
Abstract
Prior research demonstrates that temporal

memory streaming and related address-correlating
prefetchers improve performance of commercial server
workloads though increased memory level parallelism.
Unfortunately, these prefetchers require large on-chip
meta-data storage, making previously-proposed
designs impractical. Hence, to improve practicality,
researchers have sought ways to enable timely prefetch
while locating meta-data entirely off-chip. Unfortu-
nately, current solutions for off-chip meta-data
increase memory traffic by over a factor of three.

We observe three requirements to store meta-data
off chip: minimal off-chip lookup latency, bandwidth-
efficient meta-data updates, and off-chip lookup amor-
tized over many prefetches. In this work, we show:
(1) minimal off-chip meta-data lookup latency can be
achieved through a hardware-managed main memory
hash table, (2) bandwidth-efficient updates can be
performed through probabilistic sampling of meta-data
updates, and (3) off-chip lookup costs can be amortized
by organizing meta-data to allow a single lookup to
yield long prefetch sequences. Using these techniques,
we develop Sampled Temporal Memory Streaming
(STMS), a practical address-correlating prefetcher that
keeps predictor meta-data in main memory while
achieving 90% of the performance potential of ideal-
ized on-chip meta-data storage.

1. Introduction
Memory access latency continues to pose a crucial

performance bottleneck for commercial server work-
loads [11]. System designers employ a variety of
strategies to bridge the processor-memory performance
gap. On the software side, efforts are under way to
restructure server workloads to increase on-chip data
sharing and reuse [15,19]. Although these efforts
reduce off-chip accesses, application working sets con-
tinue to exceed available cache capacity. On the
hardware side, multi-threading is effective in improv-
ing throughput when abundant software threads are
available, but does not improve response time [11,20].

Prefetching improves both throughput and
response time by increasing memory level parallelism
[6,7,24,27] and remains an essential strategy to address

the processor-memory performance gap. Today’s sys-
tems employ spatial/stride based prefetchers [22,29]
because they are practical to implement. These
prefetchers require simple hardware additions and min-
imal on-chip area [17]. However, the effectiveness of
these prefetchers is limited in commercial workloads
(e.g., online transaction processing), which are domi-
nated by pointer-chasing access patterns [1,25,27].

In contrast to stride-based approaches, address-
correlating prefetchers [3,5,6,9,10,13,16,18,21,23,27]
are effective for repetitive, yet arbitrarily-irregular
access patterns, such as the pointer-chasing access pat-
terns of commercial workloads [5,6,26,27]. Address-
correlating prefetchers associate a miss address with a
set of possible successor misses, or, in Temporal Mem-
ory Streaming (TMS) [10,26,27] and similar recent
proposals [6,9,21,23], a sequence of successors. For
modern commercial workloads, early address-correlat-
ing prefetcher designs are impractical because the on-
chip meta-data size required to capture correlations is
proportional to an application’s data set and requires
megabytes of storage [13,16,18].

To improve practicality, recent address-correlating
prefetchers store meta-data off chip in main memory
[6,9,23,27]. Shifting correlation tables to main memory
eliminates on-chip storage costs, but creates two new
challenges. First, correlation table lookups incur one or
more main memory access latencies, which delay
prefetches. The correlation algorithm must be designed
to tolerate this long lookup latency by targeting
prefetches several misses ahead in the anticipated
future miss sequence [6,27]. Second, the extra memory
traffic used to lookup and maintain meta-data increases
memory bandwidth pressure. Existing designs require
correlation table lookups and updates on nearly every
cache miss, incurring overhead traffic three times
larger than the base system’s read traffic.

We observe three key requirements to make off-
chip meta-data practical: (1) minimal off-chip meta-
data lookup latency, (2) bandwidth-efficient meta-data
updates, and (3) off-chip lookup amortized over many
accurate prefetches. We propose hash-based lookup to
achieve the first requirement. In hash-based lookup, we
use a hardware-managed hash table to index previ-

Practical Off-chip Meta-data for Temporal Memory Streaming
Thomas F. Wenisch*, Michael Ferdman‡, Anastasia Ailamaki‡, Babak Falsafi‡ and Andreas Moshovos†

http://www.ece.cmu.edu/~stems
*University of Michigan  †University of Toronto

‡Ecole Polytechnique Fédérale de Lausanne and Carnegie Mellon University



ously-recorded miss-address sequences within a log of
prior misses. Hash-based lookup enables retrieval of
the corresponding miss addresses with only two main-
memory round-trips (one for the hashed index table
lookup, and the second for the address sequence). We
propose probabilistic update to achieve the second
requirement. Probabilistic update applies only a ran-
domly-selected subset of updates to the hashed index
table, reducing index table maintenance bandwidth to
practical levels. Because recurring miss-address
sequences either tend to be long or repeat frequently,
stale or missing index table entries do not sacrifice sig-
nificant coverage. We address the third requirement by
applying these two mechanisms to a previously-pro-
posed prefetch meta-data organization where misses
are logged continuously in a circular buffer [21,27]. By
separating indexing and logging, this prefetcher organi-
zation allows a single lookup to predict long miss-
address sequences of up to hundreds of misses [26,27].
We evaluate our practical design, Sampled Temporal
Memory Streaming (STMS), through cycle-accurate
full-system simulation of scientific and commercial
multiprocessor workloads, to demonstrate:
• Performance potential. Ideal on-chip lookup

would enable TMS to eliminate 19-99% of off-
chip misses (40-60% in online transaction process-
ing and web workloads), improving performance
by up to 80% (5-18% for OLTP and Web).

• Storage efficiency. Because meta-data is located
off chip, STMS requires only 2KB of on-chip
prefetch buffers per core. For maximum effective-
ness, STMS needs 64MB of meta-data in main
memory, a small fraction of memory in servers.

• Latency efficiency. By using hash-based lookup
to prefetch sequences of tens of misses, STMS
mitigates main-memory meta-data access latency.
A practical lookup mechanism achieves 90% of
the performance potential of idealized lookup.

• Bandwidth efficiency. We show that probabilistic
update reduces the memory traffic overhead of
meta-data updates by a geometric mean factor of
3.4 with a maximum coverage loss of 6%.

2. Background
An address-correlating prefetcher learns temporal

relationships between accesses to specific addresses.
For instance, if address B tends to be accessed shortly
after address A, an address-correlating prefetcher can
learn this relationship and use the occurrence of A to
trigger a prefetch of B. Address-correlating prefetchers
succinctly capture pointer-chasing relationships, and
thus substantially improve the performance of pointer-
intensive commercial workloads [5,6,27].

Pair-wise–correlating prefetchers. The Markov
prefetcher [16] is the simplest prefetcher design for
predicting pair-wise correlation between an address
and its successor (i.e., two addresses that tend to cause
consecutive cache misses). The Markov prefetcher
hardware is organized as a set-associative table that
maps an address to several recently-observed possibili-
ties for the succeeding miss. On each miss, the table is
searched for the miss address, and if an entry is found,
the likely successors are prefetched. Several pair-wise–
correlating prefetchers build upon this simple design to
optimize correlation table storage [13], or trigger
prefetchers earlier to improve lookahead [12,18]. 

The key limitation of pairwise-correlating
prefetchers is that they attempt to predict correctly only
a single miss per prediction, limiting memory level par-
allelism and prefetch lookahead. More recent address-
correlating prefetchers use a single correlation to pre-
dict a sequence of successor misses [6,9,10,21,23,27].
We adopt the terminology of [26] and refer to these
successor sequences as temporal streams—extended
sequences of memory accesses that recur over the
course of program execution.

Temporal streaming. The observation that mem-
ory access sequences recur was first quantified in
memory trace analysis by Chilimbi and Hirzel [4]. To
exploit this observation, researchers initially proposed
correlation tables that store a temporal stream (i.e., a
short sequence of successors) rather than only a single
future access in each set-associative correlation table
entry [6,23]. The primary shortcoming of this set-asso-
ciative organization is that temporal stream length is
fixed to the size of the table entry, typically three to six
successor addresses. However, offline analyses of miss
repetition [4,9,26] have shown that temporal streams
vary drastically in length, from two to hundreds of
misses. Fixing stream length in the prefetcher design
leads either to inefficient use of correlation table stor-
age (if the entries are too large) or sacrifices lookahead
and prefetch coverage (if entries are too small).

To support variable length temporal streams while
maintaining storage efficiency, several designs separate
the storage of address sequences and correlation data
[10,21,27]. A history buffer records the application’s
recent miss-address sequence, typically in a circular
buffer. An index table correlates a particular miss
address (or other lookup criteria) to a location in the
history buffer. The split-table approach allows a single
index-table entry to point to a stream of arbitrary
length, allowing maximal lookahead and prefetch cov-
erage without substantial storage overheads.

In this study, our goal is not to improve the predic-
tion accuracy of state-of-the-art address-correlating



prefetchers. Instead, we seek to identify and solve the
key implementation barriers that make these prefetch-
ers unattractive for practical deployment.

3. Practicality Challenges
More than a decade of research has repeatedly

shown that address-correlating prefetchers can elimi-
nate about half of all off-chip misses in pointer-
intensive commercial server workloads, whereas stride
prefetchers provide only minimal benefit [4,6,26,27].
Nevertheless, stride prefetchers are widely imple-
mented, while, to date, no commercial design has
implemented an address-correlating prefetcher. In this
section, we enumerate the major practicality challenges
of prior address-correlating prefetcher designs.

On-chip storage requirements. Initial address-
correlating prefetcher designs located correlation tables
entirely on-chip [13,16,18,21]. However, correlation
table storage requirements are proportional to the appli-
cation’s working set. Hence, for commercial
workloads, even the most storage-efficient design [13]
requires megabytes of correlation table storage to be
effective [6,27]. Figure 1 (left) shows the number of
correlation table entries required for a given average
coverage across commercial workloads for the ideal-
ized address-correlating prefetcher we analyze in detail
in Section 5.2. Our result corroborates prior work [6]:
to achieve maximum coverage in commercial work-
loads, correlation tables must store more than one
million entries, which can require as much as 64MB of
storage. High storage requirements make on-chip cor-
relation tables impractical. 

More recent prefetchers locate correlation meta-
data in main memory [6,9,23,27], where multi-mega-
byte tables can easily be accommodated. However, off-
chip tables lead to two new challenges: high lookup
latency and increased memory bandwidth pressure.

High lookup latency. When correlation tables are
off chip, each lookup requires at least one main mem-
ory access before prefetching can proceed. Unlike
other predictors that can make use of the on-chip cache
hierarchy to provide “virtual” on-chip lookup [2],
address correlation tables are substantially larger than
the on-chip caches and correlation entries exhibit mini-
mal temporal locality. A correlation table entry is not
reused until the address it corresponds to is evicted
from on-chip caches. By that time, the correlation entry
is also likely to be evicted. 

Instead, the prefetching mechanism must be
designed to account for long correlation table lookup
latency. Epoch-based correlation prefetching (EBCP)
[6] explicitly accounts for off-chip lookup latency and
the memory level parallelism already obtained by out-
of-order processing in choosing prefetch addresses.
Rather than correlate an address to its immediate suc-
cessors, EBCP skips over successor addresses that will
be requested while the correlation table lookup is in
progress. However, EBCP employs a set-associative
correlation table, which, as noted in Section 2, bounds
maximum stream length, limiting memory level paral-
lelism, lookahead, and bandwidth efficiency.

With STMS, we instead mitigate lookup latency by
following arbitrarily long streams to maximize the
number of prefetches per lookup operation—a single
lookup may lead to tens or hundreds of prefetches. The
split-table meta-data organization and hash-based
lookup mechanism are key to this strategy.

Memory bandwidth requirements. Address-cor-
relating prefetchers with off-chip meta data
substantially increase pressure on memory bandwidth.
First, as with any prefetching mechanism, erroneous
prefetches (cache blocks that are prefetched but never
accessed) consume memory bandwidth, as prefetchers
inherently trade increased memory bandwidth require-
ments to reduce effective access latency. However, off-

0%

20%

40%

60%

80%

100%
%
�C
ov
er
ag
e

0%

Correlation�Table�Entries

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

EBCP ULMT TSE

O
ve

rh
ea

d 
Tr

af
fic

(o
ve

rh
ea

d 
ac

ce
ss

es
 p

er
 

ba
se

lin
e 

re
ad

 a
cc

es
s)

Erroneous Prefetches
Meta-data Lookup
Meta-data Update

FIGURE 1: Practicality challenges. The left graph shows the number of correlation table entries required for a given 
coverage in commercial server workloads. One million correlation table entries can require up to 64MB of storage [6]. 

The right graph shows the memory traffic overheads of existing designs based on their published results [6,23,27]

104 105 106 107



chip correlation tables make matters worse: both look-
ups and updates require off-chip memory accesses. 

Figure 1 (right) shows the average memory traffic
overheads for three existing address-correlating
prefetchers that store meta-data in main memory, the
User Level Memory Thread (ULMT [23]), the Epoch-
Based Correlation Prefetcher (EBCP [6]), and the Tem-
poral Streaming Engine (TSE [27]), based on their
published results. Overhead traffic is normalized to the
number of memory reads without a prefetcher. “Erro-
neous Prefetches” are calculated directly from
published accuracy and coverage. ULMT and TSE
incur “Meta-data Lookup” traffic on each off-chip read
miss (i.e., the remaining misses after prefetching),
requiring one and three memory accesses per lookup,
respectively. EBCP performs a single memory access
to lookup its meta-data at the start of each off-chip miss
epoch—that is, when the number of outstanding (non-
prefetch) off-chip misses transitions from zero to one.
ULMT and EBCP perform “Meta-data Update” follow-
ing each lookup, both requiring three memory accesses
per update. TSE updates its correlation tables on both
off-chip misses and prefetcher hits, requiring slightly
over one memory access per update on average.

As the figure shows, overhead traffic is triple the
baseline read traffic without a prefetcher. Several fac-
tors mitigate the performance impact of massive traffic
overheads in the existing designs. All three designs
issue correlation table lookups and updates as low-pri-
ority traffic, prioritizing processor-initiated requests.
ULMT collocates its prefetcher with an off-chip mem-
ory controller, and, hence, its meta-data traffic does not
cross the processor’s pins. TSE’s meta-data lookups are
embedded in existing cache coherence traffic. When
unused memory bandwidth is abundant, overhead traf-
fic can be absorbed by the memory system with
minimal performance impact. However, as available
memory bandwidth must be shared among cores in a
multi-core system, memory bandwidth utilization is
growing rapidly with chip multiprocessor scaling.
Hence, the high traffic overhead of current main-mem-
ory correlation table designs limits their applicability.

If it were possible to store correlation tables on
chip, lookup and update traffic would be of little con-
cern—though large relative to off-chip traffic, required
bandwidth can be easily sustained in dedicated on-chip
structures. However, storage requirements preclude on-
chip meta-data, requiring new solutions to improve
bandwidth-efficiency for off-chip meta-data storage.

4. STMS Design
We leverage prior work in temporal streaming to

reuse mechanisms and terminology whenever possible.

We begin by enumerating the three key requirements
for effective temporal streaming in Section 4.1. We
then provide an overview of STMS in Section 4.2, con-
structing a generalized temporal streaming prefetcher
that draws heavily from the stream-following mecha-
nisms of the Temporal Streaming Engine (TSE) [27]
and the predictor organization of the Global History
Buffer (GHB) [21]. After we describe the basic hard-
ware operation, the following sections provide details
of how the proposed STMS mechanisms meet the
requirements for efficient temporal streaming.

4.1. Requirements for Effective Temporal Streaming

Minimize Lookup Latency. Temporal-streaming
prefetchers initiate predictor lookup on a trigger event
(typically a cache miss). However, prefetches cannot be
issued until an address sequence is located and
retrieved. Cache misses incurred during this time result
in lost prefetch opportunity, even if they comprise a
predictable temporal stream [6]. Prior prefetchers tar-
geting desktop/engineering applications rely on long
temporal streams to overcome the startup cost [9].
However, unlike those applications, prior research [27]
and our results (see Section 5.4) indicate that half of the
temporal streams in commercial workloads are shorter
than ten cache blocks. Therefore, effective streaming
for commercial workloads requires minimal lookup
latency to ensure timely prefetch. 

Bandwidth-efficient Index Table Updates.
Maintaining predictor meta-data in off-chip storage
induces additional traffic across the memory interface.
Spatial locality allows amortization of history buffer
updates by storing multiple consecutive addresses with
one off-chip write. Conversely, any index table updates
are directed to randomized addresses and exhibit nei-
ther spatial nor temporal locality. Furthermore, each
index table update incurs both a read and a write opera-
tion. Performing all updates on an un-optimized main-
memory index table will therefore triple memory band-
width consumption over a base system. Efficient
bandwidth utilization is growing even more important
in chip multiprocessor, where scaling in the number of
cores per die will continue increasing strain on off-chip
bandwidth [14].

Amortized Lookups. Another key requirement
for effective temporal streaming is to amortize off-chip
lookups over many successful prefetches, thereby
keeping off-chip bandwidth low by reducing the num-
ber of index table lookups and history buffer reads. The
static stream lengths imposed in previous single-table
prefetcher designs fragment long temporal streams into
short prefetch sequences (see Section 3), limiting
prefetcher effectiveness, as half of the temporal streams



found in commercial workloads are long (in excess of
10 misses). Furthermore, the bandwidth and congestion
overhead of accessing the history structures for each
short sub-sequence can match or exceed the bandwidth
required to retrieve data. Widening correlation table
entries to target long streams in a single-table
prefetcher is also bandwidth-inefficient. Large correla-
tion table entries that can contain many miss addresses
result in considerable bandwidth overhead when use-
less addresses or empty space is retrieved from the
history structures in the case of shorter streams. 

4.2. Design Overview

Figure 2 shows a block diagram of a four-core sin-
gle-chip processor equipped with STMS. STMS
comprises on-chip prefetch buffers and queues and off-
chip index table [21] and history buffers [21]1. The
prefetch buffers and queues, located along side the L1
victim caches [17], orchestrate the streaming process
and act as temporary holding space for a small number
of blocks that have been prefetched, but not yet
accessed by the core. The off-chip structures are allo-
cated in a private region of main memory, each core
receives its own history buffer but all cores share a uni-
fied index table. The index table contains a mapping
from physical addresses to pointers within the history
buffer, facilitating lookup. 

Recording temporal streams. STMS records cor-
rect-path off-chip misses and prefetched hits in the
corresponding core’s history buffer. To avoid polluting
the history buffer with wrong-path accesses, instruc-
tions observing prefetched hits and off-chip loads are
marked in the load-store queue [17]. Later, when a
marked instruction retires, the effective physical
address is appended to the history buffer. To minimize
pin-bandwidth overhead, a cache-block-sized buffer
accumulates entries which are then written to main

memory as a group as proposed in [9]. As history buf-
fer entries are created, the index table entry for the
corresponding address may be updated to point to the
new history buffer entry. As we discuss in Section 4.4,
the majority of index table updates are skipped by
probabilistic update to conserve memory bandwidth.

Each core’s miss-address sequence is logged in a
separate history buffer. Whereas each core’s misses
individually form temporal streams, when accesses
from multiple cores are interleaved, repetitive
sequences are obscured. In the case of multi-threaded
cores, each thread requires its own history buffer. The
index table is shared by all cores.

Lookup. Upon an off-chip read miss, STMS
searches for a previously-recorded temporal stream that
begins with the miss address. STMS performs a pointer
lookup in the index table. If a pointer is found, the
address sequence is read from the history buffer, start-
ing at the pointer location. It is important to note that
the STMS shared index table can locate a temporal
stream from another core’s history buffer.

Streaming cache blocks. Miss addresses read
from the history buffer are held in a FIFO address
queue. STMS prefetches addresses from the queue in
order. Prefetched data are stored in the small, fully-
associative prefetch buffer, avoiding cache pollution on
erroneous prefetches. On correct prefetches, L1 misses
are satisfied directly from the prefetch buffer while
STMS continues to populate the address queue with
addresses from the off-chip history buffer.

4.3. Latency-Efficient Hash-based Index Lookup

Any associative lookup structure can be used to
implement an index table. We examined many possible
structures (e.g., red-black trees, open address hash
tables, direct-mapped tables), however these structures
have unacceptable latency, bandwidth, or storage char-
acteristics. To achieve low lookup latency, we elect to
implement the index table as a bucketized probabilistic
hash table [8] pictured in Figure 2 (right).

1.  Although prior work in uniprocessors calls these structures global
history buffers, we avoid the word global because history buffers
in the CMP design are per-core.

Main Memory

Mem
Controller

Stride
Prefetcher

..
.

..
.

Index Table

addr addrHistory ptr Hist. ptr...

addr addrHistory ptr Hist. ptr...

addr addrHistory ptr Hist. ptr...

hash

miss 
address

bucket

History Buffers

circular buffers

addr addr addr

addr addr addr

addr addr addr

addr addr addr

L1Core

Stream
Engine

Prefetch
Buffer

L1Core

Stream
Engine

Prefetch
Buffer

L1 Core

Stream
Engine

Prefetch
Buffer

L1 Core

Stream
Engine

Prefetch
Buffer

L2 ...

...

...

...

FIGURE 2: STMS block diagram.



Physical addresses are hashed to select a bucket.
Each bucket contains n {physical address, history buf-
fer pointer} pairs, with n sized to the memory system
interface width (i.e., one cache line). On lookup, the
entire bucket is retrieved with one memory access, and
searched linearly (linear search is negligible relative to
the off-chip read latency). On update, the bucket is sim-
ilarly retrieved and searched. If the trigger address is
found in the bucket, the entry’s history buffer pointer is
updated. If the trigger address is missing, the least
recently used entry of the bucket is replaced. Before
being written back to memory, the elements are reshuf-
fled to maintain LRU order. We find that assigning a
low priority to predictor memory traffic is essential to
minimize queueing-related stalls. To facilitate index
table updates and to delay writeback until memory
bandwidth is available, STMS employs a small (8 KB)
bucket buffer. 

The key advantage of our hash table design is low-
latency index table lookup. In addition, the design
results in high storage density (i.e., it can be fully
loaded) and supports an arbitrary number of parallel
reads and updates without synchronization, enabling
independent parallel access from multiple cores.

4.4. Bandwidth-Efficient Probabilistic Index Update

Although only a small fraction of index table
entries yields the vast majority of prefetch coverage, to
date, no known property allows a priori distinction of
useful index table entries at the time they are recorded.
Rather than filtering index table updates, we propose
probabilistic update. For every potential index table
update, a coin flip, biased to a predetermined sampling
probability, determines whether the update will or will
not be performed. Index table update bandwidth is
directly proportional to the sampling probability. For
example, a 50% sampling probability halves bandwidth
requirements. Probabilistic update is highly effective in
reducing index table update bandwidth, while leading
to only a small coverage loss.

Intuitively, sampling does not significantly reduce
coverage for most cases: long temporal streams and
short frequent temporal streams. Figure 3 illustrates
both cases. For long temporal streams, probabilistic
update likely skips several addresses before creating an
index table entry pointing into the body of the stream.
However, coverage loss on the first few blocks is negli-
gible relative to the stream’s length. For a sampling
probability of one eighth, the probability of inserting at
least one address into the index table reaches 50%
within the first five blocks. For frequent temporal
streams, the probability of inserting the first address
into the index table grows with the number of stream
recurrences. For short temporal streams, the index table
may remain without a pointer for the first few occur-
rences, however a high appearance frequency results in
an index update within a small number of occurrences.

4.5. Variable-Length Streams via Split Tables

The drawbacks of statically pre-determined stream
length motivate our desire to support variable-length
temporal streams. Variable-length temporal streams are
made possible by splitting the history buffer and index
table into separate structures, as outlined in Section 2.
Short streams are accommodated with minimal storage
overhead, while longer streams are accommodated by
reading consecutive sections of the history buffer. A
key result of this design is that long streams require
only a single index lookup. We quantitatively contrast
the latency- and bandwidth-efficiency of single-table
and split-table organizations in Section 5.4.

To avoid streaming erroneous blocks past the end
of a temporal stream within the history buffer, STMS
annotates the history buffer entry following the last
contiguous successfully-prefetched address. Whenever
STMS encounters a marked entry, it pauses streaming,
continuing only if the annotated address is explicitly
requested by the core. In contrast to TSE [27], the
STMS stream-end detection is highly bandwidth-effi-
cient, requiring to read only one location from the
history buffer to determine the end of stream.

Long temporal streams

Short, frequent temporal streams

History Buffer

Index Table

A B C D E F G H An index table entry will be created near the
first miss in a temporal stream with high
probability. Coverage lost on the first few
blocks is negligible relative to stream length

D

History Buffer

Index Table

A B C A AB BC C
After several stream occurrences, the
probability of adding A to the index table is
high. Because temporal streams are stable,
old occurrences are still valid.A

FIGURE 3: Cases where probabilistic update is effective.



5. Evaluation
The goal of our evaluation is to demonstrate that

STMS (1) matches the coverage and performance of
idealized temporal memory streaming while storing
meta-data in off-chip memory, and (2) that it does not
reduce performance of workloads that derive no benefit
from temporal streaming.

5.1. Methodology

We evaluate STMS using a combination of trace-
based and cycle-accurate full-system simulation using
the FLEXUS infrastructure. FLEXUS builds on the Vir-
tutech Simics functional simulator. We include four
workload classes in our study: online transaction pro-
cessing (OLTP), decision support (DSS), web server
(Web), and scientific (Sci) applications. Table 1 (left)
details our workload suite.

We model a four-core chip multiprocessor with
private L1 caches and a shared L2 cache configured to
represent an aggressive near-future high-performance
processor. The minimum L2 hit latency is 20 cycles,
but accesses may take longer due to bank conflicts or
queueing delays. A total of at most 64 L2 accesses and
off-chip misses may be in flight at any time. Further
configuration details appear in Table 1.

We include a stride-based prefetcher in our base
system [22,29]. All results report only coverage in
excess of that provided by the stride prefetcher.

We measure performance using the SIMFLEX sam-
pling methodology [28]. We report confidence intervals
on change in performance using matched-pair sample
comparison. Our samples are drawn over an interval of
from 10s to 30s of simulated time for OLTP and web
server workloads, over the complete query execution
for DSS, and over a single iteration for scientific appli-
cations. We launch measurements from checkpoints

with warmed caches, branch predictors, history buffer,
and index table state, then warm queue and intercon-
nect state for 100,000 cycles prior to measuring
200,000 cycles. We use the aggregate number of user
instructions committed per cycle (i.e., committed user
instructions summed over the 4 cores divided by total
elapsed cycles) as our performance metric, which is
proportional to overall system throughput [28].

5.2. Performance Potential of Idealized Prefetcher

We begin by demonstrating the performance
potential of an idealized version of TMS with on-chip
meta-data. The idealized prefetcher records a sequence
of cache miss addresses in a “magic” on-chip history
buffer that has impractically large storage capacity and
zero-latency infinite lookup bandwidth. 

Figure 4 presents the coverage (left) and speedup
(right) achieved by the idealized prefetcher over our
baseline system. Coverage is defined as the fraction of
L2 cache misses eliminated by the prefetcher.

We corroborate prior work, showing that temporal
memory streaming is an effective mechanism for elim-
inating cache misses in OLTP, web serving, and
scientific computing workloads, and that temporal
memory streaming is ineffective for DSS workloads
because they exhibit non-repetitive access sequences
where data is visited only once throughout execution.
We also observe that, despite achieving high predictor
coverage, minimal speedup opportunity is available in
workloads whose dominant bottlenecks are not main
memory accesses (in the case of OLTP Oracle, the pri-
mary bottlenecks are L1 instruction and data misses
that hit in L2 and on-chip core-to-core coherence traf-
fic). However, prefetch coverage indicates that even for
such workloads, once other (on-chip) bottlenecks in the
system are eliminated, temporal memory streaming
offers a benefit.

Online Transaction Processing (TPC-C)
Oracle Oracle 10g, 100 warehouse (10 GB), 16 clients, 1.4 GB SGA
DB2  DB2 v8, 100 warehouse (10 GB), 64 clients, 2 GB buffer pool

Decision Support (TPC-H on DB2 v8 ESE)
Qry 2 Join-dominated, 480 MB buffer pool
Qry 17 Balanced scan-join, 480 MB buffer pool

Web Server (SPECweb99)
Apache Apache 2.0, 4K connect, FastCGI, worker threading model

Zeus Zeus v4.3, 4K connections, FastCGI
Scientific

em3d 768K nodes, degree 2, span 5, 15% remote
ocean  258x258 grid, 9600s relaxations, 20K res., err tol 1e-07

moldyn 19652 molecules, boxsize 17, 2.56M max interactions

Table 1: Application and system model parameters.

Cores UltraSPARC III ISA
4 GHz 8-stage pipeline; out-of-order
4-wide dispatch / retirement
96-entry ROB, LSQ

L1 D-Cache 64KB 2-way, 2-cycle load-to-use
3 ports, 32 MSHRs

Instruction Fetch
Unit

64KB 2-way L1 I-cache
16-entry pre-dispatch queue
Hybrid 16K gShare/bimodal branch pred.
Next line prefetcher

Shared L2 Cache 8MB 16-way, 20-cycle access latency
16 banks, 64 MSHRs

Main Memory 3 GB total memory, 45 ns access latency
28.4 GB/s peak bandwidth, 64-byte transfers

Stride Prefetcher 32-entry buffer, max 16 distinct strides



Although the potential gains are evident in
Figure 4, on-chip storage required to implement TMS
is impractical (see Figure 1). We recognize that
advances in the field will improve the coverage of
stream-based address-correlating prefetchers beyond
our idealized implementation of the proposed prior
techniques [21,27]. However, improved predictors can
leverage the basic mechanisms we propose in this work
to facilitate off-chip lookup. Our aim is therefore not to
improve over the idealized prior design that we
describe, but instead to match the performance of ideal-
ized TMS. To this end, our goal is two-fold: (1)
maintain performance improvement for the workloads
where streaming is effective, (2) avoid adverse perfor-
mance impact in workloads where streaming is
ineffective. Accomplishing this goal requires band-
width-, latency-, and storage- efficiency. 

5.3. Achieving Storage Efficiency

On-chip structures. As demonstrated in
Section 3, on-chip correlation meta-data are impracti-
cal, and, hence, STMS locates its history buffer and
index table in main memory. On chip, STMS requires a
prefetch buffer and address queue collocated with each
core to track pending prefetch addresses and buffer
prefetched data. Storage requirements for the address
queue are negligible (under 128 bytes), while prefetch
buffers each require 2KB. We do not report sensitivity
to prefetch buffer size, as it has been studied exten-
sively in prior work [6,27]. In addition, STMS uses a
shared 8KB bucket buffer to store index table entries
between lookup, update, and write back.

History buffer. The history buffer’s main-mem-
ory storage requirements are driven by the prefetcher’s
meta-data reuse distance. The history buffer must be at
least large enough to fit all intervening miss addresses
between a recorded temporal stream and its previous
occurrence. For commercial workloads, the reuse dis-

tance depends on the frequency at which data structures
are revisited, resulting in a spectrum of distances, and
giving rise to a smooth improvement in coverage as the
size of the history buffer is increased. Conversely, sci-
entific computing workloads typically exhibit a reuse
distance proportional to the length of a single computa-
tional iteration and varies only with the size of the
application’s dataset.

Figure 5 (left) plots predictor coverage as a func-
tion of history buffer size. For our commercial
workloads, the history buffer must be on the order of
32MB to achieve maximal coverage. For scientific
workloads, coverage is bimodal: if the history buffer is
sufficiently large to capture an entire iteration, cover-
age is nearly perfect; if the history buffer is
insufficiently large, coverage is negligible. For both
classes of workloads, the history buffer storage require-
ments are at least an order of magnitude greater than
can be allocated on chip. However, relative to a
server’s main memory, history buffer footprint is small. 

Index table. An ideal index table can locate the
most recent occurrence of any miss address in the his-
tory buffers. Hence, in the worst case, if all addresses in
the history buffer are distinct, then there must exist one
index table entry per history buffer entry. In practice,
far fewer index table entries are required.

To optimize index-table storage efficiency, we pro-
pose hash-based lookup. Hash-based lookup spreads
miss addresses over buckets, applying the LRU
replacement policy within each bucket. The LRU pol-
icy brings useful history buffer pointers to the top,
naturally aging out unneeded entries. Figure 5 (right)
plots predictor coverage as a function of the hash-table
size for an ideal (unbounded) history buffer. Hash-
based lookup achieves maximum coverage with a
16MB main-memory index table, retaining only a frac-
tion of the index entries of an idealized prefetcher.

0%

20%

40%

60%

80%

100%
%

 C
ov

er
ag

e

0%

A
pa

ch
e

Ze
us

D
B

2

O
ra

cl
e

D
B

2

em
3d

m
ol

dy
n

oc
ea

n

Web OLTP DSS Sci

FIGURE 4: Prefetching potential. The left graph shows the prefetch coverage achieved by an idealized temporal 
streaming prefetcher. The right graph shows the corresponding performance impact.

0%
5%

10%
15%
20%

70%
75%
80%

A
pa

ch
e

Ze
us

D
B

2

O
ra

cl
e

D
B

2

em
3d

m
ol

dy
n

oc
ea

n

Web OLTP DSS Sci

%
 S

pe
ed

up



5.4. Achieving Latency Efficiency

An idealized prefetcher would have instant lookup,
experiencing no latency between the cache miss that
triggers a prediction and the predicted prefetch. How-
ever, a realistic implementation may lose prefetch
opportunity on each lookup because time must be spent
to locate and retrieve the miss address sequence [6,27].

We estimate lost prefetch opportunity by examin-
ing workload and lookup mechanism characteristics. A
latency-efficient predictor will perform a lookup once
per temporal stream recurrence, losing prediction
opportunity only during retrieval of the initial
addresses within the stream. Naturally, longer streams
reduce opportunity loss, however temporal stream
length is workload dependent and cannot be controlled.
Figure 6 (left) shows a cumulative distribution of
prefetches arising from streams of various lengths in
our commercial workloads. In the scientific applica-
tions, the length of the single temporal stream depends
on iteration length. For our configurations, this length
is approximately 400,000 misses in em3d, 21,000 in
ocean, and 81,000 in moldyn.

Lookup opportunity loss also depends on a work-
load’s memory level parallelism (MLP [7]), the
average number of off-chip loads issued while at least

one such load is outstanding. As discussed in prior
work [6], a predictor that retrieves meta-data from main
memory loses coverage for each followed temporal
stream, proportional to the number of round-trip mem-
ory accesses needed for a single lookup, multiplied by
the workload’s MLP (shown in Table 2). Like stream
length, MLP is an inherent property of a workload, and
is typically low in pointer-chasing applications such as
the studied commercial workloads [1,27].

As discussed in Section 3, when temporal streams
are stored in a single set-associative correlation table
(as in EBCP [6] and ULMT [23]), lookups require only
a single memory access before prefetching can pro-
ceed. However, the set-associative table design limits
maximum prefetch sequence length (referred to as the
prefetch depth [21]) based on the size of a table entry.
Because storage cost, complexity, and update-band-

0%

20%

40%

60%

80%

100%

0.1 1 10 100

%
 C

ov
er

ag
e

Aggregate History Buffer Size (MB)

FIGURE 5: Storage requirements. The left graph shows the storage requirements for the history buffer. The right 
graph shows the storage requirements for the index table.

100%

20%

40%

60%

80%

100%

%
 C

ov
er

ag
e

Web Apache
Web Zeus
OLTP Oracle
OLTP DB2
DSS DB2
Sci em3d
Sci moldyn
Sci ocean

0%
0.1 1 10 100

Index Table Size (MB)

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000

C
um

. %
 S

tr
ea

m
ed

 B
lo

ck
s

Temporal Stream  Length (blocks)

40%

50%

ss pt
h)

Web - Apache
Web - Zeus

0%

10%

20%

30%

0 5 10 15

%
 C

ov
er

ag
e 

Lo
s

(v
s.

 u
nb

ou
nd

ed
 d

ep OLTP - DB2
OLTP - Oracle
DSS - DB2
Sci

Fixed Prefetch Depth

FIGURE 6: Amortizing lookup. The left graph shows the fraction of coverage arising from streams of a particular 
length (commercial workloads only). The right graph shows the prefetch coverage loss of restricted prefetch depth.

Table 2: Memory-level parallelism of off-chip reads 
(without STMS).

Benchmark  MLP Benchmark  MLP
Web Apache 1.5 DSS DB2 1.6

Zeus 1.5 Sci em3d 1.7
OLTP DB2 1.3 moldyn 1.0

Oracle 1.3 ocean 1.2



width requirements grow with prefetch depth, it must
remain small (three to six addresses [6,21,23]). As
Figure 6 (left) shows, a small fixed depth falls far short
of temporal stream lengths inherent in commercial
workload. Restricted prefetch depth fragments long
streams, forcing multiple lookups and sacrificing
opportunity with each lookup. Figure 6 (right) shows
the lost opportunity as a function of prefetch depth.

STMS instead employs a split-table meta-data
organization, with separate history buffer and index
table, allowing it to follow temporal streams for tens or
hundreds of misses. However, the split-table approach
implies a minimum of two round-trip memory accesses
per lookup (one to each table). The expected coverage
loss STMS incurs due to the additional memory round
trip (equal to MLP reported in Table 2) is less than the
fragmentation losses incurred by single-table designs.

We propose an efficient organization for index
table entries by packing a hash bucket into a single
memory block (64 bytes). Our organization limits the
maximum number of index entries per bucket (to 12 in
our design), but ensures that the index table can be
searched with a single access. We performed an exten-
sive analysis of alternative organizations for the index
table (e.g., open address hashing, larger hash bucket
chains, tree structures), and found that these organiza-
tions were either less storage efficient or sacrificed
additional coverage due to increased lookup latency. 

5.5. Achieving Bandwidth Efficiency

Placing predictor meta-data off chip introduces
several sources of pin-bandwidth overheads: recording
miss addresses in the history buffer, index table
updates, lookup operations (index table and history
buffer accesses), and prefetch of erroneously-predicted
addresses. Figure 7 shows the relative importance of
each overhead source normalized to the base system
off-chip traffic (which includes demand-triggered
cache block fetches and writebacks).

The largest bandwidth overhead in an un-opti-
mized system arises due to index table maintenance
(see the bars labelled 100%). Each index table update
calls for a read and write operations on the correspond-
ing index table entry, resulting in bandwidth utilization
that exceeds the base system traffic for many work-
loads. The second largest contributor is index table
lookups, performed on each demand-read-miss from
the L2, searching for a temporal stream to follow.
Although lookup traffic is substantial, it decreases as
the system makes more correct predictions and elimi-
nates demand misses. Accurate detection of the end-of-
stream curtails the bandwidth consumed by erroneous
prefetches. Finally, the bandwidth utilized for record-
ing off-chip sequences is negligible (not visible in the
graphs), as a single densely-packed history buffer write
is performed for every twelve off-chip read misses.

The high traffic overheads shown in Figure 7 dem-
onstrate the need for probabilistic update. We compare
an un-optimized system (100% sampling probability)
to one with a probabilistic update sampling probability
of 1/8th (12.5%). Probabilistic update drastically
reduces the off-chip traffic required for index updates.

Probabilistic update reduces traffic of index-table
maintenance at the cost of predictor coverage. Figure 8
shows the traffic overhead of streaming (left) and pre-
dictor coverage (right) as function of the sampling
probability. Index update traffic is proportional to sam-
pling probability. Hence, Figure 7 shows that reducing
sampling probability from 100% to 12.5% reduces total
traffic. Below 12.5%, other sources of overhead (par-
ticularly lookup traffic) dominate.

Whereas traffic overhead decreases rapidly, pre-
dictor coverage decreases logarithmically with
sampling probability. Omitting index table updates has
only a small effect on coverage because temporal
streams either tend to be long (in which case, a later
address in the stream can be used to locate it) or to
recur frequently (in which case an index entry from a

0

0.5

1

1.5

2

10
0%

12
.5

%

10
0%

12
.5

%

10
0%

12
.5

%

10
0%

12
.5

%

10
0%

12
.5

%

10
0%

12
.5

%

10
0%

12
.5

%

10
0%

12
.5

%

Apache Zeus DB2 Oracle DB2 em3d moldyn ocean

Web OLTP DSS Sci

O
ve

rh
ea

d 
Tr

af
fic

(o
ve

rh
ea

d 
by

te
s 

/ u
se

fu
l d

at
a 

by
te

)

Record Streams Update Index Lookup Streams Incorrect Prefetches

FIGURE 7: Overhead traffic. The left bar in each pair shows memory traffic overheads of off-chip index lookup 
without probabilistic update (sampling probability = 100%). The right bar shows overheads with a 12.5% probability.



prior occurrence likely exists). Hence, probabilistic
update is highly effective at reducing off-chip traffic
for index table management.

5.6. Performance Impact of Practical Streaming

We conclude our evaluation by comparing the per-
formance impact of STMS to idealized TMS. We
employ a 12.5% update sampling probability, as it
offers the best balance between bandwidth-efficiency
and coverage for our workloads. Our mechanisms
allow STMS to obtain on average 90% of idealized
TMS coverage. Figure 9 (left) compares coverage of
STMS and idealized TMS. For STMS, we subdivide
coverage into fully-covered misses (off-chip latency is
fully-hidden) and partially-covered misses (a core
requested the block before the prefetch completed).

Because STMS maintains high coverage, it
achieves 90% of the performance improvement possi-
ble with idealized lookup. Figure 9 (right) compares
the performance improvement of STMS and idealized
TMS. We conclude that our proposed mechanisms—
hash-based lookup and probabilistic update—enable a
bandwidth-, latency-, and storage-efficient design,
meeting our stated goals of (1) matching the coverage
and performance of an idealized prefetcher while stor-

ing meta-data in off-chip memory, and doing so (2)
without penalizing the performance of workloads that
derive no benefit from temporal streaming.

6. Conclusions
Address-correlating prefetchers are known to

improve performance of commercial server workloads.
To be effective, these prefetchers must maintain meta-
data that cannot fit on chip. In this work, we identified
the key requirements for implementing address-corre-
lating prefetchers with off-chip meta-data storage. To
satisfy these requirements, we proposed two tech-
niques: hash-based lookup and probabilistic sampling
of meta-data updates, and applied these techniques to
an address-correlating prefetcher design with split his-
tory and index tables. Hash-based lookup achieves low
off-chip meta-data lookup latency. Probabilistic sam-
pling achieves bandwidth-efficient meta-data updates.
Split index and history tables amortize each meta-data
lookup over multiple prefetches. Our evaluation dem-
onstrates that these techniques yield a bandwidth-,
latency-, and storage- efficient temporal memory
streaming design that keeps predictor meta-data in
main memory while achieving 90% of the performance
potential of idealized on-chip meta-data storage.

0%

20%

40%

60%

80%

100%

1% 10% 100%

%
 C

ov
er

ag
e

Sampling Probability
FIGURE 8: Probabilistic update sampling sensitivity. The left graph shows the traffic overhead impact of 

probabilistic update, while the right graph shows its coverage impact.

0.5

1.0

1.5

2.0
O

ve
rh

ea
d 

tr
af

fic
 

ea
d 

by
te

s 
/ d

at
a 

by
te

)

OLTP Oracle
OLTP DB2
Web Apache
Web Zeus
DSS DB2
Sci em3d
Sci moldyn

0.0
1% 10% 100%

O
(o

ve
rh

e

Sampling Probability

Sc o dy
Sci ocean

0%
20%
40%
60%
80%

100%

Id
ea

l
O

ff
ch

ip

Id
ea

l
O

ff
ch

ip

Id
ea

l
O

ff
ch

ip

Id
ea

l
O

ff
ch

ip

Id
ea

l
O

ff
ch

ip

Id
ea

l
O

ff
ch

ip

Id
ea

l
O

ff
ch

ip

Id
ea

l
O

ff
ch

ip

%
 o

ff-
ch

ip
 re

ad
 m

is
se

s Partially covered Fully covered

O O O O O O O O

Apache Zeus DB2 Oracle DB2 em3d moldyn ocean

Web OLTP DSS Sci

%

FIGURE 9: Performance. The left graph compares the coverage of idealized temporal streaming (ideal) and a 
practical STMS design with off-chip lookup (off-chip). The right graph compares the performance of the two designs, 

relative to a design with stride prefetching only.

5%
10%
15%
20%

70%
75%
80%

%
 S

pe
ed

up

Idealized Lookup
Off-chip Lookup

0%
5%

Ap
ac

he

Ze
us

D
B

2

O
ra

cl
e

D
B

2

em
3d

m
ol

dy
n

oc
ea

n

Web OLTP DSS Sci



Acknowledgements
The authors would like to thank Brian Gold and

the anonymous reviewers for their feedback. This work
was supported by grants from Intel, two Sloan research
fellowships, an NSERC Discovery Grant, an IBM fac-
ulty partnership award, and NSF grant CCR-0509356.

References
[1] Luiz Andre Barroso, Kourosh Gharachorloo, and Ed-
ouard Bugnion. Memory system characterization of commer-
cial workloads. In Proc. of the 25th International Symposium
on Computer Architecture, 1998.
[2] Ioana Burcea, Stephen Somogyi, Andreas Moshovos,
and Babak Falsafi. Predictor virtualization. In Proc. of the
13th International Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems, 2008.
[3] Mark J. Charney and Anthony P. Reeves. Generalized
correlation-based hardware prefetching. TR EE-CEG-95-1,
School of Electrical Engineering, Cornell University, 1995.
[4] Trishul M. Chilimbi. Efficient representations and ab-
stractions for quantifying and exploiting data reference local-
ity. In Proc. of the SIGPLAN ’01 Conf. on Programming
Language Design and Implementation, 2001.
[5] Trishul M. Chilimbi and Martin Hirzel. Dynamic hot
data stream prefetching for general-purpose programs. In
Proc. of the ACM SIGPLAN 2002 Conf. on Programming lan-
guage design and implementation, 2002.
[6] Yuan Chou. Low-cost epoch-based correlation prefetch-
ing for commercial applications. In Proc. of the 40th IEEE/
ACM International Symposium on Microarchitecture, 2007.
[7] Yuan Chou, Brian Fahs, and Santosh Abraham. Micro-
architecture optimizations for exploiting memory-level paral-
lelism. In Proc. of the 31st International Symposium on
Computer Architecture, 2004.
[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms. The
MIT Press, 2001.
[9] Michael Ferdman and Babak Falsafi. Last-touch corre-
lated data streaming. In IEEE International Symposium on
Performance Analysis of Systems and Software, 2007.
[10] Michael Ferdman, Thomas F. Wenisch, Anastasia Aila-
maki, Babak Falsafi, and Andreas Moshovos. Temporal in-
struction fetch streaming. In Proc. of the 41st IEEE/ACM
International Symposium on Microarchitecture, 2008.
[11] Nikos Hardavellas, Ippokratis Pandis, Ryan Johnson,
Naju Mancheril, Anastasia Ailamaki, and Babak Falsafi. Da-
tabase servers on Chip Multiprocessors: Limitations and Op-
portunities. In Third Biennial Conf. on Innovative Data
Systems Research, 2007.
[12] Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi.
Timekeeping in the memory system: predicting and optimiz-
ing memory behavior. In Proc. of the 29th International Sym-
posium on Computer Architecture, 2002.
[13] Zhigang Hu, Margaret Martonosi, and Stefanos Kaxiras.
Tcp: Tag correlating prefetchers. In Proc. of the 9th IEEE Sym-
posium on High-Performance Computer Architecture, 2003.
[14] Jaehyuk Huh, Doug Burger, and Stephen W. Keckler.

Exploring the design space of future cmps. In Proc. of the
2001 International Conf. on Parallel Architectures and Com-
pilation Techniques, 2001. 
[15] Ryan Johnson, Nikos Hardavellas, Ippokratis Pandis,
Naju Mancheril, Stavros Harizopoulos, Kivanc Sabirli, Anas-
tassia Ailamaki, and Babak Falsafi. To share or not to share?
In 33rd Very Large Data Bases Conference, 2007.
[16] Doug Joseph and Dirk Grunwald. Prefetching using
Markov Predictors. In Proc. of the 24th International Sympo-
sium on Computer Architecture, 1997.
[17] Norman P. Jouppi. Improving direct-mapped cache per-
formance by the addition of a small fully-associative cache
and prefetch buffers. In Proc. of the 17th International Sym-
posium on Computer Architecture, 1990.
[18] An-Chow Lai and Babak Falsafi. Dead-block prediction
& dead-block correlating prefetchers. In Proc. of the 28th In-
ternational Symposium on Computer Architecture, 2001.
[19] James E. Larus and M. Parkes. Using cohort scheduling
to enhance server performance. In Proc. of the USENIX Tech-
nical Conference, 2002.
[20] Jack L. Lo, Luiz Andre Barroso, Susan J. Eggers,
Kourosh Gharachorloo, Henry M. Levy, and Sujay S. Parekh.
An analysis of database workload performance on simultane-
ous multithreaded processors. In Proc. of the 25th Interna-
tional Symposium on Computer Architecture, 1998.
[21] Kyle J. Nesbit and James E. Smith. Data cache prefetching
using a global history buffer. In Proc. of the Tenth IEEE Sympo-
sium on High-Performance Computer Architecture, 2004.
[22] Timothy Sherwood, Suleyman Sair, and Brad Calder.
Predictor-directed stream buffers. In Proc. of the 33rd IEEE/
ACM International Symposium on Microarchitecture (MI-
CRO 33), 2000.
[23] Yan Solihin, Jaejin Lee, and Josep Torrellas. Using a user-
level memory thread for correlation prefetching. In Proc. of the
29th International Symposium on Computer Architecture, 2002.
[24] Stephen Somogyi, Thomas F. Wenisch, Anastassia Aila-
maki, Babak Falsafi, and Andreas Moshovos. Spatial memory
streaming. In Proc. of the 33rd International Symposium on
Computer Architecture, 2006.
[25] Pedro Trancoso, Josep-L. Larriba-Pey, Zheng Zhang,
and Josep Torellas. The memory performance of DSS com-
mercial workloads in shared-memory multiprocessors. In
Proc. of the Third IEEE Symposium on High-Performance
Computer Architecture, 1997.
[26] Thomas F. Wenisch, Michael Ferdman, Anastasia Aila-
maki, Babak Falsafi, and Andreas Moshovos. Temporal
streams in commercial server applications. In IEEE Interna-
tional Symposium on Workload Characterization, 2008.
[27] Thomas F. Wenisch, Stephen Somogyi, Nikolaos Hardav-
ellas, Jangwoo Kim, Anastassia Ailamaki, and Babak Falsafi.
Temporal streaming of shared memory. In Proc. of the 32nd In-
ternational Symposium on Computer Architecture, 2005.
[28] Thomas F. Wenisch, Roland E. Wunderlich, Michael
Ferdman, Anastassia Ailamaki, Babak Falsafi, and James C.
Hoe. SimFlex: statistical sampling of computer system simu-
lation. IEEE Micro, 26(4):18–31, 2006.
[29] Chengqiang Zhang and Sally A. McKee. Hardware-only
stream prefetching and dynamic access ordering. In Proc. of
the 14th International Conf. on Supercomputing, 2000.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


