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Simulating a single CPU is typical-
ly thousands of times slower than the actual
CPU. Full-system multiprocessor simulation,
which involves simulating many CPUs,
peripherals, and other system components on
a single host, compounds the slowdown by
another factor of 10 to 100. In other words,
multiprocessor simulation is up to a million
times slower than real hardware. This speed
difference leads to prohibitively long turn-
around times for simulating complete com-
puter benchmarks—in particular,
multiprocessor server benchmarks. (These
benchmarks are often longer than their
uniprocessor counterparts to compensate for
nondeterministic thread scheduling and for
perturbation effects from the operating sys-
tem and I/O that can lead to significant short-
term performance variations.)

Statistical sampling makes full-system mul-
tiprocessor simulation feasible by reducing
simulation times by roughly a factor of
10,000. Sampling provides such drastic reduc-
tions by exploiting the homogeneity of appli-
cation performance—application behaviors
that repeat millions of times. By applying rig-

orous statistical methods, we can identify the
minimal sample that assesses application per-
formance with a desired confidence level. Our
first work on this topic, Smarts, investigated
statistical sampling of the System Performance
Evaluation Cooperative (SPEC) CPU2000
benchmarks on uniprocessor simulators.1

That work demonstrated that the nature of
performance variability across measurement
granularities favors a large sample of thou-
sands of brief execution windows to minimize
total simulation.

The primary challenge in realizing sam-
pling’s drastic acceleration lies in rapidly con-
structing the correct initial state for the large
number of fine-grained performance mea-
surements; we call this the warming problem.
Our first solution to this problem uses a sim-
plified simulation model to maintain archi-
tectural and selected microarchitectural state
while fast-forwarding between measurements.
Although this approach provides accurate
results,1,2 it does not realize the full potential
of statistical sampling: The time spent fast-
forwarding (making up 99 percent of experi-
ment turnaround time) grows with
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benchmark length. Moreover, this warming
approach precludes using the parallelism of
computation clusters or multiprocessor sim-
ulation hosts to reduce turnaround time.
Finally, the Smarts sample design and warm-
ing approach do not address multiprocessor
simulation, where performance can depend
heavily on which program phases execute con-
currently on different CPUs.

Through our SimFlex research project, we
have developed a new solution to the warm-
ing problem that decouples experiment turn-
around time from benchmark length. In our
enhanced warming solution, we store
reusable, warm architectural and microarchi-
tectural state in checkpoints. Live points, our
storage-efficient implementation of check-
point-based sampling for uniprocessor appli-
cations, allow highly accurate simulation of
SPEC CPU2000 benchmarks in an average
of only 91 seconds.3 Moreover, checkpoint-
based sampling lets individual performance
measurements be independent. Thus, a
1,000-checkpoint sample allows 1,000-way
simulation parallelism. Checkpoint indepen-
dence also enables further sampling opti-
mizations to reduce turnaround time, such as
online results reporting and matched-pair
sample comparison.

With our latest work, we extend the
Smarts sample design to a critical class of
multiprocessor server workload. We provide
a new sampling population definition for
throughput applications—the server side of
client-server applications, such as the Trans-
action Processing Performance Council
(TPC) database and SPECweb workloads.
We leverage the random nature of transac-
tion arrivals in these applications to construct
a meaningful random sample despite deter-
ministic simulation models. Furthermore, to
obtain tractable samples for these applica-
tions, we measure and validate fine-grain
progress metrics that are proportional to
transaction completion rates. We describe
our experiences with the SimFlex methodol-
ogy using our full-system multiprocessor
simulator, Flexus, and our multiprocessor
checkpoint implementation, flex points. Flex
points enable a multiprocessor simulation
turnaround of only 10 to 100 CPU hours
rather than the 10 to 20 CPU years required
without sampling.

Smarts: Statistical sampling of SPEC
CPU2000

The SPEC CPU2000 benchmark suite
consists of 26 computation-intensive desktop
and engineering applications, used primarily
for uniprocessor performance comparisons.
Our goal was to apply statistical sampling to
accelerate the simulation of this benchmark
suite while still producing accurate and reli-
able performance estimates.

Statistical sampling of simulation esti-
mates the performance of benchmark appli-
cations (in cycles per instruction, energy per
instruction, transaction throughput, and so
on) on a simulated microarchitecture from
measurements of a sample of the applica-
tion’s dynamic instruction stream. By choos-
ing the measured sample according to
established statistical sampling methods,
simulation sampling can rely on statistical
measures of confidence to validate that esti-
mated results represent the full application’s
behavior.

Today’s applications, as exemplified by
SPEC CPU2000, exhibit homogeneous exe-
cution phases that can last for millions of
instructions. Consequently, statistical sam-
pling can reduce the total simulation effort
required to estimate the performance of such
applications. However, two broad challenges
prevent the easy application of sampling to
software-based microarchitecture simulators:

• using sampling theory to measure a min-
imal, but representative and unbiased
sample that produces accurate estimates;
and

• overcoming the practical constraints
imposed by software-based simulators
and processor architectures, such as fast-
forwarding between measurements and
warming to eliminate cold-start bias.

Sample design
To achieve the fastest measurement of a

sample for a given accuracy target, we must
optimize several sampling parameters. The
sample size, n, is the number of measurements
that will be taken. The required sample size is
proportional to the square of the target met-
ric’s (x) coefficient of variation Vx. For exam-
ple, for 95 percent confidence (2.0 standard
deviations) of ±5 percent error, 
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(1)

The size of each measurement, called a sam-
pling unit, greatly affects the selection of n
because larger sampling units average out
short-term variation in performance, reduc-
ing Vx and requiring fewer measurements for
an accurate estimate. To determine the best
combination of n and sampling unit size, we
need to know

• Vx, which we can obtain with preliminary
samples, and 

• the warming strategy to be used.

Warming
Although statistics provides us with proba-

bilistic guarantees that estimated results are
representative, these guarantees do not ensure
that estimated results are error-free. Errors
introduced into the individual measurements
of a sample (for example, by the measurement
methodology) are called bias, and are not
accounted for by statistical confidence calcu-
lations. In simulation sampling, the most
common cause of bias is the cold-start effect
of unwarmed microarchitectural structures.
Examples include assuming empty caches that
result in incorrectly low performance esti-
mates, and empty interconnect networks that
produce overly optimistic performance.

The relationship between performance vari-
ability and measurement granularity leads to

a sampling framework that minimizes instruc-
tions simulated by measuring a large number
of brief simulation windows—for example,
10,000 windows of 1,000 instructions each.
Thus, the primary design challenge lies in
devising a strategy for constructing accurate
initial state rapidly. For each measurement,
the simulator must construct both architec-
tural state (such as register and memory val-
ues) and microarchitectural state (such as
pipeline components and the cache hierarchy)
to avoid the bias of a cold start.

Functional warming
Figure 1 shows Smarts’ two-tiered strategy

for constructing every measurement’s initial
state, a combination of detailed warming and
functional warming. Before each measure-
ment, Smarts warms microarchitectural struc-
tures for which current state reflects the
history of a small, bounded set of recent
instructions—such as the reorder buffer or
issue queue. This takes place through detailed
warming: brief simulation (for example, a few
thousand instructions) with the complete
detailed performance model sufficient to
warm such small structures.

The second component of the Smarts
warming strategy, functional warming,
addresses state updates between two mea-
surements. Smarts functionally simulates each
instruction to update architectural state. In
addition, Smarts continuously updates struc-
tures with microarchitectural state that have
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(live points or flex points)
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Live point
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142 KBytes
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Registers, TLB, branch predictor, cache tags, touched-memory data

Simics checkpoint, branch predictor, cache and directory tags, complete memory data
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Measurement
Detailed warming

Functional warming
Checkpoint load

Figure 1. Warming approaches for simulation sampling. Checkpointed warming greatly accelerates simulation sampling while
maintaining the same accuracy as full warming. We developed live points for uniprocessor sampling and flex points for multi-
processor sampling.



long or unpredictable warming require-
ments—caches, translation look-aside buffers
(TLBs), and branch predictors. These struc-
tures sometimes require millions of instruc-
tions to warm, and cannot be warmed
sufficiently by a brief, detailed warming peri-
od. Caches in particular have unpredictable
requirements; functional warming eliminates
the need to determine these requirements.

Smarts results
We evaluated the Smarts framework in the

context of a wide-issue, out-of-order super-
scalar simulator running the SPEC CPU2000
benchmark suite. We created SmartSim, an
implementation of Smarts, by modifying Sim-
pleScalar 3.0’s sim-outorder and Wattch 1.02
to support systematic sampling. The results of
our evaluations demonstrated the following: 

• SmartSim achieves an actual average
error of only 0.64 percent on cycles per
instruction (CPI), and 0.59 percent on
energy per instruction, by simulating
fewer than 50 million instructions in
detail per benchmark. A recent survey of
simulation sampling approaches corrob-
orates that the Smarts simulation sam-
pling approach provides the highest
estimation accuracy.2

• By simulating exceedingly small fractions
of complete benchmarks, SmartSim with
functional warming reduces simulation
time by 35 to 60 times relative to full-
stream simulation with sim-outorder.

Live points: Checkpoint-based sampling
Although functional warming enables accu-

rate performance estimation, it limits Smarts’
speed, occupying more than 99 percent of
simulation runtime. Functional warming
dominates simulation time because Smarts
must functionally simulate the entire bench-
mark’s execution, even though it will simulate
only a tiny fraction of the execution using
detailed microarchitecture timing models.

The second shortcoming of the original
Smarts framework is that functional warming
requires simulation time proportional to
benchmark length rather than sample size. As
a result, the overall runtime of a Smarts exper-
iment remains constant even when we reduce
the measured sample size—for example, by

relaxing an experiment’s statistical confidence
requirements. Moreover, functional warming
time will increase with the advent of new
benchmark suites, such as SPEC CPU2006,
that lengthen benchmarks to scale with hard-
ware performance improvement.

Live points provide an alternative to func-
tional warming that reduces simulation turn-
around time without sacrificing accuracy. A
live point stores the necessary data to recon-
struct warm state for a simulation sampling
execution window. Although modern com-
puter architecture simulators frequently pro-
vide checkpoint creation and loading
capabilities,4 current checkpoint implemen-
tations have two limitations: 

• They don’t provide complete microar-
chitectural model state.

• They cannot scale to the required check-
point library size (about 10,000 check-
points per benchmark), which would
require multiple terabytes of storage.

We address the first limitation by storing
only selected microarchitectural state in live
points, an approach we call checkpointed
warming. The key challenge of checkpointed
warming lies in storing microarchitectural
state such that live points can still simulate the
range of microarchitectural configurations of
interest. Fortunately, with the exception of the
branch predictor and memory hierarchy, most
microarchitectural state can be reconstructed
dynamically with minimal simulation (a few
thousand instructions of detailed warming),
and thus need not be stored. For the excep-
tional structures, researchers can often place
limits on the configurations of interest (for
example, through trace-based studies). We’ve
designed checkpointed warming to reproduce
these structures under user-specified limits.

We reduce the size of conventional check-
points by three orders of magnitude through
storing in live points only the subset of state
necessary for limited execution windows, an
approach we call live state. Live state exploits
the brevity of simulation sampling execution
windows (thousands of instructions) to omit
most state. Figure 1 illustrates how live points
replace functional warming and details live-
point contents.

For an eight-way out-of-order superscalar
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processor, live-point simulation sampling is
more than 250 times faster than the original
Smarts framework (on average, 91 seconds per
benchmark) while maintaining the same esti-
mated CPI error (±3 percent with 99.7 per-
cent confidence). Although functional
warming produces an aggregate of 36 Tbytes
of state while sampling the SPEC CPU2000
suite, a gzip-compressed SPEC CPU2000
live-point library supporting 1-Mbyte caches
requires only 12 Gbytes of storage.

Sampling multiprocessor throughput
applications

Uniprocessor benchmarks that have a finite
length, such as SPEC CPU, make selecting a
uniform sample easy. In a uniform sample,
each portion of the dynamic instruction
stream must have an equal probability of being
measured. When the benchmark’s length is
known, we can collect such a sample using sys-
tematic or random sampling. The benchmark’s
complete dynamic instruction stream is the
population from which we take samples.

In multiprocessor benchmarks, we cannot
define the population in terms of the dynam-
ic instruction stream. Instruction interleaving
across processors varies over multiple bench-
mark runs and can cause changes in the
dynamic instruction stream as races (for locks,
for example) resolve differently on different
runs. When measuring on real hardware, we
account for variability in interleaving by run-
ning a benchmark repeatedly or for an extend-
ed time window to exercise the possible
interleavings. Hence, we define the population
as the set of all reachable instruction inter-

leavings and their occurrence probabilities. For
general multiprocessor applications, it isn’t
clear how to construct this population using a
simplified (often deterministic) simulation
model like that used in live-point creation.

Fortunately, the largest commercial multi-
processor market is for servers that run
throughput applications—such as online trans-
action processing (OLTP), decision-support
queries, and Web serving—for which we can
construct the population of interleavings effi-
ciently. In throughput applications, a server
process satisfies a sequence of arriving trans-
actions, queries, or requests. (For the remain-
der of this article, we use the term transaction
to include all of these.). Throughput applica-
tion benchmarks consist of long (or unbound-
ed) sequences of randomly arriving
transactions. Because transactions arrive ran-
domly, a single run will cover the range of pos-
sible transaction interleavings. We draw our
sample by selecting measurement locations
over a time window that has proven reliable
on real hardware—for example, about 30 sec-
onds.5 Figure 2 depicts sampling for a
throughput application.

We typically report the performance of
throughput applications in terms of transac-
tions per second. With our definition of the
population in hand, we could naively sample
this metric. However, transactions are too long
for a simulator to execute, and their comple-
tion rate has a high coefficient of variation.
Figure 3 plots the coefficient of variation for
transaction throughput, Vtransaction, for several
applications measured on a real four-way mul-
tiprocessor system. We include IBM DB2
running the TPC-C OLTP benchmark with
a 6.4-Gbyte database in two configurations
(on disk and memory-resident in a RAM
disk), and an Apache Web server running
SPECweb99. Points on the plot correspond
to sampling units of a logarithmically increas-
ing number of transactions (labeled every fac-
tor of 10), with the mean time to complete
those transactions indicated on the x-axis.
Transactions’ high variance and long runtimes
imply that sampling transaction throughput
would require simulating seconds to minutes
of real CPU time to obtain high confidence
results. Seconds of real time, however, trans-
late to years of simulation time on a full-sys-
tem multiprocessor simulator.
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To address this problem, we seek an alter-
native performance metric that is proportion-
al to transaction throughput but has lower
variance at smaller measurement sizes.
Although the time to complete a particular
number of transactions varies greatly, the
amount of work the database or Web server
process must perform to complete a certain
transaction type does not vary. As a result, the
rate at which user-mode instructions complete
is linearly proportional to transaction through-
put. Hankins et al. first observed this linear
relationship running the TPC-C benchmark
on Oracle,6 and we have found that this result
applies across throughput applications. Figure
4 shows that the number of user instructions
per transaction remains constant despite a
transaction throughput that varies by a factor

of 2 as we vary benchmark configuration. This
relationship holds because when applications
are not making forward progress, they yield to
the operating system (for example, to the oper-
ating system idle loop or spin loops in operat-
ing system locking primitives). 

The linear relationship between user-instruc-
tion throughput and transaction throughput
lets us sample user-instructions per cycle (U-
IPC) to assess transaction throughput. We
define U-IPC as the number of user-mode
instructions that commit divided by all mea-
sured cycles. The commonly used metric of
instructions per cycle cannot be used because it
is not proportional to transaction throughput,
as it includes many system instructions that do
not contribute to forward progress. Sampling
U-IPC is advantageous because the variance of
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U-IPC is lower than that of transaction
throughput at far smaller measurement sizes.
Thus, we can simulate shorter sampling units
while achieving the same confidence. Figure 5
plots the coefficient of variation for U-IPC
across a range of measurement sizes. Using U-
IPC as the target metric saves three orders of
magnitude in simulation time over using trans-
action throughput.

Flex points
Our full-system simulation infrastructure,

Flexus, builds on top of Virtutech Simics, a
commercially available computer architecture
simulation tool.4 Simics emulates a complete
multiprocessor computer system, including
all peripheral devices, and is capable of boot-
ing and executing unmodified commercial
software. However, Simics provides only func-
tional simulation; it does not attempt to
model the passage of time accurately. Flexus,
which furnishes Simics with microarchitec-
tural hardware and timing models, can model
uniprocessor, chip multiprocessor, and dis-
tributed-shared-memory multiprocessor sys-
tems at various levels of timing fidelity,
ranging from functional warming (cache and
branch predictor state only) to detailed timing
of superscalar out-of-order processor cores.7

In its most detailed mode, each CPU that
Flexus simulates is as much as 100,000 times
slower than actual hardware. However, Flexus’
functional warming mode is only 100 to
1,000 times slower than hardware, within a

factor of 10 of Simics’ top speed. Because of
this enormous performance gap, simulation
sampling is essential to meaningful perfor-
mance evaluation of commercial applications.

To support efficient sampling, we integrate
our checkpointed-warming approach with Sim-
ics’ native capability of storing architectural state
checkpoints. We store microarchitectural struc-
tures similar to those we store in live points, such
as caches and branch predictors, along with the
coherence directory state. We call these aug-
mented Simics checkpoints flex points.

As with live points, we generate flex points
rapidly by using a simplified simulation model.
To produce a valid sample, we require the sim-
plified model to produce the same population
(probability distribution of interleavings) as
detailed timing simulation. However, some
multiprocessor applications adapt program
behavior to their performance, which can lead
to different populations. We have not observed
differing populations due to adaptation in the
workloads we study when the CPUs are fully
saturated under both timing models.

Unfortunately, we cannot employ live state
to optimize the storage requirements of flex
points. First, we rely on Simics to save and
restore architectural state. Second, unlike
uniprocessor applications, the instruction
stream of multiprocessor applications depends
on precise timing, such as the outcome of a data
race. Therefore, it is not possible to identify the
instruction stream of a timing-accurate simu-
lation through functional warming, which is
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necessary for live state. However, we do exploit
Simics’ ability to store only the change in mem-
ory and disk state between consecutive flex
points to minimize storage requirements.

As with our uniprocessor approaches, we use
a brief detailed simulation period to refresh
microarchitectural structures whose state the
flex points do not store. However, because of
the larger and more complex queues in multi-
processor systems (for example, queues in the
interconnection network), analysis of worst-
case detailed warming requirements is more
challenging than in uniprocessors. Neverthe-
less, these queues’ warming requirement dif-
fers fundamentally in time scale from caches
because the history reflected in a queue’s state
cannot persist indefinitely as it can in a cache.
The short time scale over which queues warm
induces a steep slope in cold-start bias that we
can detect empirically.

Cold-start bias manifests as a correlation
between performance metrics such as U-IPC
and how far simulation has progressed from
the initial state captured in a flex point. Figure
6 plots U-IPC against elapsed cycles for an
example application. Each bar on this graph
shows the U-IPC for contiguous 10,000-cycle
sampling units averaged over a sample of 50
flex points. The x-axis indicates the offset of
the sampling units from a flex-point load. If
there were no cold-start bias, all bars would be
approximately the same height. However, the
first three bars (from the left), corresponding
to the first 30,000 cycles of simulation from
each flex point, show a clear positive perfor-

mance bias. The caches become warm imme-
diately upon the load of a flex point, but
queues in the interconnection network and
within the processor cores are initially empty,
which, in this case, leads to higher than aver-
age performance at first. For each new combi-
nation of workload and system configuration,
we examine plots like Figure 6 to determine
an appropriate detailed warming interval. The
OLTP benchmark in this example requires at
least 30,000 cycles of detailed warming after
the load of each flex point.

The SimFlex experimental procedure
Our experimental procedure is effective for

uniprocessor and multiprocessor benchmarks,
and several optimizations reduce experiment
turnaround time.

Preparing a new workload
To prepare a workload for study, we must

investigate its performance variability to design
an optimal sample—one that minimizes total
simulation for a desired confidence level. Then
we construct a live-point or flex-point library
for the optimal sample. The following steps
detail how we construct these libraries.

1. Create preliminary sample of live points or
flex points. First, we construct a 30-point
preliminary sample, which we use to
characterize the application’s variability
and warming requirements. A 30-point
sample is insufficient to provide high-
confidence simulation results, but typi-
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cally provides a good estimate of target
metric variance. 

2. Determine detailed warming requirement.
We measure the preliminary sample for
intervals several times longer than our
expected detailed warming at a measure-
ment granularity several times finer than
our expectations for sampling unit size.
Using these extended, fine-grained mea-
surements, we perform the empirical
warming analysis illustrated in Figure 6.
Although this analysis is specific to both
microarchitecture and workload, we find
that detailed warming requirements tend
to vary little and depend on only a few
key microarchitecture parameters (such
as store buffer size and memory con-
troller queue depths).

3. Determine optimal sample design. Once
we have identified a detailed warming
interval, we determine the best sample
design. We estimate sample size for var-
ious sampling unit sizes by summing the
data from step 2 to construct various unit
sizes, and then calculate coefficients of
variation across the preliminary sample.
We can then use equation 1 to compute
sample size for any confidence. The opti-
mal sample design minimizes the product
of sample size and the sampling unit size
plus warming interval.

4. Create live-point or flex-point library. With
a desired sample size in hand, we can now
launch live-point or flex-point creation
to spread the final sample over a known-
representative execution interval (such as
30 seconds) or the complete execution of

fixed-length benchmarks, such as SPEC
CPU2000.

The live-point or flex-point library is now
ready for experimentation. If we drastically
alter microarchitecture configuration, we
repeat steps 2 and 3 with a subset of the library
to ensure that warming requirements and the
optimal sampling unit size have not changed.

Optimizations
When using a live-point or flex-point

library, we can apply several optimizations to
further reduce the turnaround time of a par-
ticular simulation experiment.

Parallel simulation. Each live point or flex
point can be simulated independently. Live-
point and flex-point independence allow mas-
sive simulation parallelism over many host
machines (up to the sample size, typically
hundreds or thousands of points), reducing
the overall time to obtain results.

Online results. Live-point and flex-point inde-
pendence affords us a second opportunity to
improve our experimental methodology. Each
complete library forms an unbiased uniform
sample of a workload. A randomly selected
subset of a library also forms a uniform sam-
ple. Thus, if we process points in a random
order, after each point is simulated, the points
processed thus far form an unbiased sample
of the full workload. We can use this proper-
ty to provide a continual update of estimated
results as points are processed.3,8 Figure 7 illus-
trates how a mean estimate converges and
confidence intervals tighten as we process
additional live points.

Matched-pair sample comparison. Many com-
puter architecture studies compare an experi-
mental design against a base case. In such
studies, relative rather than absolute perfor-
mance is the key evaluation metric. Frequent-
ly, the change in performance from design A
to design B varies less than the absolute per-
formance of either design. Figure 8 illustrates
this concept with live points. Each vertically
aligned pair of points in Figure 8a represents
performance data for the same sampling unit
measured under two microarchitecture designs.
Figure 8b plots the performance deltas for each
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sampling unit, using the same vertical scaling.
We can exploit the reduced variability of

relative performance through a sampling
procedure called matched-pair sample com-
parison,3,9 by which we measure the same
points for both designs and then build a con-
fidence interval directly on the delta perfor-
mance observed at each point. The reduced
variability lets us achieve the same confidence
on relative performance with a smaller sam-
ple than required for absolute performance
estimates.

Evaluation
Tables 1 and 2 summarize our experiences

using the SimFlex methodology to estimate
performance of both SPEC CPU2000 and
commercial multiprocessor applications. (We
describe our experiments with SPEC
CPU2000 fully elsewhere.3) The multiproces-
sor simulation results come from our investi-
gations of spatial memory streaming (SMS), a
hardware mechanism designed to stream spa-
tially correlated data from main memory and
secondary caches to a processor’s primary cache
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Table 1. Sampling parameters for simulation sampling experiments.

Application Detailed warming Sampling unit size Target confidence interval (%)
SPEC CPU 2,000 instructions 1,000 instructions 99.7 ± 3
Multiprocessor applications* 100,000 cycles 50,000 cycles 95 ± 5

* Multiprocessor applications are OLTP (DB2), OLTP (Oracle), Web (Apache), and Web (Zeus).

Table 2. Simulation sampling with SimFlex.

Absolute                                        Typical relative 
                 performance estimate              performance estimate

Simulation
time Live-point

Runtime without Simulation library  Typical Simulation 
on real  sampling Typical time size sample time 

Application hardware (CPU yrs.) sample size (CPU hrs.) (Gbytes) size (CPU hrs.)
SPEC CPU 1.5 hrs. 0.6 8,816* 0.025* 12 3,511* 0.01*
OLTP (DB2) 30 s. 10-20 301 39 28 193 25
OLTP (Oracle) 30 s. 10-20 100 25 4 30 7
Web (Apache) 30 s. 10-20 774 140 74 91 17
Web (Zeus) 30 s. 10-20 289 58 19 183 37

* Per reference input (mean). There are 45 reference inputs in the SPEC CPU2000 suite.



ahead of explicit processor requests.10 These
experiments model a 16-way, distributed-
shared-memory multiprocessor loosely based
on the HP GS1280 and Compaq Piranha
designs. The relative comparison contrasts a
system with SMS hardware to a base system.
Our commercial applications are scaled to use
10-Gbyte data sets. (For complete details of the
experiments, system models, and workload
configurations, see our latest work.3,10)

Simulation without sampling is simply
infeasible, requiring CPU years to provide a
high probability of accurate results. In con-
trast, the SimFlex methodology enables high-
confidence estimates of application
performance in minutes for SPEC CPU2000
and with only a few CPU days for commercial
applications. Matched-pair comparison fur-
ther reduces turnaround time by up to a fac-
tor of 7 for design comparison experiments.
By parallelizing simulations on a compute
cluster, we can complete even multiprocessor
experiments in only a few hours.

Unfortunately, because flex points are built
atop Simics’ checkpointing mechanism, each
flex point must include either a complete snap-
shot of system state, or delta images of memo-
ry and disk state from another flex point. These
Simics checkpoints require from 10 Mbytes to
200 Mbytes. As a result, a flex-point library’s
disk space requirements are high—as much as
74 Gbytes. However, even on real systems,
commercial applications have high disk space
requirements (more than 25 Gbytes for a 100-
warehouse TPC-C installation). Flex-point
library storage requirements are well within the
capabilities of modern high-capacity disks.

Further sampling optimizations
Are there alternative sampling methodolo-

gies or optimizations that we could apply to fur-
ther reduce SimFlex’s simulation time or storage
requirements? Using representative sampling
and considering multiple execution paths from
one flex point offer two interesting possibilities.

Representative sampling
Our proposal uses a uniform sampling

approach that takes measurements randomly
or systematically from the instruction stream.
However, we might reduce the required
amount of measurement if we can identify
low-variance program phases.11 Sampling

approaches that choose measurement loca-
tions according to some selection criteria are
called representative sampling.

Hamerly et al.12 study program phase identi-
fication for representative sampling with Sim-
Point, which relies on a clustering algorithm to
identify instruction stream regions that have sim-
ilar basic-block occurrence frequencies. SimPoint
selects measurement locations from each pro-
gram phase identified by clustering basic-block,
relative-frequency vectors. This approach can-
not achieve the high level of accuracy and relia-
bility of statistical sampling. However, SimPoint
does not require a warming strategy as carefully
calibrated as SimFlex because it uses fewer, but
larger, measurements, which amortize bias. Sim-
Point is most effective on uniprocessor simula-
tions, for which its typical IPC error, between 1
percent and 10 percent, is acceptable.

Uniform sampling is simpler in theory than
representative sampling, which becomes criti-
cal when sampling multiprocessor benchmarks.
Researchers have not yet determined how to
profile multiprocessor applications to effectively
identify program phases that can represent the
complete execution. Our SimFlex methodol-
ogy does not require program phases to be iden-
tified, and therefore can be applied to both
uniprocessor and multiprocessor applications.

Multiple execution paths from one flex point
Past multiprocessor methodology research

has noted that small timing variations can
cause two executions that start from identical
initial conditions (for example, the same flex
point) to follow drastically different execution
paths.5 Such variation is possible because even
a single cycle’s difference in memory latency
might cause a race for a lock to resolve differ-
ently, which can induce changes in thread
scheduling or cause other large-scale differ-
ences in execution paths.

The possibility of exploring multiple execu-
tion paths from a single flex point is of interest
in simulation sampling because it might let us
increase sample size without having to create
and store additional flex points. Alameldeen
and Wood suggest launching multiple simula-
tions from a single checkpoint and randomly
perturbing main memory latency, adding or
subtracting several nanoseconds per request.5

Unfortunately, our investigation indicates that
varying memory latency typically does not lead
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to execution paths that diverge rapidly enough
to be cost-effective for simulation sampling. 

The challenge facing this approach is to
determine how to construct an unbiased uni-
form sample of transaction interleavings from
a single starting state. For example, if we were
to start measurement a mere 10 cycles after a
flex-point load, perturbing main memory
latency would have no effect on execution
path, and confidence calculations over such a
“sample” would be meaningless. At the other
extreme, if we introduced random perturba-
tions for an extremely long simulation inter-
val (for example, 30 seconds of simulated
time) before measuring, the transaction inter-
leavings we measured would likely be quite
random with respect to the initial state, and
therefore, form a uniform sample.

As these examples show, the key issue in
producing multiple measurements from a sin-
gle flex point is the question of how long ran-
dom perturbation must be performed before
the two measurements are independent—that
is, before they differ from one another as
much as randomly chosen start locations. If
two measurements are not independent, they
introduce bias into the sample results.

We investigated this question empirically by
measuring the similarity, or correlation, between
the execution paths a CPU follows in two sim-
ulations starting from the same flex point with
random main-memory latency perturbations.
We compared this correlation to that observed
between randomly chosen execution path pairs.
A stronger correlation between the two simula-
tions starting from a single flex point would
imply that the measurements are not indepen-
dent and the sample is biased. (The converse is
not true—measurement independence is a nec-
essary but not sufficient condition for a uniform
sample.) Over time, we expect the two simula-
tions’ execution paths to drift apart with main-
memory latency perturbation, and the
correlation to approach that of random pairs.

To make our experiment independent of
microarchitecture and timing, we character-
ized the execution path of each CPU using a
sequence of basic-block vectors.12 Basic-block
vectors summarize the relative frequency of
static basic blocks within an execution win-
dow, and are thus affected by timing pertur-
bations only if the execution path changes.

Figure 9 shows our correlation measure-
ments out to 2.5 million instructions from
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flex-point load, more than 15 times further
than a typical SimFlex detailed simulation.
For most workloads, even 2.5 million instruc-
tions’ execution introduces insufficient ran-
domness in the execution path to achieve
independent measurements. For OLTP on
DB2, 500,000 to 1 million instructions of
execution after each flex point might provide
an unbiased sample.

These results show that main-memory
latency perturbation might be used to achieve
the same sample size with fewer flex points,
but would require millions of instructions of
detailed warming with main-memory laten-
cy perturbation. Creating a sample in this
fashion requires an order of magnitude
increase in detailed warming over the SimFlex
approach, and thus a corresponding increase
in simulation turnaround time.

The large speedup and parallelism enabled
through statistical sampling and check-

pointing have important implications for the
design of future computer system simulators.
First, the large speedups from sampling let sim-
ulator authors focus on designing flexible, mod-
ular simulators rather than optimizing for speed
at all costs. Second, although hardware proto-
types have many other advantages, it is not clear
that they can reduce experiment turnaround
time relative to sampled simulations. Finally,
the 100- to 1,000-way parallelism available
across measurements mitigates the need to mul-
tithread detailed simulation models. MMIICCRROO
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