
Sorting Large Data Sets with
FPGA-Accelerated Samplesort

Han Chen, Sergey Madaminov, Michael Ferdman, Peter Milder
Stony Brook University

Email: {han.chen.2, peter.milder}@stonybrook.edu,{smadaminov, mferdman}@cs.stonybrook.edu

Abstract—Sorting is a fundamental operation in many appli-
cations such as databases, search, and social networks. Although
FPGAs have been shown effective at sorting data sizes that fit on
chip, systems that sort larger data sets by shuffling data on and
off chip are typically bottlenecked by costly merge operations or
data transfer time.

We propose a new approach to sorting large data sets by
accelerating the samplesort algorithm using a server with a PCIe-
connected FPGA. Samplesort works by randomly sampling to
determine how to partition data into approximately equal-sized
non-overlapping “buckets,” sorting each bucket, and concate-
nating the results. Although samplesort can partition a large
problem into smaller ones that fit in the FPGA’s on-chip memory,
partitioning in software is slow. Our system uses a novel parallel
hardware partitioner that is only limited in data set size by
available FPGA hardware resources. After partitioning, each
bucket is sorted using parallel sorting hardware. The CPU is
responsible for sampling data, cleaning up any potential problems
caused by variation in bucket size, and providing scalability by
performing an initial coarse-grained partitioning when the input
set is larger than the FPGA can sort.

We prototype our design using Amazon Web Services FPGA
instances, which pair a Xilinx Virtex UltraScale+ FPGA with a
high-performance server. Our experiments demonstrate a 17.1x
speedup over GNU parallel sort when sorting 223 key-value
records and a speedup of 4.2x when sorting 230 records.

At datacenter scale, there is a constant need for large-scale
sorting operations, with performance and cost of running sort
being a major consideration of application design. Most pre-
vious accelerator designs for sorting have focused on building
high throughput hardware structures [1]. However, the amount
of data that can be sorted in hardware by these approaches is
limited by the on-chip memory size. Other approaches [2] aim
to use hardware to accelerate merging sorted subsequences of
data stored in off-chip memory. However prior approaches in
this area have high hardware cost and limitations in the number
of buckets that can be merged concurrently, necessitating many
round-trips from/to off-chip DRAM.

In this work, we present a new PCIe-based FPGA accelera-
tor design to implement the samplesort algorithm. The key
to our design is a novel parallel hardware partitioner that
partitions data into approximately equally-sized buckets of
non-overlapping data (i.e., where all values in the ith bucket
are guaranteed to be less than all values in the (i + 1)th
bucket, but values within a bucket are not necessarily sorted).
The buckets are stored by the partitioner in the off-chip
memory accessible to the FPGA, and then read back from
off-chip memory by a parallel sorting network [1] that writes

the final sorted sequence back to the host over PCIe. Our
implementation overcomes a number of challenges, which we
address through cooperation between the FPGA and software
running on the host CPU. First, we use software to randomly
sample data to determine how to split the data such that
buckets have approximately equal size. Second, although the
sampling approach produces equal-size buckets with high
probability, our system detects and “fixes” oversized outlier
buckets in the rare event when they occur. Lastly, the software
system provides scalability; even with the efficient partitioning
hardware design, the size of data that the FPGA can sort at
once is still limited by the available FPGA resources. To allow
sorting larger data sets, the CPU is used to perform an initial
coarse-grained partitioning before sending data to the FPGA
for further partitioning and sorting.

Our approach, based on partitioning, is fundamentally more
scalable than prior approaches based on merging sorted sub-
sequences. In the partitioning process, each record is indepen-
dent, whereas the merging process must compare each value
to those around it. This independence allows us to construct an
inexpensive and high-throughput partitioner that can split data
among a large number of buckets. For example, our prototype
partitioner splits data into 2,048 buckets in a single pass over
the data, while a 32-way merging network would require three
round trips to memory to merge 2,048 buckets.

We implemented and tested a prototype of our sorter on
an Amazon AWS F1 FPGA instance, demonstrating a 17.1x
speedup over GNU parallel sort when sorting 223 key-value
records and a speedup of 4.2x when sorting 230 records. In
a cost comparison, we found that the higher per-hour cost of
the FPGA instance is justified by the final speedup obtained,
meaning that the FPGA-accelerated system is both faster and
more cost effective. Finally, when compared to a much larger
CPU system (with 64 hardware threads), we found that our
FPGA sorter still yields speedups of 3.8x for 223 records and
2.4x for 230 records.

REFERENCES

[1] M. Zuluaga, P. Milder, and M. Püschel, “Streaming Sorting Networks,”
ACM Transactions on Design Automation of Electronic Systems, vol. 21,
no. 4, May 2016.

[2] M. Saitoh, E. A. Elsayed, T. V. Chu, S. Mashimo, and K. Kise, “A
High-Performance and Cost-Effective Hardware Merge Sorter without
Feedback Datapath,” in 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE,
Apr 2018.


