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ABSTRACT
Modern last-level caches are partitioned into slices that are
spread across the chip, giving rise to varying access latencies
dictated by the physical location of the accessing core and
the cache slice being accessed. Although, prior work has
shown that dynamically determining the best location for
blocks within such Non-Uniform Cache Access architectures
can provide significant performance benefits, current hard-
ware does not implement this functionality. Instead, modern
processors hash blocks across the LLC slices, obscuring the
non-uniform architecture of the underlying cache and forfeit-
ing the performance benefits of placing data in the nearest
cache slices. Moreover, while prior work advocated improv-
ing performance by delegating control over block placement
to the operating system at page granularity, modern proces-
sor hardware thwarts these approaches by hashing cache
slice selection at cache block granularity.
In this work, we make two observations that enable us

to improve software performance on modern NUCA archi-
tectures. First, we find that software can undo the hashing
performed by hardware and efficiently manage data place-
ment at cache block granularity. Second, that the complexity
of fine-grained data placement can be hidden from the de-
veloper by embedding it in the dynamic memory allocator.
Leveraging these observations, we design a new specialized
memory allocator, NUCAlloc, suitable for use with C++ con-
tainers such as std::map and std::set. NUCAlloc handles the
complexity of NUCA-aware block placement, improving the
performance of containers by placing their data into the
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nearest LLC slices. We demonstrate that our NUCAlloc pro-
totype consistently outperforms std::allocator and jemalloc
for LLC-resident containers, improving performance by up
to 20% in both single-threaded and multi-threaded software.
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1 INTRODUCTION
In modern processors, the last-level cache (LLC) is shared by
the cores and is typically organized as a Non-Uniform Cache
Architecture (NUCA). The cache is organized into partitions,
or slices, which are physically located on the chip at varying
distances from the cores. This varying proximity to cores
causes non-uniform cache access latencies when a core
accesses data in the LLC, with the latency depending on both
which core is performing the access and which cache slice is
receiving it. For any given core, accessing data in the cache
slice closest to that core leads to the lowest access latency,
and consequently results in higher software performance.
Extensive research has explored hardware techniques

to dynamically place cache blocks used by a core in the
best-performing (closest) locations in NUCA caches [1, 4–
6, 11, 12, 20, 22, 28, 32]. However, modern hardware does not
implement these hardware NUCA mechanisms. Instead, the
hardware uses a hash function to uniformly randomizewhich
slice handles a given cache block, sacrificing the latency ben-
efits of using an LLC slice nearest to the accessing core.
Another class of works on NUCA caches proposes

delegating block placement decisions to software [5, 27].
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Figure 1: NUCA cache with eight slices. Dashed lines
show interconnect hops when Core 1 accesses Slice 6.

These techniques perform block placement by leveraging
the virtual memory system at page granularity, using the
operating system to manipulate the page tables and TLBs
to steer accesses to their desired cache slice. Unfortunately,
modern processors preclude the use of these software
techniques. The hardware placement hash function operates
at block granularity, which uniformly spreads the blocks
belonging to every memory page across all cache slices.
Our work overcomes this hardware limitation, improving
cache access latency in modern processors by performing
fine-grained NUCA-aware block placement, despite the
presence of the hardware hash function.

In this work, we make two key observations. First, we find
that, although the block placement hash function used by the
hardware is officially undisclosed, it has been successfully
reverse engineered [13, 14, 18, 24, 31]. Second, we observe
that user-level software can transparently manage NUCA
block placement at cache block granularity by using a
carefully-crafted memory allocator. Consequently, our
approach unlocks the performance benefits of latency-aware
NUCA block placement on modern off-the-shelf processors.
We leverage these observations to design NUCAlloc, a

specialized allocator that transparently handles the com-
plexity of NUCA-aware block placement. NUCAlloc works
by determining the cache slice a memory block belongs
to by applying the hardware hash function in reverse and
placing the block on the free-list of the corresponding
slice. Allocations take elements from the free-list of the
desired slice, prioritizing the closest slice, and allocate from
the other (farther away) cache slices as more memory is
requested. Freed elements are returned to the free-list from
which they were allocated. We make the NUCAlloc interface
compatible with C++ containers, allowing it to be used
transparently to improve the performance of accessing the
data and the meta-data (e.g., pointers) of std::map, std::set,
and other standard library data structures.
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Figure 2: Intel 12-core NUCA processor with two inter-
connect rings.

To demonstrate the effectiveness of NUCAlloc, we
compared its performance with glibc malloc from Linux
and jemalloc from FreeBSD on two generations of Intel
server processors. We evaluate performance for single-
threaded and multi-threaded applications. Our results
show that NUCAlloc effectively leverages NUCA latencies,
outperforming state-of-the-art allocators by up to 20%.

2 MODERN NUCA CACHES
Modern processors implement their last-level caches (LLCs)
following a Non-Uniform Cache Access (NUCA) architecture.
Figure 1 shows a high-level diagram of an example processor,
an Intel E5-2650. In this processor, the shared LLC is divided
into eight slices, with the eight cores using an on-chip ring
interconnect to access the cache slices. In this organization,
each core has a local LLC slice that is nearest to it, which
can be accessed with minimal latency. Unfortunately, the
latency of accessing the other slices can be significantly
higher, as it depends on the number of hops that accesses
must travel, along the on-chip ring interconnect.
Figure 2 shows the organization of A 12-core Intel

E5-2670v3 processor has two rings, with the rings intercon-
nected using a bridge which introduces additional latency
to the accesses that traverse it. Moreover, the LLC access
latency observed by the cores on the second ring is higher,
owing to an unequal distribution of slices among the rings. In
general, with an increase in the number of cores on the chip,
the access latency difference among the slices also increases.

Although research on mechanisms to manage block place-
ment within NUCA caches has shown promising results,
modern processors implement a simple policy that randomly
distributes cache blocks across all NUCA slices. To imple-
ment the random block distribution, when accessing data in
the LLC, the physical address of the memory block is hashed;
a subset of the bits from the physical address are XOR-ed to-
gether to compute values which decide the cache slice index.
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Critically, because some low-order bits (just above the
block offset) participate in the hash, cache blocks whose
addresses are adjacent in the physical address space are
always placed in different cache slices. Because any given
cache block can be randomly placed in the closest or farthest
slice, the LLC access latency observed by software is the
average access latency of all slices. The hash function is
not publicly disclosed, but security researchers seeking to
study and manage conflicts in the shared LLC were able to
reverse engineer it by observing the uncore performance
counters [24]. Once the hash function is known, it is possible
to determine the slice mapping of any block, potentially
allowing control over the placement of data by allocating
them at an appropriate physical address.

The pattern of which blocks within a page are located on
which slice and the proximity of that slice to a particular core
changes with the physical address of the page and the ID of
the core performing the access. As a result, the complexity of
manually performing fine-grained management of memory
that could take advantage of the NUCA organization is
unreasonable even for an extremely performance-conscious
software developer. However, the implementation complex-
ity can be hidden inside a dynamic memory allocator, and
the performance cost of performing the block mapping can
be shifted to the initialization of the allocator free-lists.

Notably, because blocks with adjacent physical addresses
are mapped by the hardware to different cache slices, large
objects cannot have all of their blocks mapped to cache slices
with low latency. However, software using pointer-based
data structures with large collections of small objects, such
as C++ programs using standard containers, can have all
of the container data (and the container meta-data) reside
in low-latency nearby cache slices. We therefore develop
NUCAlloc as a standard C++ allocator that can be used as a
template argument for C++ containers such as std::map and
std::set, transparently endowing these containers with the
benefits of NUCA-aware placement and low access latencies.

3 NUCALLOC DESIGN
In this section we present the methodology and the design
rationale behind NUCAlloc. We start by discussing how the
hash function is recovered in Section 3.1, we then divide
our discussion about design of NUCAlloc into Section 3.2
which presents a high level overview and Section 3.3 which
presents lower level implementation details.

3.1 Recovering the Hash Function
Modern NUCA processors use a hash function to spread
data among the LLC slices. By knowing the hardware hash
function, software can determine the slice that an address
maps to. The practicality of cache side-channel attacks such

Component Functions:

𝑓0 = 𝑏11⊕𝑏16⊕𝑏17⊕𝑏21⊕𝑏23⊕𝑏26⊕𝑏27⊕𝑏28⊕𝑏29⊕𝑏31
𝑓1 = 𝑏9⊕𝑏13⊕𝑏14⊕𝑏17⊕𝑏18⊕𝑏19⊕𝑏20⊕𝑏21⊕𝑏22⊕𝑏23⊕𝑏25⊕𝑏27⊕𝑏30⊕𝑏31
𝑓2 = 𝑏7⊕𝑏12⊕𝑏13⊕𝑏17⊕𝑏19⊕𝑏22⊕𝑏23⊕𝑏24⊕𝑏25⊕𝑏27
𝑓3 = 𝑏6⊕𝑏11⊕𝑏12⊕𝑏16⊕𝑏18⊕𝑏21⊕𝑏22⊕𝑏23⊕𝑏24⊕𝑏26⊕𝑏30⊕𝑏31⊕𝑏32
𝑓4 = 𝑏8⊕𝑏13⊕𝑏14⊕𝑏18⊕𝑏20⊕𝑏23⊕𝑏24⊕𝑏25⊕𝑏26⊕𝑏28⊕𝑏32⊕𝑏33⊕𝑏34
𝑓5 = 𝑏9⊕𝑏14⊕𝑏15⊕𝑏19⊕𝑏21⊕𝑏24⊕𝑏25⊕𝑏26⊕𝑏27⊕𝑏29⊕𝑏33⊕𝑏34
𝑓6 = 𝑏10⊕𝑏15⊕𝑏16⊕𝑏20⊕𝑏22⊕𝑏25⊕𝑏26⊕𝑏27⊕𝑏28⊕𝑏30⊕𝑏34
𝑓7 = 𝑏6⊕𝑏7⊕𝑏8⊕𝑏9⊕𝑏10⊕𝑏12⊕𝑏13⊕𝑏14⊕𝑏15⊕𝑏18⊕𝑏19⊕𝑏20⊕𝑏22⊕

𝑏24⊕𝑏25⊕𝑏30⊕𝑏32⊕𝑏33⊕𝑏34
Final Hash Function:

𝑠3 = 𝑓3 · [ 𝑓4+ 𝑓5 · (¬𝑓6+¬𝑓7 ) ]
𝑠2 = ¬𝑠3 · 𝑓2
𝑠1 = 𝑓1

𝑠0 = 𝑓0

Figure 3: The reverse-engineered Intel E5-2670v3 hash
function. 𝑏𝑖 corresponds to ith bit of the physical ad-
dress and 𝑠𝑖 corresponds to ith bit of the slice number.

as prime and probe, and the ability to target particular slices
of an LLC has attracted many security researchers to attempt
to reverse engineer the LLC hash function [13, 14, 18, 24, 31].

Maurice, et al. [24] presented a technique to find the hash
function used by Intel processors with 2, 4 and 8 cores. They
noted that the hash function depends only on the core count
and that the same hash function is used across different Intel
processor generations. However, their method to derive the
hash function is restricted to processors with 2n cores as they
assume the hash function only uses XOR of the address bits.
Yarom et al. [31] reverse engineered a 6-core hash and

demonstrated that it comprises component functions. Each
component is formed with XOR of some physical address
bits, with the final hash function using operations other than
XOR. We verified the 8-core hash function from the prior
work [24] and reverse engineered the 12-core hash function.

To find the hash function of the 12-core processor, we
followed a similar approach to Maurice, et al.[24], polling
each cache block to collect data about the slice mapping.
The uncore CBo counters monitor the LLC_LOOKUP event.
An address is polled by flushing that address from all cache
levels using the clflush instruction. clflush causes a
lookup event in the LLC irrespective of whether the flushed
address is cached or not. Repeated polling of the address
will reflect in the CBo counters with a high value for the
counter associated with the correct slice. This gives us a
mapping of virtual addresses to the slice numbers.
We use /proc/self/pagemap, a Linux kernel interface

that allows a process to determine the physical frame to
virtual page mapping [29], to translate the virtual addresses
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Figure 4: Illustration of the LLC regions used by the
various block placement policies. In this figure the
thread is running on Core 1.

to physical addresses. We then derive the component
functions by processing an extensive list of physical
addresses and their corresponding slice numbers.
Figure 3 shows the component functions and the hash

functions for a 12-core processor. This function bears
resemblance to the hash function recovered by Yarom, et
al. [31], but the actual bits in the component functions differ.
Additionally, we also have an additional bit in the hash
function owing to the higher core count. The hash function
used by a 8-core processor is much simpler because each
slice bit corresponds to a single component function.
Following this approach, one can derive the LLC hash

function of any Intel CPU. Leveraging the knowledge of the
hash function, we can design an allocator which allocates
memory such that blocks are placed in the slice that is in
the proximity of the core requesting memory.

3.2 NUCAlloc Design Overview
NUCAlloc utilizes the reverse engineered hash function
discussed in Section 3.1 to achieve fine-grained block
placement on the LLC. Fine-grained block placement can
follow a number of different strategies: Allocating the blocks
such that they always correspond to the closest slice (Closest
One), allocating such that the blocks are interleaved among
the closest and the neighboring slice (Closest Two), interleave
on the same side of the ring as the core on which the thread
is running (Closest Half ) or utilize the whole cache. Figure 4
shows that each of these strategies restricts the memory
blocks to a portion of the LLC. Eventually, new accesses evict
those allocated earlier. The threshold at which evictions
occur is a crucial parameter that determines our allocation
strategy. Notably, slice capacity is not the only contributing
factor, but the associativity of the LLC also plays a crucial
role, with conflict misses lowering the threshold.

Each policy has benefits and drawbacks. For example,
Closest One always allocates memory corresponding to the
fastest (closest) slice. However, if the aggregate memory allo-
cated with Closest One exceeds the slice capacity, successive
allocations will conflict in the LLC. Thus, Closest One suffers
from poor LLC utilization, but guarantees the best hit latency.
Closest Half offers better LLC utilization, doing so at the cost
of higher hit latency compared to Closest One. In all cases,
the allocation must be done in conjunction with software
thread management, requesting for the OS to pin software
threads to the core, or group of cores, within the region
where the corresponding memory allocations are placed.

When determining the default policy for NUCAlloc, we
aimed at achieving lower latency benefits of Closest Onewith-
out suffering LLC utilization penalty. Because each slice of
LLC is at a different distance from the core, the access latency
of each slice is different. The closest slice sees the least hit la-
tency while the farthest sees the highest latency. The rest of
the slices range from the least latency to the highest latency.
Hence, it is beneficial to allocate memory in a dynamic strat-
egy which prioritizes slices closer to the core and expands
out to the higher latency slices. NUCAlloc follows a dynamic
strategy by tracking the amount of memory allocated and
selecting the appropriate slice ensuring the lower latency
benefits of Closest One without sacrificing LLC utilization.

An important point to note here is that since Closest One,
Closest Two and Closest Half always allocate memory based
on their policy even if their allocations exceed the cache
regions that they target, they can be used as a LLC isolation
method. These policies can be useful in case of multi-
threaded applications where we might want to restrict a
thread to a section of LLC preventing it from polluting other
threads’ data. As such, NUCAlloc allows the application to
override the policy it follows to one of these strategies.

3.3 Implementation Details
To facilitate NUCA-aware allocation, NUCAlloc maintains
per-slice free-lists, populated with memory blocks that map
to the corresponding cache slice. In our target systems, each
cache slice corresponds to a core, making per-slice free-lists
similar to the per-core free-lists of modern allocators. To
populate the free-lists, NUCAlloc requests a memory page
from the OS using mmap, splits that page into cache-block
sized free blocks, and places each block on its corresponding
per-slice free-list. To determine on which free list a block be-
longs, NUCAlloc computes the slice index of the block based
on the offset of that block within the page, the hardware hash
function, and the virtual-to-physical address translation.
The reverse-engineered component functions are shown

in Figure 3. The component functions XOR subsets of
the address bits and are combined together to yield the
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populate_freelists():
# Component functions of first block
first_cf = { f[8] = {0} }

page_va = mmap(...)
page_pa = va_to_pa(page_va)

for i = 0 to 7:
first_cf.f[i] = f(i,page_pa)

for i=0 to CACHE_BLOCKS_PER_PAGE-1:
curr = { f[8] = {0} }
offset = i * CACHE_BLOCK_SIZE
for i = 0 to 7:

curr.f[i] = first_cf.f[i] ^ f(i,offset)
slice_num = get_slice(curr)
block_va = page_va + offset
add_to_freelist(block_va,slice_num)

Figure 5: Pseudo-code for populating the free-lists for
a chip that uses eight component functions. The com-
ponent function values for the blocks in the page are
derived from the first block’s component functions
and the block’s offset.

final hash function used to translate physical addresses
to LLC slice numbers. Notably, because the hash function
operates on the physical rather than the virtual address,
NUCAlloc must use the physical addresses of the blocks.
We use the address mapping provided by the Linux kernel
via the /proc/self/pagemap to find the physical address
corresponding to the virtual address of the allocation.
Once the physical address of the page is known, the values
of the component functions corresponding to the first
64-byte memory block in the page are determined using the
reverse-engineered functions. Critically, to avoid repeatedly
performing this costly computation, which includes complex
component functions and the virtual to physical translation,
we use a small meta-data hash table that maps the allocated
virtual address to the component function values of the first
block of the corresponding page. The slice number of any
block within a page can be quickly computed based on the
component function values of the first block within that page
and the offset of the block within the page. Figure 5 shows
the pseudo-code for populating the free-lists using this logic.
The process of mapping a page and populating the

free-lists occurs each time we run out of memory blocks
on a desired free-list. The page obtained from the OS is
used to extend all of the per-slice free-lists. The meta-data
required to maintain the free-lists is stored within the blocks
themselves, requiring no additional memory overhead for
maintaining the free-lists.
Memory is allocated to an object by first determining

the cache slice and then returning a block from the corre-
sponding free-list. Because this involves only removing a
node from a pre-populated free-list, allocation involves little
overhead. To make sure that the software threads remain

running on the cores closest to their memory allocations,
the threads are pinned to the cores by the OS, ensuring that
allocations made from the associated free-list will remain
close to the core that will be accessing them.

During de-allocation, the address of the block being freed
is used to calculate the virtual address of the page storing
the block. This address is used to look up the component
function values of the first 64-byte memory block of that
page in the hash table. In combination with the offset of
the block being freed, the component function values allow
us to calculate the slice number of the block being freed.
Once the slice number is known, the block is added to the
corresponding free-list.
The slice selection during allocation is determined as

follows: Initially, memory is allocated such that it corre-
sponds to the slice that is closest to the core that the thread
is running on. On reaching the threshold of the slice - which
is an empirically arrived value, we start allocating blocks
corresponding to the neighboring slice. Upon reaching the
threshold of the neighboring slice, we allocate blocks cor-
responding to next closest slice and so on. This ensures least
cache access latency while maximizing LLC utilization. To
make this selection possible, we store a priority ordering of
the slices for each core in the allocator, this varies depending
on the processor type. We demonstrate how to determine
the slice ordering and the threshold parameter in Section 4.

When an application involving multiple threads needs to
make allocations, NUCAlloc restricts the slice selection to a
portion of LLC to prevent the threads from thrashing one an-
other. For instance, when the application involves 4 threads
making allocations on an eight core processor, NUCAlloc al-
locates memory from only the closest 2 slices for each of the
threads. The assumption here is that each of the thread on av-
erage, makes use of the same amount of LLC data. By restrict-
ing their private data to the closer slices we gain in perfor-
mance compared to an allocator which would interleave data
among all the slices which increases the chance of one thread
thrashing the other’s LLC data. Because the free-lists for each
core are mutually exclusive, allocation does not require locks.

3.4 NUCAlloc Applicability
NUCAlloc is designed for data structures whose elements are
smaller than or equal to the size of a cache block and whose
working set is small relative to the LLC capacity. By allocat-
ing just such data structures using NUCAlloc, allocated ele-
ments are placed in the cache slices closest to the cores from
which they will be accessed, minimizing access latency. The
biggest benefits would be seen for pointer-based data struc-
tures such as graphs, trees, and lists, as NUCAlloc improves
latency without disrupting prefetcher accuracy for such data
structures. Regular data structures (such as arrays or heaps)
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still experience NUCAlloc latency benefits, but may also be
harmed by less effective prefetching into the L1 from the LLC.
Notably, NUCAlloc is not meant to replace the regular

memory allocator, but should be used alongside it. The data
structures that benefit from NUCA-aware placement should
be allocated using NUCAlloc, while other allocations should
use the regular general-purpose allocator. This selective allo-
cation strategy ensures that the benefits of NUCAlloc are re-
alized without adversely affecting the rest of the application.

For single-threaded applications, or applications not using
all of the available cores, NUCAlloc will work best until
the allocation capacity exceeds the size of one LLC cache
slice. Beyond this point, NUCAlloc will continue to operate,
but will begin placing blocks in cache slices that are farther
away, gradually diminishing the latency benefits. If the
allocated working set size is large and spans more than half
of the cache slices, the system performance will match or
fall below a regular memory allocator, because second-order
effects, such as increased TLB pressure and lower prefetcher
accuracy, may begin to have a negative impact.

For multi-threaded applications, NUCAlloc will work best
when the data structures allocated with it are private to each
thread, resulting in maximum locality for all threads and
minimal interference among threads. NUCAlloc will benefit
both LLC hits and LLC misses. LLC hits will observe a
significantly lower access latency to the cache blocks fetched
into the L1 from the local LLC slice. LLC misses will observe
a reduced load-to-use time because the misses are discovered
more quickly, allowing memory requests to be issued earlier.
Finally, in multi-threaded applications with significant

imbalance in the working set of different threads, NUCAlloc
may provide limited benefits. Threads whose data structures
fit into their local LLC slices will observe improvement, but
threads with larger working sets will be adversely affected
because they will not have access to the full cache capacity.
Although it is possible to use the single-threaded NUCAlloc
strategy to place allocations into neighboring cache slices
for such cases, a careful analysis of the cache miss behavior
would be required to determine if the use of NUCAlloc
would still be beneficial.

4 EVALUATION
We evaluate NUCAlloc on an 8-core processor a 12-core
processor, organized as shown in Figure 1 and Figure 2,
respectively, where each core is associated with a 2.5MB
cache slice. Table 1 provides the processor details.
To evaluate the performance of data structures when

using NUCAlloc, we construct benchmarks based on the C++
standard template library (STL) containers, using a template
parameter to specify which custom allocator the container
should use. Our benchmarks populate the container under

Table 1: Processor configurations used for evaluation.

Intel E5-2650 Intel E5-2670v3

Core count 8 12
Threads per core 1 2
L1D 32 KB (8 way) 32 KB (8 way)
L2 256 KB (8 way) 256 KB (8 way)
LLC 20 MB (20 way) 30 MB (20 way)

test with 64-byte elements containing random data and then
measure the time to perform a pseudo-random sequence
of accesses to the container. The same pseudo-random
sequence is used when testing all allocators. To minimize
the impact of cold-start effects, the access sequence touches
each element in the container 100 times.
To study the in-depth behavior of the allocators, we

instrument our benchmarks with calls to perf, providing
exact counts of clock cycles as well as cache hits and misses
in each level of the on-chip cache hierarchy. For cache hit
and miss information from specific LLC slices, we used
the Intel uncore CBo counters[15, 16]. These CBo counters
were configured for the LLC_LOOKUP event and then filtered
based on the FMESI states to isolate hits and misses.
Although many container types are available in C++,

some of the most-commonly used ones (e.g., std::map,
std::multimap, std::set, std::multiset) are built around a
red-black tree data structure [3], which stores a node with
pointers to the left child, right child, and parent nodes for
each element inserted into the container. Due to the inherent
similarity between the containers and their behavior, we
primarily focus our evaluation on std::map, and only briefly
present results for the other container types in Section 4.6
We compare the performance of accessing LLC resident

data structures for NUCAlloc with std::allocator and jemalloc.
std::allocator is the default allocator used by modern Linux
systems (it is used for C++ containers when the allocator
template parameter is omitted). jemalloc is a state-of-the-art
high-performance memory allocator, originally from
FreeBSD, which was designed for efficient operation in
multi-threaded environments [9]. Notably, std::allocator
uses in-band meta-data, wherein the meta-data are stored
next to the allocated data, while jemalloc stores meta-data
separately, making the allocated data contiguous in memory.
By its nature, NUCAlloc ensures cache-line alignment of its
allocations. To ensure a fair comparison, we make sure that
the allocation done by each allocator is aligned to the cache
lines. Because we craft each allocation request to be 64 bytes
in size, jemalloc naturally benefits from cache-line aligned
allocations because it allocates memory in contiguous
addresses. In case of std::allocator where this isn’t the case,
we craft the allocations to be such that every allocation
starts at the cache-line boundary.
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Figure 6: Slice access latency from different CPU cores
measured in clock cycles for the 8-core processor.

We use 2MB huge pages to ensure that the performance
gained by NUCAlloc is not obscured by TLB miss penalties.
The rationale behind using huge pages is not to gain perfor-
mance from fewer TLB accesses but to make the NUCAlloc
gains transparent to the application. Because NUCAlloc
makes allocations pertaining to the closest slice first, it would
naturally require more pages than a NUCA unaware alloca-
tor which would repeatedly make allocations from a given
page. However, NUCAlloc does not waste any segmented
blocks of memory instead storing them in slice specific free-
lists from which subsequent allocations would be made once
the threshold of the closer slices fill up. As such the number
of pages used by both NUCAlloc and a NUCA unaware
allocator would match as the LLC capacity fills up.We ensure
that fewer TLB lookups aren’t the cause of performance
gains, we configure both jemalloc and std::allocator to make
use of 2 MB huge pages as well. To avoid micro-architectural
noise from hardware prefetchers, our micro-benchmark
results are collected with hardware prefetchers disabled.

4.1 NUCA Hit Latency Analysis
The hardware random hashing needs to be undone to
determine the slice number of a given block. Our target is to
utilize the NUCA nature of modern hardware by designing
a specialized memory allocator, which would place the
data onto appropriate cache slices at a finer (cache block)
granularity. To check the feasibility of this approach, we
need to test whether it is possible to lower the LLC access
latency through micro-managed data placement on the LLC.

We design an experiment by creating a linked list of 16,000
64-byte nodes. The total allocation (~1MB) can fit in one LLC
slice (2.5 MB), but not in the local caches (Capacity of L1D
+ L2 = 288 KB). We walk through this list, 5000 times and
measure the clock cycles taken to perform the accesses. The
thread that performs the accesses is pinned to a particular
core. We also set up the CBo counters to monitor the
LLC_LOOKUP event to determine the slices being accessed.
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Figure 7: Slice access latency from different CPU cores
measured in clock cycles for the 12-core processor.

We use the reverse engineered hash function to generate a
pool of 64-byte blocks corresponding to a particular slice. We
then allocate memory for the linked list nodes to evaluate
the access latency of each slice. Because our access pattern
ensures that most accesses miss the L1D and L2 caches, we
measure the latency of accessing an LLC slice as the total
cycles divided by the number of LLC accesses. We repeat this
experiment for many combinations of slices and cores. The
results for the 8-core machine and the 12-core machine are
shown as a heat map in Figure 6 and Figure 7 respectively.

Single balanced ring. The hit latency heatmap of the
8-core processor, depicted in Figure 6, shows two red regions
in the bottom left quarter and top right quarters. These
correspond to slices present on the opposite side of the
processor (Figure 1). The green line is along the diagonal
from the bottom left to the top right, corresponding to the
closest slice. Additionally, each core has at least two slices
which can be accessed with latency under 36 clock cycles.
These observations serve as motivation to design various
strategies of NUCA-aware allocations.
We repeat the experiment to compare our NUCA-aware

allocator, always allocating memory on the closest slice, to
a NUCA-oblivious allocator that uses the posix_memalign
function to allocate memory for the nodes of the linked
list. The rationale behind using posix_memalign is to ensure
that the NUCA-oblivious allocations are cache-line aligned
and the comparisons are fair. For this experiment, we pin
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Figure 8: Single slice latency. Clock cycles for accessing
each node of the linked list 5000 times.

the thread on Core 0 and make NUCA-aware allocations
corresponding to slice 0 with respect to Figure 1.

We observed that NUCA-aware allocations benefited from
24% faster accesses to the elements of the linked list. We
ascertained that the speedup is due to LLC block placement
bymaking sure the L1D and L2 hit andmiss values are similar
for both allocations. The LLC miss values were also verified
to be similar for both allocations. Further, the CBo counters
confirm that NUCA-aware allocator made allocations that
map to slice 0, while the NUCA-oblivious allocations were
spread across the LLC slices. The total LLC accesses for each
of the techniques is about the same, establishing the fact that
the speedup observed is from the block placement in the LLC.

Two unbalanced rings. The heatmap of the 12-core proces-
sor is shown in Figure 7. A 12-core processor supports two
threads per core, having 24 logical CPUs. Each thread run-
ning on a core sees the same hit latency for a particular slice;
for instance, CPU 0 and CPU 12 have similar hit latency val-
ues for different slices. The processor is organized as shown
in Figure 2. Notably, the processor cores are arranged in two
rings. Examining the heatmap for this processor (omitted due
to space limitations), we find that CPUs 0-3 have the least
access latency to the slices on their side of the ring. Slices on
the other side of the same ring see moderate hit latency. As
expected, the slices on the second ring have the worst latency.
CPUs 4-7, on average, observe the lowest LLC hit latency,
because they are flanked by 4 cores on either side. Also as
expected, the slices that are on the same ring have lower hit
latency compared to the slices on the other ring. Specifically,
CPUs 8-11 experience the worst average LLC hit latency,
because they have only 4 slices in the same ring as the core.
Running an experiment that accesses LLC data allocated us-
ing a NUCA-oblivious allocator shows that the average LLC
hit latency in the second ring is approximately 5% higher
than the cores in the middle of the processor (CPUs 4-7).
The LLC access latencies of the processors and the CBo

counters confirm the expected behavior in a NUCA proces-
sor supporting the two motivations of this work. Modern
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Figure 9: LLC misses for different allocation strategies.

processors use NUCA caches, but spread blocks across
the LLC, effectively hiding the NUCA behavior. Reverse
engineering the hash functions allows us to determine the
physical address and slice mapping, granting us control over
block placement. We therefore conclude that it is indeed
possible to control block placement at a fine granularity to
achieve lower latencies on LLC accesses and set out to build
an allocator that leverages these observations.

4.2 Effective Capacity of LLC Slices
We next find the threshold at which allocating on a single
slice begins to exhibit performance degradation. This
threshold is necessary to determine the exact point at which
NUCAlloc must switch from one slice to the next. To find
this threshold, we repeat the earlier experiment involving
a linked list, this time varying the number of elements in
the list. The results are shown in Figure 8.
Because our working set is larger than the capacities of

L1D and L2 combined, almost every access goes to the LLC.
A fully associative LLC slice would theoretically hold up
to 40,960 elements. However, the LLC we study is 20-way
set-associative and we begin to see conflicts earlier. As seen
in Figure 8, the latency sharply increases beyond ~35,000
elements. There is a minor change in slope starting from
~25,000 elements. Noting these observations, we set the
threshold at 30,000 allocations.
To confirm that the threshold prevents LLC misses that

would negatively impact access latency, we measure the
LLC miss counts for Closest One, Closest Two, and Closest
Half near their expected thresholds and compare them to
NUCAlloc. Figure 9 shows the LLC miss trends of the differ-
ent allocation strategies. We observe an exponential rise in
the LLCmiss count forClosest One at ~30,000 allocations. Sim-
ilarly, Closest Two and Closest Half see a steep rise at ~60,000
and ~130,000 allocations, respectively. Notably, NUCAlloc
sees highermiss rates thanClosest Half at 100,000 allocations,
becauseNUCAlloc fills each slice before switching to the next,
seeing more frequent misses as the slice capacity approaches.
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Figure 10: Performance of accessing the elements allo-
cated through std::allocator, Closest One, Closest Two
and Closest Half normalized to jemalloc, shown as a
function of the container size. The total allocation in
this graph is less than one slice’s theoretical capacity.

Closest Half interleaves allocations between four slices,
resulting in a slightly lower number of LLC misses. However,
beyond 130,000 allocations, NUCAlloc still observes fewer
misses due to its ability to use the entire cache capacity.

4.3 Containers Fitting into One LLC Slice
Figure 10 presents our results for different NUCA strategies
with single-threaded applications whose working set fits
within one cache slice. To highlight the differences between
the allocation techniques, we normalize all results to
jemalloc. We measure the performance in terms of clock
cycles to access the elements of the container.
Theoretically, a cache slice can fit 40,960 elements in

non-conflicting cache lines. However, allocation to the same
slice increases the probability of conflicts, and their effect
starts overshadowing the performance gains before reaching
40,000 elements. Figure 10 shows that the performance
of Closest One starts to deteriorate when the number of
elements exceeds 30,000 elements. Until that point, Closest
One outperforms all other allocators.
The Closest Two behavior is similar to Closest One, even

for allocations that fit within one cache slice. Because Closest
Two interleaves allocations among neighboring slices, it has
a much lower chance of LLC conflict misses compared to
Closest One. At the same time, the access latency difference
between the nearest and the neighboring slice is only ~3
cycles (Figure 6). Closest One performs better up to 30,000
elements, at which point performance starts to degrade
sharply and, at 40,000 elements, the performance of Closest
One matches Closest Half . Beyond that point, there is no ben-
efit to using Closest One. Notably, all of the NUCA strategies
have a speedup over both std::allocator and jemalloc.
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Figure 11: Behavior of Closest One, Closest Two and
Closest Half allocation strategies when the container
size exceeds a single slice.

Although Closest One does not appear to have much
performance benefit over Closest Two, while at the same
time benefiting from a larger number of possible allocations,
Closest One is uniquely suited to isolate a slice from the
rest of the LLC. This is particularly useful in multi-threaded
applications that may want to restrict the LLC usage to
a particular region to prevent pollution between threads
pinned to neighboring cores. We further demonstrate these
benefits in Section 4.8.

4.4 Containers Exceeding One LLC Slice
When the capacity of one slice is exceeded, Closest Two
and Closest Half begin to outperform other allocation
techniques. Figure 11 shows the performance characteristics
of various allocators when the slice capacity is exceeded.
Closest Two performs the best once the slice capacity is

exceeded, where Closest One starts experiencing conflict
misses. This trend continues up to approximately 60,000 el-
ements, from where the decline due to conflict misses in the
LLC begins. By 80,000 elements, the theoretical maximum
capacity has still not been reached, but Closest Half already
performs better than Closest Two. Importantly, by 100,000
elements, Closest Two is performing much worse than
NUCA-oblivious allocations by std::allocator and jemalloc.
In contrast, Closest Half experiences conflict misses well

before the theoretical maximum number of elements are
allocated, indicating that NUCAlloc should dynamically
adapt from one strategy to another. A dynamic policy can
benefit from the lower single-slice access latencies of Closest
One, while matching Closest Two and Closest Half beyond
one slice. Finally, we expect a dynamic policy to match the
NUCA-oblivious allocators when LLC capacity is reached.
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Figure 12: NUCAlloc performance on 8-core processor.

4.5 Further Portability Across CPUs
We evaluated NUCAlloc on a third processor, an Intel
E5-2620v4. Like the 8-core processor presented earlier, the
E5-2620v4 has a 20MB LLC divided into 8 slices, but the CPU
micro-architecturally is similar to the 12-core processor,
also having SMT support. We found that the hardware hash
function is unchanged from the earlier results with the
8-core chip. Additionally, this processor allows software to
determine the number of available LLC slices by reading the
CAPID5 register located in the PCI configuration space [17].
In the interest of brevity, we omit the detailed results as they
closely mirror Figure 6 (single ring) and Figure 7 (SMT).

4.6 Differences Across C++ Containers
We tested NUCAlloc with a variety of C++ containers,
including std::map, std::multimap, std::set, std::multiset, and
std::list. Due to the similarity of their internal red-black
tree implementation, std::set, std::multiset, and std::multimap
showed similar speedup in access latencies with up to
12-13% gain in single-threaded performance for the 8-core
processor and 20% gain for the 12-core processor.
std::list is a linked list, similar in behavior to the list that

we used in establishing the feasibility of our work in 4.1. The
stronger dependence of performance on the access latency
results in greater benefits for NUCAlloc when accessing
the elements of a list. A single-threaded traversal of std::list
observes speedups up to 21% for the 8-core and up to 30%
for the 12-core processor for an LLC resident working set.

4.7 Single-Thread Performance
In this section, we compare the dynamic slice selection strat-
egy employed by NUCAlloc to other NUCA allocation strate-
gies: Closest One, Closest Two, and Closest Half , as well as to
NUCA-oblivious allocation with std::allocator and jemalloc.
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Figure 13:NUCAlloc performance on 12-core processor.

Figure 12 shows the speedup of NUCAlloc in a single-
threaded scenario on the 8-core processor. In the beginning,
NUCAlloc behaves similarly to Closest One, allocating
memory blocks corresponding to the closest slice. Once
the slice threshold is reached, NUCAlloc transitions to the
next slice, matching the Closest Two performance. When
the subsequent slice’s threshold is reached, NUCAlloc
transitions to the third and then fourth slice, exhibiting a
performance increase comparable to Closest Half .

Beyond this point, the speedup gradually decreases, as the
allocations start to correspond to the slices on the other side
of the ring. By 240,000 elements, the slice threshold parame-
ter of all the slices is reached, and NUCAlloc starts spreading
allocations across the LLC by using round-robin selection
among the slices’ free-lists. Eventually, the performance char-
acteristics of NUCAlloc match a NUCA-oblivious allocator.
Figure 13 shows the same experiment on the 12-core

processor, having a similar trend. Due to the larger size
of LLC in this chip, NUCAlloc continues to perform better
beyond 320,000 elements. Moreover, the higher core count
results in more potential to leverage the slice proximity,
which also results in a greater speedup.

For single-threaded applications with LLC resident work-
ing sets, NUCAlloc always outperforms NUCA-oblivious
techniques and reaches a peak speedup of 13% and 20% on
the 8-core and 12-core processors, respectively.

4.8 Multi-Thread Performance
To evaluate the effectiveness ofNUCAlloc in a multi-threaded
application, we pin a thread on each core of the 8-core
processor and measure the clocks cycles for simultaneously
accessing LLC resident data. Each thread works on its own
copy of the data and performs a pseudo-random sequences
of accesses to its data. The results are shown in Figure 14.
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Figure 14: Performance comparison of various alloca-
tors for accesses from eight threads running on differ-
ent cores of an 8-core processor.

NUCAlloc restricts each thread to its closest slice and
avoids the thread accessing other cache slices, mimicking the
behavior of Closest One. Restricting the threads to their local
slice achieves isolation, preventing one thread from thrash-
ing the others’ data. We observe that NUCAlloc benefits
from this, while the NUCA-oblivious allocators experience
more frequent LLC misses. NUCAlloc achieves 15% speedup
in this scenario, 2% higher than the single-threaded case.
We also performed similar tests with four threads, such that
two threads run on each side of the chip. NUCAlloc behaves
like Closest Two before performance starts to degrade.

4.9 NUCAlloc on Traditional Benchmarks
A specialized allocator is best suited for applications that can
leverage its specific strengths. Inherently, a specialized allo-
cator is not applicable as a replacement of a general purpose
allocator.NUCAlloc is ideally suited for single-threaded appli-
cations that perform many small allocations, with a working
set that occupies a significant fraction, but not the entire, last-
level cache. NUCAlloc also works well for multi-threaded
applications that have a balanced workload and whose work-
ing sets are blocked and specifically configured to fit in the
last-level cache. Conversely, NUCAlloc is not useful for appli-
cations whoseworking sets dramatically exceed the last-level
cache capacity or whose working sets fit into the L1 caches.

In the previous sections, we demonstrated the behavior of
NUCAlloc for micro-benchmarks. This, however, naturally
leads to the criticism that NUCAlloc is applicable only to
a limited set of cases and not to real-world applications.
In fact, any application for which NUCAlloc is a good fit
would necessarily be one that is designed for a very specific
task and tuned exactly for NUCAlloc, leading to the same
criticism. To address this concern, we identified several
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Figure 15: Speedup observed by NUCAlloc. Perfor-
mance is measured in terms of the wall clock time for
Xalanc, throughput for Masstree and 95th percentile
tail latency for Sphinx.

well-established benchmark applications whose design is
completely agnostic of the memory allocator used, that can
nonetheless benefit from NUCAlloc. Crucially, rather than
carefully analyzing these workloads and identifying specific
places in their code where the use of NUCAlloc would be
helpful, we used LD_PRELOAD to replace malloc() with a
wrapper that invokes NUCAlloc for all small allocations
without any source-level application changes. As a result,
the potential performance benefits shown in Figure 15 are a
lower bound of what can be achieved if the applications were
re-engineered for NUCAlloc. Even with this less-than-ideal
setup, we observe measurable performance benefits when
using NUCAlloc for SPEC CPU2017 Xalanc, TailBench
Masstree, and Sphinx (TailBench[21] and SPEC CPU2006).
Importantly, these numbers are not hypothetical; this is
actual “free” performance improvement on off-the-shelf
Intel hardware across the architectures we study.

5 RELATEDWORK
There is a rich history in the literature of various cache
pollution and cache space management schemes that classify
memory accesses and control how the cache should behave
depending on the class of access being performed [7, 8, 19,
23, 25, 26, 30]. These techniques tend to work at coarse gran-
ularity, dividing the memory space into regions and either
dictating or hinting how the hardware should handle cache
blocks that fall within the given region. To minimize over-
heads and increase practicality, hardware techniques work
on large memory regions. Software techniques also work
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on large regions, typically classifying and controlling cache
behavior at OS-page granularity. These approaches manage
the entire cache, treating the cache as monolithic, but
tailoring its behavior with respect to placement and eviction.

Kaseridis et al. [20] developed a NUCA aware scheme that
monitors thememory access pattern to dynamically partition
NUCA banks among the cores. This technique effectively
prevents destructive interference and significantly reduces
the miss rate by using the proposed specialized hardware.
ROCS [27] presented a technique for software manage-

ment of cache capacity, which used part of the cache as a pol-
lution buffer. Cache-unfriendly pages would be steered into
the pollution buffer in the LLC, avoiding interference with
the rest of the cache blocks. Although separating polluting
accesses was not the basis our work, the fine-grained alloca-
tion and placement schemes employed by NUCAlloc can be
extended to implement a ROCS-like system that explicitly
manages which region of the cache will receive each block.
Similar in spirit, SRM-Buffer [7] modified the buffer

caches in operating systems to divide the LLC into sets.
Each set received its own region to which cache pollution
is limited. This technique also works on a page granularity
and targets cache interference and pollution.
A seminal work by Cho et al. proposed a joint OS and

microarchitecture approach of cache management by
introducing the concept of virtual multicores (VMs) [5]. In
this approach, cores and their adjacent caches are grouped
together into virtual multicores, reducing the access latency
from each group of cores to their caches. Running different
applications in different virtual multicores allows them
to receive a portion of the capacity of the on-chip cache,
but they can access it without interference from the
other cores and at lower latency. This cache management
technique has similarities to our work, as it partitions the
cache capacity and provides lower access latency to each
partition from its corresponding cores. Unlike our work, this
technique requires complex hardware support for virtual
multicores and a modified operating system to perform
space management at the OS-page granularity.

In a related study, Beckmann et al. [2] divided large caches
into regions that appear to software as smaller caches. Cache
capacity and latency are controlled by reconfiguring the
cache partitions and their physical location on the processor.
Unlike our work, a large part of this proposal focused on
the movement of both computation and data, whereas we
pin computation threads to cores.

Building on the observation of thewire-delay challenges of
large on-chip caches, NUCA caches were proposed to replace
monolithic caches with arrays of smaller cache slices [12, 22].
These works proposed static and dynamic blockmanagement
that leveraged the non-uniform latencies within the cache

for performance gains. Although the complex hardware
mechanisms proposed in these works have not yet made
it into commercial products, the statically mapped NUCA
caches are built by processor vendors today, albeit with a
hash function that spreads blocks randomly across the cache
slices. Our work leverages the NUCA nature of the cache for
performance benefits by undoing the hashing and exerting
fine-grained control over the placement of cache blocks.
Farshin, Roozbeh, et al. [10] demonstrated slice-aware

cache management with Intel DPDK network I/O, showing
significant performance improvement on network applica-
tions by steering placement of packet headers into cache
slices of the cores that process those packets. Similar to
our work, such placement leverages the underlying NUCA
organization of the cache. However, NUCAlloc takes a more
generic approach to the opportunities offered by modern
NUCA caches and provides a general-purpose memory
allocator that can transparently improve the performance of
small data structures by allocating data in the lowest-latency
locations and then expanding to higher-latency locations
as data structures grow.

Finally, R-NUCA [11] proposed placing blocks belonging
to a thread onto the nearest cache slices to the core on which
the thread runs, relying on the OS-page granularity classifica-
tion to dictate how each block is cached. Much of the benefit
of R-NUCA came from managing instruction block place-
ment for server applications and replicating them in multiple
slices. Our cache allocation policy is similar to this in spirit,
but rather than separating instructions from data, we place
individual data structures. Unlike R-NUCA, NUCAlloc works
on off-the-shelf hardware and does not require hardware
modification. Moreover, we perform cache placement trans-
parently through the memory allocator, doing so at cache-
block granularity rather than at the OS-page granularity.

6 CONCLUSIONS
In this work, we developed a systematic way to leverage the
NUCA caches of multiple generations of Intel processors
to improve software performance. We presented NUCAlloc,
a specialized memory allocator that performs fine-grained
block placement in the last level cache (LLC), which takes
advantage of the NUCA architecture and the LLC slice
proximity to the cores. We prototyped a dynamic slice
selection technique used by NUCAlloc, comparing it with
other strategies of NUCA allocation, showing that the ap-
proach is effective for a wide range of sizes of LLC-resident
C++ containers. NUCAlloc improves performance by up to
20% for single-threaded and multi-threaded applications
when accessing commonly used C++ STL containers on
off-the-shelf processors, requiring no modification to the
hardware and being transparent to the software application.
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