connected
layers, the buffers are sized for the layer with the largest storage
demand, typically the first fully-connected layer.

C. Integration with Convolutional Layers

We extend the fully-connected design in Figure 3 to convolutional
layers by viewing them as a generalization of the fully-connected
layers (see Section III-C). When processing fully-connected
layers, each O cell stores one value, but when processing
convolutional layers, each O cell stores a feature map of size
Tr×Tc. Similarly, for the fully-connected layers, an I cell stores
one value, while convolutional layers store a feature map of size
[(Tr−1)×S+K]×[(Tc−1)×S+K], where S is the stride and
K is the filter kernel size. Therefore, the fundamental structure
of the computation remains the same as for the fully-connected
layers, but adds two more loops (Tr and Tc) between the G and Py

loops in Listing 2. Furthermore, for the convolutional layers, each
W cell also stores a filter of size K×K. Similarly, this adds two
K loops between the G and Py loops in Listing 2. The resulting
design is sufficient to process convolutional layers, and can be
used to process fully-connected layers by setting Tr=1, Tc=1, and
K=1. Note that, when G=1 and Qy=1, the convolutional layers are
processed without batching, which is equivalent to [15].

D. Optimizing for Convolutional and Fully-Connected Layers

To simultaneously optimize an Escher accelerator design
for convolutional and fully-connected layers, we extend the
optimization model to cover the convolutional layers. When
processing a convolutional layer, a multiplication is generalized
to a 2D convolution and will take Tr ·Tc ·K2 cycles to complete.
The convolutional layer is partitioned into Rout

Tr
×Cout

Tc
sub-layers.

Thus, the number of cycles needed to compute a batch of images
is Sy ·Sx·Qy ·G·Rout·Cout·K2.

For on-chip storage, compared to the FC layer formulas, the
input buffer is scaled by [(Tr−1)×S+K]× [(Tc−1)×S+K],

// parameters
G, Qy, Py, Px
// derived parameters
H = Y/(Qy*Py), Sy = ceil(H), Sx = ceil(X/Px)
// off chip
Out[G][Sy][Qy][Py] // contains Out[G][Y]
In[G][Sx][Px] // contains In[G][X]
Wt[Sy][Sx][Qy][Py][Px] // contains Wt[Y][X]
Bias[Sy][Qy][Py] // contains Bias[Y]
// on chip
obuf[G][Qy][Py], ibuf[G][Px], wbuf[Py][Px]
for(sy = 0; sy < Sy; sy++)

obuf[0:G-1] = repeat(Bias[sy],G)
for(sx = 0; sx < Sx; sx++)

ibuf[0:G-1] = In[0:G-1][sx]
for(qy = 0; qy < Qy; qy++)

wbuf = Wt[sy][sx][qy]
for(g = 0; g < G; g++)
// py,px unrolled for parallelism
for (py = 0; py < Py; py++)

for (px = 0; px < Px; px++)
obuf[g][qy][py] +=
ibuf[g][px] * wbuf[py][px]

Out[0:G-1][sy] = obuf[0:G-1]

Listing 2: Pseudocode of a fully-connected Escher layer.

the weight buffer by K×K, and the output buffer by Tr×Tc. For
data transfer, first, the same scaling is applied as for the storage, and
then the result is multiplied by Rout

Tr
×Cout

Tc
to account for looping

through the sub-layers.
Finally, when optimizing for the convolutional layers, Tr and

Tc must be optimized for each layer, because the best (Tr,Tc) may
be different for different convolutional layers.

V. EVALUATION

We compare Escher with several prior works. We generate
accelerator designs for AlexNet, VGGNet-E, and GoogleNet
that use 32-bit floating point or 16-bit fixed point data types. All
accelerator designs are optimized targeting 60% utilization of the
available DSPs and BRAMs of a Virtex-7 690T FPGA at 100 MHz.
Optimization. All designs are optimized to accommodate all
convolutional and fully-connected layers in the target CNN. For each
design, we first choose Py and Px to maximize throughput, then
choose the remaining parameters to minimize the peak bandwidth.
If there are multiple (Py,Px) with the same throughput, the design
with minimum peak bandwidth is selected. If multiple designs
have the same peak bandwidth requirements, the design with the
lower average bandwidth is selected. This strategy minimizes the
bandwidth of all CNN layers without harming performance. To
limit optimization runtime, we do not consider batch sizes greater
than 300, as they offer negligible bandwidth benefits.
RTL. We used Vivado 2016.4 to generate RTL for all accelerator de-
signs from C++ source code decorated with HLS #pragma directives.
For 32-bit floating-point designs, the adders used for accumulation
are pipelined; we require that G·Qy ·Tr ·Tc is larger than the adder’s
pipeline depth to ensure that loop-carry dependencies are avoided.
Prior Art. We compare Escher to the Caffeine [11] input-major
(Caffeine-I) and weight-major (Caffeine-W) designs. We also
compare Escher to the batching strategy from [7] (Fudan) by setting
Qy to dY/Pye, which corresponds to buffering the maximum
amount of data per image. To highlight the benefits of batching of
the convolutional layers, we also compare with a restricted Escher



TABLE I: Peak bandwidth, in GB/s.

32-bit Floating Point 16-bit fixed point

AlexNet VGG-E Google AlexNet VGG-E Google
Escher 0.90 1.40 4.37 2.05 1.71 12.03
Escher-FConly 1.26 1.50 5.31 3.36 2.89 14.20
Fudan 2.09 1.57 5.31 4.97 2.89 14.20
Caffeine-I 2.81 5.40 5.31 7.35 7.35 14.20
Caffeine-W 2.43 5.03 5.31 6.45 6.45 14.20

TABLE II: Throughput, in Gops/s.

32-bit Floating Point 16-bit fixed point

AlexNet VGG-E Google AlexNet VGG-E Google
(all designs) 62 81 67 135 393 224

design that batches only the fully-connected layers (Escher-FConly)
by setting G=1 and Qy=1 for the convolutional layers, which
mimics how Caffeine handles these layers. In all four designs,
where convolutional layer processing is not batched, these layers
are optimized based on [15].

A. Peak Bandwidth Comparison

In Section III, we demonstrated the bandwidth benefits of Escher
for the fully-connected layers using an analytical model. We now
compare an actual Escher accelerator design with accelerators built
using other methods. When processing a CNN layer, bandwidth
use is relatively constant. However, across layers, it can vary greatly.
Therefore, we define the peak bandwidth of a design as the band-
width that ensures the accelerator is not bottlenecked by data transfer
when processing the most bandwidth-demanding CNN layer.

Table I shows the peak bandwidth requirements of each design.
Assuming compute is not blocked by data transfer, for the same
CNN and data type, the five different methods produce accelerators
with less than one percent throughput difference, making their band-
width directly comparable. For reference, Table II shows the com-
mon throughputs when peak bandwidth requirements are satisfied.

First, we examine the benefits of Escher when applied only
to the fully-connected layers (Escher-FConly). Compared to the
best among the state of the art (Fudan), Escher-FConly reduces
peak bandwidth by up to 1.7× (AlexNet floating point). We then
compare Escher-FConly with Escher, which shows that batching
for convolutional layers further reduces peak bandwidth by up to
another 1.7× (VGG fixed point). Notably, Escher-FConly shows
no benefit for GoogleNet, while Escher is able to reduce peak
bandwidth. This happens because the GoogleNet designs are
bottlenecked by the data transfer on the convolutional layers.

Overall, Escher consistently lowers peak bandwidth. When both
convolutional and fully-connected layers are batched, Escher re-
duces peak bandwidth by up to 2.4× (AlexNet fixed point) compared
to Fudan and even more compared to the Caffeine designs.

B. Per-layer Bandwidth Comparison

A clearer picture of how the different design methods perform
can be observed by examining the bandwidth requirements of the in-
dividual layers. Due to the large sizes of VGGNet-E and GoogleNet
(VGGNet-E has 16 convolutional layers and 3 fully-connected
layers; GoogleNet has 57 convolutional layers and 1 fully-connected
layer [18]), we only present a representative sample of layers for
these networks. Specifically, we include all fully-connected layers,

TABLE III: Per-layer bandwidth breakdown, 16-bit fixed point, in GB/s.

Escher Escher-FConly Fudan Caffeine-I Caffeine-W
AlexNet
Conv. 1a/1b 0.54 0.29 3.45 0.28 0.28
Conv. 2a/2b 0.55 0.87 1.71 0.87 0.87
Conv. 3a/3b 0.74 3.30 3.30 3.30 3.30
Conv. 4a/4b 0.80 3.36 3.36 3.36 3.36
Conv. 5a/5b 0.87 3.36 3.36 3.36 3.36
FC 1 2.00 2.66 4.92 7.29 6.39
FC 2 2.05 2.72 4.97 7.35 6.44
FC 3 1.92 2.78 1.71 7.29 6.45

VGGNet-E
Conv. 2 1.46 1.40 1.40 1.40 1.40
Conv. 13–16 0.44 2.89 2.89 2.89 2.89
FC 1 1.59 1.59 2.76 7.27 6.07
FC 2 1.67 1.67 2.84 7.35 6.15
FC 3 1.71 1.71 1.71 7.29 6.45

GoogleNet
Conv. 1 0.39 0.37 0.37 0.37 0.39
Conv. 2 12.03 12.04 12.04 12.04 12.04
Conv. 46 2.32 14.20 14.20 14.20 14.20
Conv. 54 0.87 9.10 9.10 9.10 9.10
FC 1 2.19 2.35 2.40 7.57 6.74

the bottleneck layers for all designs, and the convolutional layers in
which Escher shows the greatest and least advantages.

Table III shows the per-layer bandwidth breakdowns, with the
peak bandwidth for each design shown in bold. We make three obser-
vations. First, batching can reduce convolutional layer bandwidth by
far more than the reduction in peak bandwidth (e.g., 6.6× improve-
ment on VGGNet-E Conv. 13–16, compared to 1.7× improvement
to the peak bandwidth). Although these savings do not contribute
to throughput, they save energy and reduce the overall data transfer.

Second, in some non-bottleneck layers, Escher may increase the
bandwidth compared to the other techniques. Because our optimiza-
tion goal is to minimize peak bandwidth requirements for the entire
CNN, we may prioritize the bottleneck layer(s) at the occasional
expense of increasing bandwidth in other layers. In particular, convo-
lutional layers have greater demand for large input buffers compared
to the fully-connected layers, because a single input value in a fully-
connected layer corresponds to a 2D feature map of values in a
convolutional layer. This effect is particularly significant for early-
stage convolutional layers because they have larger feature maps.

Third, without support for batching in convolutional layers,
an accelerator may be bottlenecked by the convolutional layer
bandwidth requirements, as evidenced by Escher-FConly, which
is limited by convolutional layers in all three networks.

GoogleNet highlights an interesting scenario, where the
bandwidth bottleneck for all designs is a convolutional layer.
Escher is bottlenecked by Conv. 2, whereas all other designs are
bottlenecked by Conv. 46. This happens because Escher successfully
reduces the bandwidth requirements of Conv. 46 through batching.
However, batching is ineffective for Conv. 2, because the early
convolutional layers have very few weights [19], thus reusing them
makes little difference. Notably, the largest bandwidth reduction
in GoogleNet is still observed in a convolutional layer, with Escher
using 10.5× less bandwidth than the other designs on Conv. 54.

C. FPGA Resource Comparison

To illustrate that Escher does not incur an FPGA resource
overhead, we present the post place-and-route resource consumption



TABLE IV: FPGA resource utilization.

BRAM-18K DSP FF LUT

32-bit floating point

AlexNet
Escher 1,765(60%) 2,225(62%) 179K(21%) 181K(42%)
Caffeine 1,645(56%) 2,224(62%) 180K(21%) 181K(42%)
Fudan 1,765(60%) 2,224(62%) 181K(21%) 184K(43%)

VGGNet-E
Escher 1,765(60%) 2,213(61%) 213K(25%) 187K(43%)
Caffeine 1,591(54%) 2,213(61%) 215K(25%) 187K(43%)
Fudan 1,743(59%) 2,212(61%) 214K(25%) 188K(43%)

GoogleNet
Escher 1,753(60%) 2,226(62%) 181K(21%) 178K(41%)
Caffeine 1,765(60%) 2,225(62%) 183K(21%) 184K(42%)
Fudan 1,765(60%) 2,225(62%) 183K(21%) 184K(42%)

16-bit fixed point

AlexNet
Escher 1,745(59%) 2,182(61%) 125K(14%) 112K(26%)
Caffeine 1,765(60%) 2,182(61%) 129K(15%) 113K(26%)
Fudan 1,779(61%) 2,181(61%) 129K(15%) 118K(27%)

in Table IV (we place-and-route the CNN accelerators in isolation,
omitting memory controllers, etc.). All designs meet post place-
and-route timing at 100MHz using Vivado 2016.4. The resources
for Caffeine input-major and weight-major are nearly identical;
therefore, we report only the lesser result of these two designs.

The key takeaway is that Escher has effectively the same
resource utilization as the state-of-the-art designs, achieving the
same or better performance and significantly reducing the off-chip
bandwidth utilization. This occurs because the vast majority of the
FPGA resources in all designs are dedicated to the datapath, whose
resource consumption is dictated by the optimization target (60%
DSP and 60% BRAM in our results).

The only noticeable resource utilization difference for Escher
is a marginally higher BRAM count compared to Caffeine on
the AlexNet and VGGNet-E floating-point designs. This happens
because, despite being allowed to use up to 60% of the BRAMs,
the Caffeine designs do not benefit from the extra storage capacity,
yielding designs that use only 54%–56% of the BRAMs. Escher can
effectively utilize the entire BRAM budget to reduce bandwidth use.

D. Sensitivity to Latency Constraints

Although batching is required to make off-chip bandwidth
requirements for CNN accelerators practical for today’s FPGAs,
it necessarily increases the per-image processing latency. In
latency-sensitive environments, the maximum size of a batch may
be limited by the latency target, which takes precedence over
minimizing bandwidth consumption.

Figure 4 presents the peak bandwidth of the 16-bit fixed-point
AlexNet designs as a function of the maximum batch size allowed in
the optimization. The batch size used by each layer is independently
chosen to minimize the overall peak bandwidth, with the only
additional constraint to not exceed the maximum allowed batch
size. All designs we present have negligible throughput differences,
enabling direct comparison of their peak bandwidth.

The Caffeine weight-major design (Caffeine-W) constrains the
batch size to match the number of vector dot product units (here,
Py = 66), making this design inapplicable when the maximum
permissible batch size is lower than 66. Moreover, this design
cannot benefit from larger batches (indicated by a flat line starting
from 66). For small batch sizes, Escher and Fudan overlap, because
both designs will store complete output vectors on chip. However,
the Fudan technique does not scale to larger batch sizes because it is

0

2

4

6

8

10

12

0 50 100 150 200 250

Pe
ak
	B
an

dw
id
th
	U
se
	(G

B/
s)

Batch	Size	Upper	Bound

Caffeine-W

Escher

Caffeine-I

Escher-FConly
Fudan

Caffeine-W

Escher

Caffeine-I

Escher-FConly
Fudan

Escher	and
Escher-FConly

Escher,
Escher-FConly,
and	Fudan

Fig. 4: Max batch size vs. peak bandwidth for AlexNet 16-bit fixed point.

unable to reduce the amount of buffered data per image (indicated
by a flat line beyond 83). Escher-FConly overlaps with Escher
when convolutional layers are not the bottleneck, which is the case
when the batch size is <130. Beyond that point, the convolutional
layers become the bottleneck, and Escher-FConly also flattens out.

Only the Caffeine input-major (Caffeine-I) and Escher designs
continue to benefit from larger batch sizes. The optimization
process can choose designs with higher latencies (larger batches)
to reduce the peak bandwidth requirements. Eventually, both
designs reach diminishing returns, beyond which the bandwidth
benefits of further increasing the batch size are negligible.
However, Caffeine input-major has a fixed overhead, re-transferring
inputs dY/Pye = d4096/66e = 62 times for the bottlenecked
fully-connected layer. Importantly, for all batch sizes, Escher has
the lowest peak bandwidth requirements.

VI. RELATED WORK

In addition to the designs we evaluate [7], [11], batch processing
of the fully-connected layers is mentioned in passing in [10];
however, little detail is provided.

The memory bandwidth problem faced by CNN accelerators has
been studied in previous work. [13] uses data quantization to reduce
the word size for both convolutional layers and fully-connected lay-
ers, and further uses SVD decomposition to compress the weights in
fully-connected layers. [20] uses the DeepCompression method [21]
to compress weights in fully-connected layers. A limitation of
compression-based techniques is that they cannot be used during
training. [15], [17], [22] use loop tiling to reduce the bandwidth
requirements of convolutional and/or fully-connected layers, but
without batching. To avoid off-chip data transfer, [9] and [23] con-
sider designs that store all weight data on chip. For [9], eDRAM is
used, while [23] targets small CNNs. In both works, the on-chip stor-
age limits the supported CNN size. [7] buffers all input/output data
on chip, and similarly limits the supported CNN size. [19] proposes
a layer fusion technique that reduces the input/output bandwidth of
early stage convolutional layers and is complimentary to Escher.

Beyond memory bandwidth, the compute unit is an important
aspect of CNN accelerator design. [24]–[28] use various dataflows
that are optimized for performing 2D-convolutions. While highly
efficient for convolutional layers, these designs are inefficient for
the fully-connected layers. [10], [23] use NoCs with FMA compute
nodes. Such designs, used for the flexibility of their compute fabric,
mainly target ASIC implementations. Like our work, [9], [11],



[15], [17], [29]–[31] use vector dot product arrays. Dot product
units are a natural fit for fully-connected layers because each output
is computed by a vector dot product, although they can lead to
underutilization problems in convolutional layers due to dimension
mismatch. [29], [30] address this problem by grouping convolutional
layers based on the compatibility of their dimensions. [7] avoids this
problem by mapping each layer to a dedicated compute module.

VII. CONCLUSIONS

CNN accelerators that independently process images are
bottlenecked by weight data transfer, particularly when processing
the fully-connected layers. This prompted a trend in recent
CNN accelerators to process images in batches when computing
fully-connected layers, enabling the reuse of weights once they
are brought on chip. However, previous schemes do not fully
leverage batch processing because of the inherent limitations in
their accelerator designs, which limit the choice of batch sizes.

In this work, we observed the possibility of trading off weight-
transfer bandwidth for input-transfer bandwidth by simultaneously
controlling the image batch size and data buffered per image.
Leveraging our observations, we developed Escher, a CNN
accelerator with high flexibility in selecting the batch size and per-
image storage. Moreover, unlike prior batching approaches, Escher
is able to save bandwidth by batch processing the convolutional
layers in addition to the fully-connected layers. We validated
our design methodology by building accelerators for AlexNet,
VGGNet-E, and GoogleNet on a Virtex-7 690T FPGA. Escher
achieved 2.4× peak bandwidth reduction compared to prior methods
on fixed-point AlexNet. On fixed-point GoogleNet, the bandwidth
requirements of convolutional layers were reduced by up to 10.5×.

ACKNOWLEDGMENT

The authors would like to thank Cheng-Yang Fu and Alex C.
Berg from the Computer Vision Group at the University of North
Carolina at Chapel Hill for their help. This material is based on
work and equipment supported by the National Science Foundation
under Grant Nos. 1533739, 1453460 and 1405641.

REFERENCES

[1] A. van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based music
recommendation,” in 27th Conference on Neural Information Processing
Systems, 2013.

[2] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in 25th
International Conference on Machine Learning, 2008.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in 26th Conference on Neural
Information Processing Systems, 2012.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in 28th
Conference on Computer Vision and Pattern Recognition.

[6] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cuDNN: Efficient primitives for deep learning,”
arXiv:1410.0759, 2014.

[7] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, “A high performance
FPGA-based accelerator for large-scale convolutional neural network,” in 26th
Intl. Conference on Field-Programmable Logic and Applications, 2016.

[8] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale machine learning
on heterogeneous distributed systems,” arXiv:1603.04467, 2016.

[9] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam, “DaDianNao: A machine-learning supercomputer,”
in 47th IEEE/ACM International Symposium on Microarchitecture, 2014.

[10] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks,” in 43rd International
Symposium on Computer Architecture, 2016.

[11] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: towards uniformed
representation and acceleration for deep convolutional neural networks,” in
35th International Conference on Computer-Aided Design.

[12] Y. Ma, N. Suda, J.-s. Seo, Y. Cao, and S. Vrudhula, “Scalable and modularized
RTL compilation of convolutional neural networks onto FPGA,” in 26th Intl.
Conference on Field-Programmable Logic and Applications, 2016.

[13] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song
et al., “Going deeper with embedded FPGA platform for convolutional neural
network,” in 24th International Symposium on Field-Programmable Gate
Arrays, 2016.

[14] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s. Seo,
and Y. Cao, “Throughput-optimized OpenCL-based FPGA accelerator for
large-scale convolutional neural networks,” in 24th International Symposium
on Field-Programmable Gate Arrays, 2016.

[15] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,” in
23rd International Symposium on Field-Programmable Gate Arrays, 2015.

[16] K. Goto and R. A. van de Geijn, “Anatomy of high-performance matrix
multiplication,” ACM Trans. on Mathematical Software, vol. 34, no. 3.

[17] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “DianNao:
A small-footprint high-throughput accelerator for ubiquitous machine-learning,”
in 19th International Conference on Architectural Support for Programming
Languages and Operating Systems, 2014.

[18] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast
feature embedding,” arXiv:1408.5093, 2014.

[19] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN accelera-
tors,” in 49th IEEE/ACM International Symposium on Microarchitecture, 2016.

[20] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,
“EIE: efficient inference engine on compressed deep neural network,” in 43rd
International Symposium on Computer Architecture, 2016.

[21] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and Huffman coding,” CoRR,
abs/1510.00149, vol. 2, 2015.

[22] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, “Memory-centric
accelerator design for convolutional neural networks,” in 31st International
Conference on Computer Design, 2013.

[23] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and
O. Temam, “ShiDianNao: Shifting vision processing closer to the sensor,” in
42nd International Symposium on Computer Architecture, 2015.

[24] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynamically
configurable coprocessor for convolutional neural networks,” in 37th
International Symposium on Computer Architecture, 2010.

[25] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello,
“Hardware accelerated convolutional neural networks for synthetic vision
systems,” in International Symposium on Circuits and Systems, 2010.

[26] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “CNP: An FPGA-
based processor for convolutional networks,” in 19th Intl. Conference on
Field-Programmable Logic and Applications, 2009.

[27] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and
M. A. Horowitz, “Convolution engine: Balancing efficiency & flexibility
in specialized computing,” in 40th International Symposium on Computer
Architecture, 2013.

[28] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic,
E. Cosatto, and H. P. Graf, “A massively parallel coprocessor for convolutional
neural networks,” in 20th Application-specific Systems, Architectures, and
Processors, 2009.

[29] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN accelerator efficiency
through resource partitioning,” in 44th International Symposium on Computer
Architecture, 2017.

[30] Y. Shen, M. Ferdman, and P. Milder, “Overcoming resource underutilization
in spatial CNN accelerators,” in 26th Intl. Conference on Field-Programmable
Logic and Applications, 2016.

[31] L. Song, Y. Wang, Y. Han, X. Zhao, B. Liu, and X. Li, “C-brain: a deep
learning accelerator that tames the diversity of CNNs through adaptive
data-level parallelization,” in 53rd Design Automation Conference, 2016.


