
Maximizing CNN Accelerator Efficiency
Through Resource Partitioning

Yongming Shen
Stony Brook University

yoshen@cs.stonybrook.edu

Michael Ferdman
Stony Brook University

mferdman@cs.stonybrook.edu

Peter Milder
Stony Brook University

peter.milder@stonybrook.edu

ABSTRACT
Convolutional neural networks (CNNs) are revolutionizing machine
learning, but they present significant computational challenges. Re-
cently, many FPGA-based accelerators have been proposed to im-
prove the performance and efficiency of CNNs. Current approaches
construct a single processor that computes the CNN layers one at
a time; the processor is optimized to maximize the throughput at
which the collection of layers is computed. However, this approach
leads to inefficient designs because the same processor structure is
used to compute CNN layers of radically varying dimensions.

We present a new CNN accelerator paradigm and an accompa-
nying automated design methodology that partitions the available
FPGA resources into multiple processors, each of which is tailored
for a different subset of the CNN convolutional layers. Using the
same FPGA resources as a single large processor, multiple smaller
specialized processors increase computational efficiency and lead to
a higher overall throughput. Our design methodology achieves 3.8x
higher throughput than the state-of-the-art approach on evaluating
the popular AlexNet CNN on a Xilinx Virtex-7 FPGA. For the more
recent SqueezeNet and GoogLeNet, the speedups are 2.2x and 2.0x.

CCS CONCEPTS
• Computer systems organization → Neural networks; Recon-
figurable computing;

KEYWORDS
Convolutional Neural Network, FPGA, Accelerator

ACM Reference format:
Yongming Shen, Michael Ferdman, and Peter Milder. 2017. Maximizing
CNN Accelerator Efficiency Through Resource Partitioning. In Proceedings
of ISCA ’17, Toronto, ON, Canada, June 24-28, 2017, 13 pages.
https://doi.org/10.1145/3079856.3080221

1 INTRODUCTION
The rapid adoption of convolutional neural networks (CNNs) has
transformed machine learning. CNNs have been embraced across a
wide array of fields, such as recommendation systems [17], natural
language processing [9], and computer vision [13, 15, 26, 29]. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4892-8/17/06. . . $15.00
https://doi.org/10.1145/3079856.3080221

particular, image object recognition has become the de facto bench-
mark for CNNs, with new networks shattering all prior records in
object detection and classification every year.

However, improvements in CNN accuracy are accompanied by a
rapid increase in computational cost. CNNs have already grown to
the point where multi-core CPUs are no longer a viable computing
platform. At the same time, while GPUs offer adequate performance,
GPU power consumption brings its own set of challenges, particu-
larly at data-center scale. As a result, FPGAs have seen a surge in
interest for CNN acceleration due to their programmable, massively
parallel, and power-efficient computing substrate. The combination
of high performance and power efficiency on machine learning tasks
is leading to the adoption of FPGAs in data center environments [20].

CNNs comprise multiple computation layers, whose inputs are
arrays of different dimensions. The prior state of the art for using
FPGAs for CNNs is to implement an accelerator, which we call a
convolutional layer processor (CLP), that processes the layers itera-
tively, one by one. A CLP design is parameterized by the dimensions
of its computational grid; its speed depends on the compatibility
of these dimensions with the CNN layers it computes. To achieve
peak performance, the CLP parameters are jointly optimized for the
ensemble of the layers to maximize the collective throughput of the
accelerator. This approach closely follows from an ASIC accelerator
design flow, where a given hardware design is optimized for the
ensemble of the benchmarks that will run on it, so as to perform well
for all likely workloads that will be used once the ASIC is deployed.

We observe that jointly optimizing one CLP for all CNN layers
leads to a dynamic underutilization of FPGA resources, giving up
performance that could be achieved on the FPGA platform. Although
the CLP is optimized for maximum throughput, the fixed dimensions
of the computational grid are sub-optimal for some, or even all, of
the individual layers. Figure 1 (top) illustrates this problem. The
Single-CLP hardware (white box) iteratively processes the three
layers (blue boxes). The dimensions of the hardware and the layers
are represented by the size and shape of the boxes. L1 is smaller
than the CLP dimensions, leaving some hardware unused when
computing this layer (Figure 1(a)). L2’s size exactly matches the
CLP, but L3’s dimensions exceed the CLP size. Therefore, the CLP
computational grid must be used iteratively to compute different
parts of L3 (first, its top portion, then, its bottom portion), again
underutilizing the available hardware (Figure 1(b)). On the popular
AlexNet CNN [15], an “optimal” Single-CLP derived from the state-
of-the-art methodology [32] has dynamic utilization of less than
24%. This means that, on average, more than three quarters of the
CLP’s arithmetic units (multipliers and adders built from the FPGA’s
DSP slices) remain unused.

To overcome this problem, we propose a new CNN accelerator
design that partitions FPGA resources among multiple CLPs, which

https://doi.org/10.1145/3079856.3080221
https://doi.org/10.1145/3079856.3080221

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Y. Shen et al.

Same hardware partitioned into parallel CLPs

(state of the art)

time

All hardware in one CLP
Idle Hardware
Actively Used

L1

L3

CNN layer
dimensions

L2

L2
L2

L2

L3

L2
L3

L1

L1
L3

L3

Si
n

gl
e-

C
LP

 d
o

n
e

(our approach)

M
u

lt
i-

C
LP

 d
o

n
e

CLP

CLP2

CLP1

(a) (b)

(c)

Figure 1: Operation of convolutional layer processors (CLPs)
on a three-layer CNN. Our Multi-CLP approach uses the same
total hardware resources as the Single-CLP. However, the Multi-
CLP partitioned hardware closely matches the CNN layers,
minimizing idle hardware and improving performance.

operate on multiple images concurrently. We illustrate the operation
of Multi-CLP in Figure 1 (bottom), where the hardware resources
are partitioned among two smaller CLPs that operate in parallel on
different images. Note that the two CLPs are specialized and have
different dimensions; this allows CLP1 to work well for L1 and
L3, while CLP2’s dimensions are compatible with L2. The key is
that these sizes allow the layers to be processed with very little idle
hardware, enabling the Multi-CLP to do the same amount of work
in less time (Figure 1(c)).

We develop an optimization algorithm that, given CNN layer
dimensions and a resource budget, computes a partitioning of the
FPGA resources into multiple CLPs for an efficient high-performance
design. Our algorithm runs in minutes and produces a set of CLP
dimensions. We then use these dimensions to parameterize a CLP
design specified using high-level synthesis (HLS), combining the
resulting CLPs to form a complete CNN implementation.

Our results demonstrate that partitioning FPGA resources into
multiple CLPs can achieve over 90% arithmetic unit utilization, in
some cases close to 100%. Our design methodology achieves 3.8x
higher throughput than the state-of-the-art approach for the popular
AlexNet CNN on a Xilinx Virtex-7 FPGA. For the more recent
SqueezeNet and GoogLeNet, the speedups are 2.2x and 2.0x.

The rest of the paper is organized as follows. In Section 2, we
provide background on CNNs. Section 3 describes the state-of-the-
art FPGA implementation and analyzes the inefficiency of Single-
CLP accelerators. Section 4 presents our Multi-CLP optimization
methodology. Section 5 describes our design and implementation
and Section 6 details experimental results. Section 7 discusses related
work and we conclude in Section 8.

2 CNN BACKGROUND
In typical object recognition examples (e.g., [15, 26]), a CNN passes
images through a number of convolutional layers, which convolve
the input (an array of two-dimensional matrices called feature maps)
with an array of two-dimensional filters, whose values, called weights,
were previously learned using an algorithm such as back-propagation.

1a

1b

2a

2b

3a

3b

4a

4b

5a

5b

FC1 FC2 FC3

Convolutional Layers Fully-Connected Layers

Figure 2: AlexNet CNN structure [15].

...

...
Input Feature Maps

(R-1)·S+K (C-1)·S+K

N

M

Weights Output Feature Maps

M

R C

...

K K N

Figure 3: Illustration of a convolutional layer.

Non-linear layers, which typically perform computations such as
sub-sampling or activation functions, interleave convolutional lay-
ers. In the end, the network includes one or more fully-connected
layers, each of which performs a number of dot-products across its
entire input. Figure 2 shows AlexNet [15], which contains five stages
of paired convolutional layers (e.g., 1a and 1b), followed by three
stages of fully-connected layers (FC1–FC3). In this figure, the small
non-linear layers are omitted. As in prior work [32], we focus on
the convolutional layers of the network, because they are the most
compute intensive layers.

Figure 3 illustrates a convolutional layer and Listing 1 presents
the pseudo code to compute it. To simplify presentation, we omit
biases. Each layer takes as input N input feature maps and convolves
them with the filters. There are M sets of filters; by convolving one
set of N filters (N×K×K weights) with the input feature maps, one
of the M output feature maps is obtained. For example, the blue point
in the lowest output feature map in Figure 3 is computed by taking
the dot-product of the blue weights with the portion of the input
feature maps shaded in blue. All points of the output feature map are
computed by sliding the blue shaded region around the input feature
maps. Repeating this process with each of the M sets of filters, we
compute each of the M output feature maps.

3 RESOURCE UTILIZATION PROBLEM
A common approach for building a CNN accelerator is what we call
a convolutional layer processor (CLP), which computes the nested
loop in Listing 1. Because a CNN has multiple convolutional layers,
the same CLP is used to process all layers, one by one. Because
different layers have different dimensions (M,N,R,C,K,S), such a
“one size fits all" approach creates a resource utilization problem, as
illustrated in Figure 1. In this section, we analyze how this problem
affects a state-of-the-art FPGA CNN accelerator.

3.1 State of the Art Design
We base our analysis on the design in [32]. This design employs
loop transformations, such as loop reordering, tiling, and unrolling

Maximizing CNN Accelerator Efficiency Through Resource Partitioning ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

I[N][(R-1)*S+K][(C-1)*S+K] //input maps
O[M][R][C] // output maps
W[M][N][K][K] // weights
for(m=0; m<M; m++)
for(n=0; n<N; n++)
for(r=0; r<R; r++)
for(c=0; c<C; c++)
for(i=0; i<K; i++)
for(j=0; j<K; j++)
wx=W[m][n][i][j]
ix=I[n][S*r+i][S*c+j]
O[m][r][c]+=wx*ix

Listing 1: Pseudo code of a convolutional layer.

vector dot
product

output
bufferinput

buffer

input
buffer

input
buffer...T n i

np
ut

s

Tn words

output
buffer

output
buffer

...

T
m outputs

weights

weights

weights
...

1 word

1 word

+

+

+

vector dot
product

vector dot
product

Figure 4: CLP design based on [32]. Each dot-product unit
takes Tn inputs and Tn weights and produces one output.

to reorder computations and memory accesses, increasing through-
put and reducing data transfer. The transformed loop is used as a
template for constructing the accelerator.

Using the methodology in [32], the nested loops in Listing 1
are transformed into Listing 2, illustrated as a datapath in Figure 4.
The Ibu f , Obu f , and Wbu f arrays represent on-chip buffers for input,
output, and weight data, respectively. Copying data in or out of
these arrays corresponds to transferring data between the on-chip
buffers and off-chip memory. Double-buffering is used to overlap
data transfer with computation and requires provisioning each mem-
ory with twice the capacity. To simplify presentation, Listing 2 omits
a required boundary check when copying data.

The loops R, C, M, and N are tiled with factors Tr, Tc, Tm, and
Tn, respectively. These loop tiling factors control how much data are
transferred per buffer refill or write-out, and the order in which data
are transferred. Because the inner-most two loops are unrolled (based
on Tm and Tn), loop tiling also controls how the compute modules
are constructed. In particular, to implement these two unrolled loops,
Tm vector dot-product units are constructed, each of width Tn. An
accumulation adder is added after each unit, as shown in Figure 4.
This yields TmTn multipliers and adders.

Given a resource budget (e.g., a number of DSP slices), one can
find the optimal Tn and Tm for a given convolutional layer. In [32], a
joint optimization is performed to create a single CLP to compute
all of the convolutional layers in the CNN. The optimization finds
the (Tn,Tm) that maximize the aggregate performance of the CLP.

I[N][(R-1)*S+K][(C-1)*S+K] //input maps
O[M][R][C] // output maps
W[M][N][K][K] // weights
Ibuf[Tn][(Tr -1)*S+K][(Tc -1)*S+K]
Obuf[Tm][Tr][Tc]
Wbuf[Tm][Tn][K][K]
for(r=0; r<R; r+=Tr)
for(c=0; c<C; c+=Tc)
for(m=0; m<M; m+=Tm) {
for(n=0; n<N; n+=Tn) {
irx=r*S:(r+Tr -1)*S+K
icx=c*S:(c+Tc -1)*S+K
Ibuf=I[n:n+Tn][irx][icx]
Wbuf=W[m:m+Tm][n:n+Tn]
for(i=0; i<K; i++)
for(j=0; j<K; j++)
for(tr=0; tr+r<min(R,r+Tr); tr++)
for(tc=0; tc+c<min(C,c+Tc); tc++)
for(tm=0; tm<Tm; tm++) #UNROLL
for(tn=0; tn<Tn; tn++) #UNROLL
wx=Wbuf[tm][tn][i][j]
ix=Ibuf[tn][S*tr+i][S*tc+j]
Obuf[tm][tr][tc]+=wx*ix

}
O[m:m+Tm][r:r+Tr][c:c+Tc]=Obuf

}

Listing 2: Pseudo code for tiling in a CLP [32].

3.2 Arithmetic Unit Utilization Problem
Although the methodology in [32] produces a CLP optimized for the
collective performance of all convolutional layers, we observe that
its speed is limited by the fact that different convolutional layers of
the CNN have different dimensions, but all are computed on the same
(Tn,Tm) CLP. Thus, the CLP that gives the best performance across
all layers is not necessarily well suited for any one layer. Because the
limiting factor of performance is the number of parallel arithmetic
units in the CLP, the cost of the mismatch can be quantified by
considering the utilization of the arithmetic units. That is, we can
quantify the percentage of the time that the arithmetic units in the
CLP are doing work versus the percentage of the time they are idle.

The primary cause of the utilization penalty is a mismatch be-
tween the tile parameters (Tn,Tm) and their corresponding loop sizes
(N,M). In particular, if N is less than Tn or M is less than Tm, then
there must be cycles where some of the Tn ×Tm multipliers are not
used. For example, following the methodology in [32], we generated
an accelerator for SqueezeNet [13] that targets the Virtex-7 690T
FPGA and uses single precision floating-point arithmetic. The best
(Tn,Tm) we obtained is (9,64). However, the (N,M) of layer one
of the network is (3,64), therefore N < Tn, leading to an arithmetic
unit utilization of 33.3%. The (N,M) of layer two of the network is
(64,16), so M < Tm. To make things worse, for layer two, N = 64 is
not a perfect multiple of Tn = 9, which is another source of underuti-
lization. Eight iterations are needed for Tn to cover N. The first seven
iterations cover the first 63 input feature maps, leaving only one for
the eighth iteration, during which only 1/9 of the Tn is used. The
compound effect of mismatch on both Tn and Tm leads to a utilization
of only 22.2% for layer 2. Overall, analyzing all convolutional layers
in SqueezeNet gives an arithmetic unit utilization of 76.4%.

When fixed-point arithmetic is used, more adders and multipliers
can be built using the same DSP slice budget, exacerbating the
mismatch problem. The worst case we observed is running AlexNet

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Y. Shen et al.

on a Virtex-7 690T FPGA with 16-bit fixed-point arithmetic units,
which has an overall arithmetic unit utilization of less than 24%.

4 MULTI-CLP DESIGN
To improve the resource utilization and thus CNN performance, we
propose Multi-CLP accelerators, where the available resources are
partitioned across several smaller convolutional layer processors
rather than a single large one. The advantage comes from the CLPs
having different sizes, more closely matching the dimensions of the
CNN layers. This approach is possible because CNN accelerators
process many input images, allowing CLPs to concurrently work on
independent inputs.

To construct a Multi-CLP accelerator for a given resource budget
and CNN structure, one must decide how many CLPs to use, how
to partition the resources among them, and how to distribute and
schedule the processing of individual convolutional layers from
multiple images on the CLPs. We describe (a) the operation of a
Multi-CLP, (b) a model to predict CLP costs and performance given
its parameters, and (c) an optimization algorithm to find the best
Multi-CLP design for a given resource budget and set of CNN layers.

4.1 Multi-CLP Accelerators for CNNs
Due to the feed-forward nature of the CNN structure, it is natural
to think of the layers of the CNN as a pipeline. Therefore, one way
to construct a CNN accelerator with multiple CLPs is to implement
a separate CLP for each layer [16]. An accelerator for an L-stage
CNN would have L CLPs and would operate on L independent input
images. (That is, CLP1 would work on image i while CLP2 works
on image i−1, etc.) This would have the benefit of allowing each
CLP to be optimized solely for the dimensions of one CNN layer,
improving efficiency.

A limitation of this approach, however, is that it requires the
number of CLPs to be equal to the number of convolutional layers.
This poses several problems for practical CNNs. First, it forces the
design to divide the on-chip BRAM resources, reducing the buffer
size of each CLP. As a result, the ability to exploit data reuse in each
CLP diminishes, greatly increasing the overall memory bandwidth
requirement and slowing down each CLP. Second, this one-to-one
mapping of CLPs to convolutional layers requires coordinating a
large number of accesses to off-chip memory, which is costly in
terms of performance and logic resources. Third, each CLP has an
overhead cost (i.e., control logic for address calculation and loop
index state machine). If there are many CLPs, significant resources
are devoted to control logic instead of CNN computation.

To address these problems, we target Multi-CLP designs that
minimize the number of CLPs in an accelerator. This approach
requires at least one CLP in the design to compute multiple CNN
layers. We use a static assignment of layers to CLPs, where each
layer is bound to one CLP. Layers assigned to the same CLP need
not be adjacent in the CNN structure.

The timeline of the accelerator operation is divided into epochs.
In each epoch, each CLP sequentially processes its layers, with each
layer having its own independent data. The epoch ends when all
CLPs finish. Figure 5 shows an example where CLP0 processes three
layers (L1, L3, and L4) and CLP1 processes two layers (L2 and L5).
In each epoch, each CLP only consumes data generated during the

time
CLP 1:

CLP 0: L1 L3 L4

L2 L5

L1 L3 L4

L2 L5

epoch epoch

Figure 5: Example schedule for a Multi-CLP system.

previous epoch, avoiding data dependencies within a epoch. For
example, the output produced by L1 in epoch i will be used as input
for L2 in epoch i+1. This means that processing an image requires
five epochs, therefore data from five different images will be in flight
at a time. Because the intermediate data are typically too large to
hold on chip, all CLPs read their inputs from and write their outputs
to off-chip memory.

If the evaluation latency must be limited further, one can constrain
the layer assignment such that layers for the same CLP are adjacent
in the CNN structure. This way, a CLP can process multiple layers
for an image in a single epoch, and the total number of in-flight
images is equal to the number of CLPs. This means one can reduce
latency by limiting the number of CLPs, but this is achieved at the
cost of throughput.

There are several considerations for a Multi-CLP system to achieve
high throughput; we use these as the targets of our optimization
method (Section 4.3). First, the epoch length, and thus the system
throughput, is limited by the CLP that takes the longest to com-
plete its assigned work. For example, in Figure 5, CLP0 is idle after
it finishes L4, until the next epoch begins. Second, the convolu-
tional layers assigned to a CLP should have dimensions compatible
with the CLP’s dimensions to ensure high arithmetic unit utilization.
Third, the on-chip memory allocated to each CLP is inversely related
to the off-chip bandwidth that it requires; larger CLP buffers reduce
off-chip data transfer.

4.2 Modeling CLP Cost and Performance
To find an efficient Multi-CLP design for a CNN, we first construct
a model of the CLP costs (DSP slices, BRAMs, memory bandwidth)
and speed (cycles). A CLP is parameterized by its size (Tn,Tm) and
the tiling parameters (Tr,Tc) of each of its layers. The model also
uses the dimensions of the convolutional layers: M,N,R,C,K, and
S (Section 2). From these parameters, one can derive the resource
use and performance of a CLP. Because our CLP is based on [32],
a number of the formulas used in our models appear similar, but
include several notable differences.

Performance Model. Assuming a fixed frequency target, the
performance of a CLP is dictated by the number of cycles needed
to compute each of its layers. Because arithmetic units may be
underutilized, the cycle count cannot be calculated by dividing the
amount of work by the number of arithmetic units in the design.
Instead, an exact counting of loop iterations based on Listing 2 is
needed. In Listing 2, the inner-most two loops are unrolled, thus
they do not contribute to the iteration count. Along the R dimension,
the combination of the outer loop (looping over tiles) and the inner
loop (looping over elements in a tile) run for R iterations. Similarly,
there are C iterations along the C dimension. The remaining four

Maximizing CNN Accelerator Efficiency Through Resource Partitioning ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

loops have
⌈

M
Tm

⌉
,
⌈

N
Tn

⌉
, K, and K iterations, respectively. Together,

the cycle count needed to compute one layer is

Cycles = R×C×
⌈

N
Tn

⌉
×
⌈

M
Tm

⌉
×K2.

Importantly, if a CLP is found to be memory-bandwidth bound, our
optimization procedure determines the cycle count by using the data
transfer time instead of the cycle count computed by this formula.

Modeling Bandwidth Usage. We are primarily focused on the
peak bandwidth use of a CLP, to estimate how much bandwidth is
needed to support the maximum computation speed. When the peak
bandwidth is unavailable on the target platform, the model must
be able to estimate the throughput of the accelerator, taking into
consideration how compute may be blocked by data transfer. This
allows design space exploration to find the best-performing design
under a bandwidth limitation.

A CLP uses double-buffering to overlap data transfer with compu-
tation. Layers are processed back to back, allowing data transfer for
one layer to be overlapped with computation for another. The model
calculates the start and end times of data transfer and compute, and
takes into account the dependencies between them to determine the
cycles required to finish computation in the bandwidth-bound cases.

Modeling DSP Slice Usage. The dominant use of DSP slices
is the Tm dot-product units (each of size Tn) and Tm accumulator
adders (see Figure 4); each CLP contains Tm ×Tn multipliers and
adders. For floating-point arithmetic, each multiplier comprises two
DSP slices and each adder comprises three. For 16-bit fixed-point
arithmetic, a single DSP slice provides both an adder and multiplier.
Therefore, the respective DSP counts are

NumDSPf loat = (3+2)×Tn ×Tm,

NumDSPf ixed = Tn ×Tm.

Modeling BRAM Usage. BRAMs are used to construct the var-
ious on-chip buffers. Modeling must account for the banking of
these buffers, the number of read/write ports a buffer uses, whether
double-buffering is used, the capacity and capabilities of a BRAM,
and the size of a word. Here, we assume the word size to be either
16 or 32 bits, although this can easily be extended. We report usage
in terms of Virtex-7 BRAM-18Kb units, which can store 512 32-bit
words and operate in “Simple Dual-Port mode” [31], allowing one
read and one write concurrently.

The input buffer is organized into Tn banks of size Bi, which is
provisioned to support the computation of all of the layers on a CLP.
When computing a layer, each bank stores

[(Tr −1)×S+K]× [(Tc −1)×S+K]

words. Because the parameters change from layer to layer, each layer
needs a different amount of data, requiring Bi to be large enough to
support the most demanding layer. An input bank must be double-
buffered to support the overlapping of computation and data transfer,
using one read port and one write port. With 32-bit words, this buffer
is constructed with 2 ·

⌈
Bi

512

⌉
BRAMs. However, because a single

BRAM already provides a read port and a write port, when Bi ≤ 256,
one BRAM is sufficient to construct a double-buffered input bank.

The weight buffer is similar to the input buffer. There are Tn ×Tm
banks. When computing a layer, each weight bank stores a K ×K
filter (K2 words). Thus, of the layers that a CLP computes, the layer

with the largest K determines the size of a weight bank. Other aspects
of the weight buffer are modeled in the same way as the input buffer.

The output buffer is organized into Tm banks. When computing
a layer, each bank stores Tr ×Tc words. The output buffer is provi-
sioned for the most-demanding layer and is double-buffered. How-
ever, to support the accumulation used in the CLP, an output-buffer
bank requires at least two BRAMs for double-buffering, because the
accumulation buffer requires both a read port and a write port. The
remaining aspects of the output buffer model are the same as the
input and weight buffer models.

For all buffers, the number of banks is halved for the 16-bit fixed
point data type, because pairs of 16-bit words are packed into 32-bit
wide BRAMs. Additionally, if a bank stores only a small number
of values (fewer than 10), we do not count them toward the BRAM
budget, because small memories are implemented as LUTRAMs.

4.3 Optimization of Multi-CLP Designs
We now describe an optimization tool that uses the above model to
find the fastest Multi-CLP configuration (for a given CNN) that fits
within the specified resource constraints. Because we are targeting
FPGAs, we optimize our accelerator only for a specific target CNN.
However, this optimization can be simultaneously applied to multiple
target CNNs to jointly optimize their performance.

The optimization takes as input the CNN layer descriptions and
target FPGA resource constraints, and produces the parameters to
construct and use a Multi-CLP design. The optimization result in-
cludes the number of CLPs and their dimensions (Tn,Tm). It also
includes the distribution of the CNN layers to the CLPs and, for
each layer, the (Tr,Tc) parameters, which dictate how the layer is
computed by the CLP (Section 3.1).

Given a set of parameters, evaluating the model is simple. How-
ever, there are far too many possibilities to perform an exhaustive
search for the fastest design that meets the resource constraints,
requiring the use of heuristics during optimization.

The optimization process comprises two steps, iteratively repeat-
ing these steps until at least one solution that meets the constraints
is discovered. At the beginning of each iteration, a performance
target is set. If the performance target cannot be met at the end of
the iteration, a new iteration is started with a slightly lower target.

In each iteration, the first step (OptimizeCompute) focuses on the
partitioning of DSP slices. The output of this step is a collection of
partition candidates. Each candidate is a partial solution that specifies
the number of CLPs, the (Tn,Tm) of each, and the assignment of
CNN layers to the CLPs.

The challenge of OptimizeCompute arises in assigning the CNN’s
layers to CLPs. Because the number of possible assignments is ex-
ponential with respect to the number of layers, a complete search
of this space is impractical. We mitigate this problem through the
observation that, in the best designs, a CLP is assigned “similar”
layers. We first produce an ordered list of the layers based on a
heuristic (e.g., compute-to-data ratio for bandwidth-limited accelera-
tors or Euclidean distance between (N,M) pairs for compute-bound
accelerators). Then, when we assign layers to CLPs, we only con-
sider candidates where a CLP computes a set of adjacent layers in
this order, allowing our search to prune inefficient solutions where
incompatible layers would share a CLP.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Y. Shen et al.

procedure OptimizeMultiCLP(cnn,Ndsp,Nbram,bw)
step = 0.005; target = 1.00
Cyclesmin =MinimumPossibleCycles(cnn,Ndsp)
while(target , 0)

X =OptimizeCompute(cnn,Ndsp,
Cyclesmin

target)

if(X = /0)
target = target − step
continue

else
A =OptimizeMemory(cnn,Nbram,bw,X)
if(A = /0)

continue
else

return A

Listing 3: Pseudo code for Multi-CLP optimization.

The second step (OptimizeMemory) of the optimization focuses
on the partitioning of BRAM slices. For each candidate from step
one, OptimizeMemory finds the Tr and Tc values to use for each
layer that minimize the peak memory bandwidth use. These pa-
rameters in turn determine the buffer sizes of each CLP. A single
candidate from OptimizeCompute can result in multiple solutions
in OptimizeMemory; we consider all of these solutions in the opti-
mization process. If all candidates have peak memory bandwidth
use higher than the available budget, a new iteration of optimization
is needed, implying that the final solution will be bandwidth bound.
When estimating the bandwidth requirements of a design during opti-
mization, we allow computation of some CLPs to be blocked by data
transfer. This potentially sacrifices dynamic utilization of some CLPs
in the design, but in some cases results in the highest-performing
designs overall, despite including bandwidth-bound CLPs that are
idle and waiting for data for a small portion of the overall execution.

Listing 3 shows the pseudo code of the optimization procedure,
which we implemented in C++. We separate each iteration into two
steps, OptimizeCompute and OptimizeMemory, and we use differ-
ent algorithms for each. Both steps use memoization to avoid re-
dundant work. The search can be further sped up by limiting the
maximum number of CLPs to consider. Our C++ implementation
can complete an optimization of a Multi-CLP accelerator for the
GoogLeNet network in several minutes.

Lastly, we note that the same optimization method can be used for
Single-CLP accelerator designs by constraining OptimizeCompute
to only consider solutions with one CLP.

5 DESIGN AND IMPLEMENTATION
The optimization algorithm (Section 4) determines the characteristics
of an optimized Multi-CLP accelerator, producing parameters for a
C++ high-level-synthesis (HLS) template. The template is compiled
to synthesizable Verilog using Vivado HLS 2016.3. Our optimizer
works for any set of CNN layers and resource budget, and our
template supports computation over arbitrary data types.

5.1 Convolutional Layer Processor Template
The accelerator template is constructed based on nine parameters: Tn
and Tm (to size the CLP compute module), Mmax, Kmax, insize, and
outsize (to size the on-chip bias, weight, input, and output buffers),
and NP, WP, and MP (to specify the number of AXI stream ports
for transferring input, weight, and output data). Each CLP produced

compute ():
#pragma ARRAY_PARTITION out(1),bias (1)
#pragma ARRAY_PARTITION in(1),weights (1,2)

for(i=0; i<K; i++)
for(j=0; j<K; j++)

for(tr=0; tr<rloops; tr++)
for(tc=0; tc<cloops; tc++)

#pragma PIPELINE
for(tm=0; tm<Tm; tm++)

for(tn=0; tn<Tn; tn++)
if(i*j==0&&n==0)

out[tm][tr][tc]=bias[tm]
else

wx=weights[tn][tm][i][j]
ix=in[tn][S*tr+i][S*tc+j]
out[tm][tr][tc]+=wx*ix

write_output ():
WR=ceil(Tm/MP)
for(wr=0; n+1== nsteps &&wr<WR; wr++)

for(p=0; p<MP; p++)
#pragma UNROLL , LOOP_MERGE

xfer(out[WR*p+wr])

TOP():
transfer_argument_descriptor ()
for(r=0; r<rsteps; r++)

for(c=0; c<csteps; c++)
for(m=0; m<msteps; m++)

for(n=0; n<nsteps; n++)
#pragma DATAFLOW

read_bias () // omitted for brevity
read_input () // omitted for brevity
read_weights () // omitted for brevity
compute ()
write_output ()

Listing 4: Pseudo code for an accelerator template.

with the HLS tool has an auto-generated AXI4-Lite slave interface
to trigger the start of computation and AXI stream interfaces for
reading and writing data. For the Multi-CLP designs, each param-
eterized CLP template is passed through the HLS tool separately,
producing independent IP cores that can be inserted into the top-level
system and interconnected using a standard AXI crossbar and AXI
DataMovers. One AXI4 port is used at the start of CLP operation
to perform a burst transfer of a 32-byte descriptor containing the
arguments for the computation (R, C, M, N, K, S, Tr, Tc). After these
arguments are retrieved and the derived variables are computed (e.g.,
rsteps, csteps, msteps, nsteps), the design state machine executes the
four nested loops shown in Listing 4.

Each iteration of the top-level loops performs computation for
one input tile. The DATAFLOW directive ensures that the opera-
tions inside the n loop are pipelined using ping-pong buffers for
the concurrently accessed data structures. The in feature maps and
weights are read on every iteration, using the ping-pong buffers to
allow reading the subsequent iteration’s data while computation is
in progress. The out feature maps are double buffered to allow the
start of the subsequent computation while the write of the previous
output is in progress; however, the n+1 = nsteps condition prevents
transfer on all but the last input tile. Bias read is similarly limited to
occur only on the initial iterations to avoid unnecessary transfers.

To minimize port idle time, all transfer functions perform the
maximum-length contiguous bursts allowed by the data structures.
To minimize the number of bursts performed, we prioritize the n
dimension over the m dimension of the weights array, as the CLP

Maximizing CNN Accelerator Efficiency Through Resource Partitioning ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

designs have Tn smaller than Tm. The read_input(), read_weights(),
and write_output() functions are parameterized to support concurrent
transfers across multiple ports by partitioning the transfers according
to the top array dimension as demonstrated in write_output().

The PIPELINE directive in compute() unrolls the Tm and Tn loops
to create the CLP compute module. To ensure concurrent access
to the data, the out, in, bias, and weights arrays are partitioned
across different memory banks. The K ×K loops are the outer-most
dimension to avoid back-to-back (“loop-carry”) data dependencies
across loop iterations. rloops and cloops equal Tr and Tc, except for
the last iteration of the r and c loops, in which case rloops and cloops
take the boundary into account.

6 EVALUATION
We evaluate the Multi-CLP approach to CNN accelerator design
by applying our method to four networks (AlexNet, VGGNet-E,
SqueezeNet and GoogLeNet), targeting two Xilinx Virtex-7 FPGAs
(485T and 690T). We consider designs with both single precision
floating-point and 16-bit fixed point arithmetic.

We use our optimization method (Section 4) to determine the
best Single-CLP and Multi-CLP designs for each chip’s available
resources and compare the model results. Further, we implement the
designs using the HLS-based method (Section 5) and use simulation,
synthesis, and place and route tools to compare the Single-CLP and
Multi-CLP methods, and to quantitatively evaluate the correctness of
our models. To fairly compare with prior work, we first demonstrate
that our Single-CLP design for AlexNet on a Virtex-7 485T FPGA
with single precision floating point is equivalent to the design in [32].

Overall, our results show that our Multi-CLP methodology yields
improvements ranging from 1.01x (VGGNet-E on 485T, single preci-
sion floating point) to 3.8x (AlexNet on 690T, fixed point) compared
to Single-CLP designs.

6.1 Methodology
We use the optimization procedure from Section 4.3 to find the
highest-throughput Single-CLP and Multi-CLP designs for all de-
signs. Optimization times range from less than a minute to less than
an hour on one CPU. As input to the optimization procedure, we set
the DSP and BRAM targets to 80% of the FPGA’s capacity: 1,648
BRAMs and 2,240 DSP slices on the 485T, and 2,352 BRAMs and
2,880 DSP slices on the 690T.

6.2 Utilization Benefits of Multi-CLP
We first compare the dynamic arithmetic unit utilization of Single-
CLP and Multi-CLP designs across the 16 cases (four networks, two
data types, two FPGAs). For this comparison, we do not restrict
bandwidth, examining the effectiveness of Multi-CLP in improving
dynamic arithmetic unit utilization.

Table 1 shows the arithmetic unit utilization of all designs. Multi-
CLP achieves higher dynamic utilization than Single-CLP in all
cases. The smallest improvement (1.01x) is seen when targeting
VGGNet-E because the convolutional layers of VGGNet-E have
very regular dimensions. The best improvement (3.8x) is seen when
targeting AlexNet because the first layer of AlexNet requires a
large amount of computation, but has a small (N,M) of (3,48).
Multi-CLP gives significant improvements on SqueezeNet (2.1x)

Table 1: Dynamic arithmetic unit utilization of the Single-CLP
designs and Multi-CLP designs.

AlexNet VGGNet-E SqueezeNet GoogLeNet

485T (float)
S-CLP 74.1% 96.8% 78.0% 81.9%
M-CLP 95.4% 97.5% 95.8% 96.9%

690T (float)
S-CLP 65.4% 96.0% 76.4% 78.1%
M-CLP 99.0% 98.7% 96.7% 96.0%

485T (fixed)
S-CLP 31.0% 89.7% 51.1% 50.2%
M-CLP 93.9% 97.3% 93.6% 93.8%

690T (fixed)
S-CLP 23.7% 88.3% 42.0% 44.0%
M-CLP 90.6% 96.1% 93.1% 89.3%

and GoogLeNet (2.0x), showing that it benefits a wide range of
convolutional neural networks, including large and deep networks
like GoogLeNet. Also noteworthy is that larger improvements are
seen when the number of available arithmetic units increases—both
on the larger FPGA (690T) and when using fixed-point arithmetic
(meaning more arithmetic is possible using the same resources). This
demonstrates that Single-CLP has an inherent scaling problem: as
the number of arithmetic units increases, a Single-CLP struggles to
use them all. Conversely, our Multi-CLP design makes much more
efficient use of the available units.

6.3 Detailed Comparison: Single- vs Multi-CLP
To examine the differences between Single-CLP and Multi-CLP
designs, we present detailed comparisons for two networks and
scenarios. First, to compare with the Single-CLP design in [32], we
choose the same network and parameters: AlexNet using floating
point at 100MHz. Then, we evaluate a more aggressive scenario:
SqueezeNet using 16-bit fixed-point arithmetic at 170MHz.

Tables 2 and 4 present the parameters chosen by our optimization
for AlexNet and SqueezeNet on each FPGA. In each table, Tn and Tm
give the parallelism of the compute module (Figure 4). Additionally,
for AlexNet we show the Tr and Tc parameters, which control the
on-chip data tiling (Section 3.1).

For AlexNet, Table 2 shows that when we target the same system
as [32] (Single-CLP, 32-bit floating point, 485T), our optimization
yields the same parameters (Tn = 7 and Tm = 64) and the same speed
(2.0 million cycles).1,2 Accenting the fairness of the comparison,
we note that the Single-CLP and Multi-CLP designs have the same
arithmetic unit cost, which the Multi-CLP design spreads among
several CLPs. Recall that a CLP requires Tn ×Tm multipliers and
adders. For example, on the 690T FPGA, the Single-CLP design uses
9×64 = 576 multipliers and adders in one CLP. The corresponding

1The cycle counts in [32] only account for half of the convolutional layers (i.e., layers
1a, 2a, ..., 5a of Figure 2, but not layers 1b, 2b, ..., 5b). We therefore double the cycle
count in Table 4 of [32] to compare with our implementation.
2Prior work [32] does not report Tr and Tc.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Y. Shen et al.

Table 2: AlexNet, 32-bit floating point: Single-CLP and Multi-CLP accelerators.

(a) 485T Single-CLP

Tn Tm Layers Tr Tc Cycles(×1000)

CLP0 7 64 1a, 1b 8 8 732
2a, 2b 14 27 510
3a, 3b 13 13 338
4a, 4b 13 13 256
5a, 5b 13 13 170

Overall 2,006

(b) 690T Single-CLP

Tn Tm Layers Tr Tc Cycles(×1000)

CLP0 9 64 1a, 1b 8 8 732
2a, 2b 14 27 437
3a, 3b 13 13 265
4a, 4b 13 13 201
5a, 5b 13 13 134

Overall 1,769

(c) 485T Multi-CLP

Tn Tm Layers Tr Tc Cycles(×1000)

CLP0 2 64 5a, 5b 13 13 584
4a, 4b 13 13 876

CLP1 1 96 3a, 3b 13 13 1,558

CLP2 3 24 1a, 1b 14 19 1,464

CLP3 8 19 2a, 2b 14 27 1,531

Overall 1,558

(d) 690T Multi-CLP

Tn Tm Layers Tr Tc Cycles(×1000)

CLP0 1 64 5a, 5b 13 13 1,168

CLP1 1 96 4a, 4b 13 13 1,168

CLP2 2 64 3a, 3b 13 13 1,168

CLP3 1 48 1a 14 19 1,098

CLP4 1 48 1b 14 14 1,098

CLP5 3 64 2a, 2b 27 27 1,166

Overall 1,168

Multi-CLP design uses the same number (1×64+1×96+2×64+
1×48+1×48+3×64 = 576), but distributes them over six CLPs.

Table 2 also shows which of the 10 convolutional layers of the
network map to which CLP (e.g., for the Multi-CLP on the 485T,
CLP0 executes layers 4a, 4b, 5a, and 5b). The last column of each
table shows the number of cycles (in terms of cycles ×1000) that
each CLP takes to execute its layers, with the overall cycles per
image for each system shown at the bottom. For the Single-CLP
designs, the overall cycle count is the sum of how long the CLP
takes to compute all ten layers. When multiple layers are listed in
the same row (such as 4a and 4b), the cycle count is the number of
cycles needed to execute all of those layers.

In the Multi-CLP system, the CLPs operate concurrently. The
overall cycle count for the accelerator is the maximum of the cycle
counts of its CLPs, because this dictates the epoch length (the inter-
val between times when the pipelined Multi-CLP system is able to
start processing a new image). For example, in the AlexNet 485T
Multi-CLP design, the four CLPs have cycle counts of 584+876 =
1460, 1558, 1464, and 1531 thousand cycles, giving an overall time
of 1558 thousand cycles.

Because our optimization maximizes the overall throughput, the
Multi-CLP designs it produces tend to be balanced. This balance
indicates that the resources are effectively spread across the com-
putation pipeline, such that each CLP can be kept busy most of the
time. Table 3 shows the arithmetic unit utilization of each AlexNet
design, as well as the throughput (for convolutional layers) and the
modeled consumption of DSP slices, BRAMs, and bandwidth. We
see that on both FPGAs, the Multi-CLP designs provide a significant
throughput advantage over the Single-CLP: 1.31x on the 485T and

Table 3: AlexNet, floating point: Model-predicted resource us-
age and throughput. Bandwidth and throughput at 100MHz.

BRAM DSP
B/w

(GB/s)
Arith

Util.(%)
Thr.

(img/s) Gflop/s

485T
S-CLP 618 2,240 1.40 72.6 48.85 65.05
M-CLP 731 2,240 1.38 95.1 63.98 85.20

690T
S-CLP 758 2,880 1.78 64.0 55.40 73.77
M-CLP 1,238 2,880 1.49 98.9 85.55 113.92

1.54x on the 690T. Because the Single- and Multi-CLP designs use
an equal number of arithmetic units (built from the same number of
DSP slices), the speedup is proportional to the Multi-CLP improve-
ment in arithmetic unit utilization. The 485T and 690T Single-CLP
designs are only able to provide useful work to the arithmetic units
72.6% and 64.0% of the time, respectively, while Multi-CLP im-
proves utilization to 95.1% and 98.9%. The GFlop/s rate (in the last
column) is proportional to the throughput.

As the rate of computation increases, the amount of data that
must be kept on chip increase commensurately. On the 485T FPGA,
the 1.31x throughput improvement comes at a cost of 1.18x higher
BRAM usage. On the 690T, the throughput improvement of the
Multi-CLP designs grows to 1.54x, requiring 1.63x higher BRAM
usage. However, it is worth noting that there is a tradeoff between
the number of BRAMs used and off-chip memory bandwidth. We

Maximizing CNN Accelerator Efficiency Through Resource Partitioning ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

0

1

2

3

4

0 500 1000 1500 2000

Ba
nd

w
id
th
	(G

B/
s)

BRAMs

Multi-CLP,	690T

Multi-CLP,	485TB A

D
C

Figure 6: Tradeoff between BRAM usage and off-chip memory
bandwidth required for Multi-CLP designs.

can save bandwidth by adding more input and output buffers, or we
can reduce buffer sizes at the cost of higher bandwidth.

We illustrate this phenomenon in Figure 6, showing the options
for the two Multi-CLP designs. The Multi-CLP designs shown in
Table 3 were chosen to roughly match the memory bandwidth used
by the Single-CLP system. However, one could also adjust this trade-
off, saving BRAMs while using more bandwidth. All alternatives
for each system have nearly identical throughput (e.g., all 690T
designs have the same throughput as shown in the table, with the
differences bounded by step in Listing 3), but each makes a different
tradeoff between BRAM capacity and off-chip bandwidth. For ex-
ample, the points labeled A and C correspond to the iso-bandwidth
designs described above. Another useful example is represented by
points B and D, which allow the Multi-CLP designs to approximate
the BRAM utilization of the Single-CLP designs, at the expense
of bandwidth. Point B reduces the 485T Multi-CLP BRAM usage
to 619, but increases the bandwidth requirement to 1.46 GB/s. On
the 690T FPGA, point D represents an alternate design using only
1075 BRAMs, but requiring a bandwidth of 2.44 GB/s. Given spe-
cific bandwidth and BRAM constraints, the optimization tool or the
designer can choose between different points along the curve.

Tables 4 and 5 present the 16-bit fixed-point SqueezeNet designs
at 170MHz. Here, we expect the accelerator to be bandwidth bound,
so we direct the optimizer to use a heuristic that groups layers by their
compute-to-data ratios (Section 4.3). To reduce optimization time,
we limit the number of CLPs to at most six. Similar to the AlexNet
case, each CLP of the Multi-CLP SqueezeNet accelerator finishes
its work in roughly the same time, minimizing idling due to work
imbalance. The results show a dramatic improvement in arithmetic
utilization and thus throughput—up to a 2.33x improvement over
the Single-CLP design on the same FPGA. We also observe that
the peak bandwidth for SqueezeNet is significantly higher than
AlexNet—due to the characteristics of the network and because the
accelerators run at a higher clock frequency. Although the two Multi-
CLP SqueezeNet designs require 1.23x and 1.32x more BRAMs
than the Single-CLP designs, they provide 1.91x and 2.33x higher
throughput with a lower off-chip bandwidth requirement.

To estimate the bandwidth required for a CNN to reach peak
throughput on a given FPGA, we set Cyclesmin in Listing 3 to match

Table 5: SqueezeNet, fixed point: Model-predicted resource us-
age and throughput. Bandwidth and throughput at 170MHz.

BRAM DSP
B/w

(GB/s)
Arith

Util.(%)
Thr.

(img/s) Gop/s

485T
S-CLP 400 2,176 19.7 50.3 480.0 372.2
M-CLP 492 2,240 15.3 93.0 913.4 708.3

690T
S-CLP 480 2,784 20.5 41.3 504.1 391.0
M-CLP 635 2,880 19.5 92.9 1173.0 909.7

the best performance when bandwidth is unlimited, then we gradu-
ally relax the bandwidth constraint bw until solutions within 2% of
Cyclesmin can be found. The 2% margin is set to avoid overestimat-
ing bandwidth requirements due to instantaneous data transfer spikes.
Throughputs in Tables 3 and 5 are bandwidth-optimized, whereas
cycle counts in Tables 2 and 4 are bandwidth-unconstrained.

6.4 Model Validation
To validate our model, we synthesized and implemented (place
and route) four designs using the HLS-based template described
in Section 5. We place-and-route the CLPs in isolation, omitting
infrastructure like AXI crossbars and memory controllers. First,
we use our methodology to design a 32-bit floating point Single-
CLP for the 485T FPGA running at a 100MHz—this enables a direct
comparison to the Single-CLP HLS results in [32]. Then, we evaluate
Multi-CLP designs for AlexNet on the 485T and 690T FPGAs,
and a Multi-CLP design for SqueezeNet on the 690T. Tables 6
(AlexNet) and 7 (SqueezeNet) compare our model predictions with
the implementation results in terms of DSP slices and BRAMs. For
the Multi-CLP designs, we compare the metrics of each CLP in
addition to the overall values for the entire Multi-CLP design.

The model predictions are extremely close to the implemented
system, with only minor divergences. For example, the model un-
derestimates the DSP counts by approximately 50–100 DSP slices
per CLP, as the model accounts only for the DSP slices used for the
compute module of the convolution arithmetic and does not include
DSP slices that are used in the address calculations, loop indexing,
and control logic. By examining the resource utilization of specific
components, we verified that the number of DSP slices used in the
compute modules perfectly matches the model prediction. Similarly,
we find small discrepancies between the predicted and implemented
BRAM counts, caused by the way the tools map memories.

We conclude that the differences observed between the model
and the implementation results are not symptoms of the model not
matching the design and its requirements. Instead, the differences
occur because the model does not take into account some toolflow-
specific considerations. Several minor modifications could be made
to correct these errors, at the cost of making the model toolflow-
specific. Furthermore, we also performed RTL simulation of the
resulting designs; the simulated number of cycles only differs from
our model by the pipeline depth of the implementation.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Y. Shen et al.

Table 4: SqueezeNet, 16-bit fixed-point: Single-CLP and Multi-CLP accelerators.

(a) 485T Single-CLP

Tn Tm Layers Cycles(×1000)

CLP0 32 68 1–26 349

Overall 349

(b) 690T Single-CLP

Tn Tm Layers Cycles(×1000)

CLP0 32 87 1–26 331

Overall 331

(c) 485T Multi-CLP

Tn Tm Layers Cycles(×1000)

CLP0 6 16 2,3,6,5 179

CLP1 3 64 1,8,9,12 183

CLP2 4 64 all others 165

CLP3 8 64 7,4,16,19 176

CLP4 8 128 26,22,25,13 185

CLP5 16 10 10 183

Overall 185

(d) 690T Multi-CLP

Tn Tm Layers Cycles(×1000)

CLP0 8 16 2,6,3,5 125

CLP1 3 64 1 115

CLP2 11 32 all others 133

CLP3 8 64 7,4,16 145

CLP4 5 256 19,26,22,25 144

CLP5 16 26 13,10 141

Overall 145

Table 6: AlexNet, 32-bit floating point: comparison of model
prediction and implementation results.

BRAM DSP

model impl. model impl.

485T Single-CLP
CLP0 618 698 2,240 2,309

485T Multi-CLP
CLP0 130 132 640 689
CLP1 193 195 480 529
CLP2 186 242 360 410
CLP3 222 243 760 815
Overall 731 812 2,240 2,443

690T Multi-CLP
CLP0 129 131 320 369
CLP1 193 195 480 529
CLP2 130 132 640 689
CLP3 166 226 240 290
CLP4 160 162 240 290
CLP5 460 590 960 1,010
Overall 1,238 1,436 2,880 3,177

6.5 CNN Accelerator Resource Utilization
Tables 8 and 9 report the total resources (including FPGA flip-flops
and LUTs) used by each of the designs, extracted after place-and-
route. The counts include the CLPs only, not including platform-
specific memory controllers or crossbars. Closely following our
model validation results, we observe that, for the same FPGA tar-
get, a Multi-CLP implementation uses more DSP slices than the
corresponding Single-CLP implementation. Although the compute

Table 7: SqueezeNet 16-bit fixed point: comparison of model
prediction and implementation results.

BRAM DSP

model impl. model impl.

690T Multi-CLP
CLP0 24 42 128 227
CLP1 152 218 192 264
CLP2 44 78 352 508
CLP3 72 138 512 592
CLP4 259 520 1,280 1,416
CLP5 84 112 416 478

Overall 635 1,108 2,880 3,494

modules (i.e., the arithmetic units used for the convolution’s mul-
tiplications and additions) use the same number of DSP slices, a
difference arises due to the logic for address calculation and loop
indexing, adding approximately 6% DSP slices to the Multi-CLPs
designs. Similar increases are seen in the flip-flop and LUT counts;
more CLPs require additional control logic beyond the DSP slices
and BRAMs. However, ultimately, the DSP slices limit the imple-
mentations significantly more than the flip-flops or LUTs. For com-
pleteness, we use Vivado to produce post-place-and-route power
estimates, which are reported in Watts for each design.

6.6 Projections to Future FPGAs
In addition to comparing the Single-CLP and Multi-CLP designs on
the Virtex-7 FPGAs, it is also instructive to examine how the Single-
CLP and Multi-CLP designs scale as the FPGA resource budget
grows. For example, the Xilinx roadmap includes UltraScale+ de-
vices with over 10,000 DSP slices. Figure 7 projects the throughput

Maximizing CNN Accelerator Efficiency Through Resource Partitioning ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Table 8: AlexNet, 32-bit floating point: FPGA resource utiliza-
tion and estimated power for the Single-CLP and Multi-CLP
designs optimized for the 485T and 690T.

485T 690T

Single-CLP Multi-CLP Multi-CLP

BRAM-18K 698 812 1,436
(34%) (39%) (49%)

DSP 2,309 2,443 3,177
(82%) (87%) (88%)

FF 219,815 270,991 348,049
(36%) (45%) (40%)

LUT 146,325 176,876 236,877
(48%) (58%) (55%)

Power 6.6 W 7.6 W 10.2 W

Table 9: SqueezeNet, 16-bit: FPGA resource utilization and es-
timated power for a Multi-CLP system optimized for the 690T.

BRAM-18K DSP FF LUT Power

1,108 3,494 161,411 133,854 7.2 W
(38%) (97%) (19%) (31%)

of the Multi-CLP and Single-CLP floating point AlexNet designs for
DSP slice budgets ranging from 100 to 10,000. For each point, we
perform an optimization to find the best Single-CLP and Multi-CLP
designs and report the estimated throughput.

The x-axis shows the number of DSP slices used for each design.
The BRAM budget is set at a ratio of one BRAM (18Kb) to every
1.3 DSP slices, an approximation of the relationship we observe in
the Virtex-7 parts. Dashed vertical lines illustrate the total number
of DSP slices available on the Virtex-7 485T, Virtex-7 690T, Vir-
tex UltraScale+ 9P, and Virtex UltraScale+ 11P FPGAs. Note that
the dashed lines are provided only for the perspective of resource
capacity; real designs constrain the resources available to the CNN
accelerator below the full chip capacity.

As the number of available DSP slices increases, the throughput
difference between the Single- and Multi-CLP designs grows. For
example, going from 2,240 to 9,600 DSP slices, the Multi-CLP
improvement over Single-CLP designs increases from 1.3x to 3.3x.

7 RELATED WORK
Eyeriss [6, 7] is a recent ASIC CNN accelerator that couples a
compute grid with a NoC, enabling flexibility in scheduling CNN
computation. This flexibility limits arithmetic unit underutilization.
However, underutilization still exists when a CNN layer’s kernel size
and output feature map height are incompatible with the dimensions
of the compute grid.

[16] proposes an FPGA accelerator for AlexNet that has one mod-
ule per layer, and thus can achieve high arithmetic unit utilization.
However, this design stores all intermediate data of the network on
chip, limiting the size of the network that can be supported with

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000

Th
ro
ug
hp

ut
	(I
m
ag
es
/s
)

DSP	Slices

V7
48
5T

V7
69
0T

VU
9P

VU
11
P

Multi-CLP

Single-CLP

Figure 7: Throughput at 100MHz for AlexNet on Multi-CLP
and Single-CLP 32-bit floating point designs as a function of
the number of available DSP slices.

this approach. Moreover, as discussed in Section 4.1, building one
module per layer does not work well for larger networks.

Our baseline Single-CLP design is based on [32]. Similar de-
signs are used in [4, 5]. Other recent works propose different CNN
acceleration hardware. For example, [3, 10–12, 22] focus on 2D-
convolvers, which play the roles of both compute modules and data
caches. Meanwhile, [18, 19] use FMA units for computation. The
key differences between these approaches are the order of data trans-
fer and the choice of memory organization. Several key similarities
cause these methods to suffer from the underutilization problem we
observe in our Single-CLP design. For example, the 2D-convolvers
used in [3, 10, 12, 22] must be provisioned for the largest filter
across layers; they will necessarily be underutilized when computing
layers with smaller filters. In [19], the organization of the compute
modules depends on the number of output feature maps and their
number of rows. Both of these parameters typically change across
layers, resulting in an analogous resource underutilization problem.
Our Multi-CLP resource partitioning technique can used by these
designs to improve arithmetic unit utilization.

C-Brain [27] offers an orthogonal approach, transforming a stride-
S convolution to S stride-1 convolutions to increase PE utilization for
CLPs. However, this method can only be used when the convolution
stride of a layer is greater than one and the effectiveness of the
technique depends on the stride size.

Several recent works explored other promising, but orthogonal,
aspects of CNN accelerators. [1] proposes a CNN accelerator design
that can skip computations on input values that are zeros. [14, 21]
reduce an accelerator’s bandwidth and buffer use. [21] uses per-layer
data quantization and matrix-decomposition, whereas [14] uses per-
layer numerical precision reduction. [2] uses a fused-layer technique
to reduce bandwidth use of convolutional layers. [25] optimizes
batch sizes to reduce off-chip data transfer. These techniques can be
integrated into Multi-CLP designs.

[24] and [30] propose complete frameworks for generating FPGA-
based accelerators from CNN specifications. Our Multi-CLP ap-
proach can be integrated into these frameworks to improve the
performance of auto-generated accelerators. [8] and [23] explore
in-memory-processing to accelerate CNNs. [28] develop an OpenCL-
based HLS tool to implement CNN accelerators that use different

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Y. Shen et al.

modules for different kinds of layers, but all convolutional layers are
computed with a single CLP.

8 CONCLUSIONS
The traditional approach to FPGA-based CNN accelerator design fol-
lows a “one size fits all” methodology, where a single convolutional
layer processor (CLP) computes all convolutional layers of the CNN.
In this paper, we observed that variation in the dimensions of the
CNN layers limits the throughput of this “Single-CLP” approach; on
layers whose dimensions are a poor fit for the CLP parameters, the
arithmetic units exhibit low dynamic utilization, where adders and
multipliers frequently remain idle. To overcome this inefficiency, we
presented a new design paradigm that partitions hardware resources
among multiple cooperating CLPs. Our “Multi-CLP” approach al-
lows the CLP dimensions to more closely match the CNN layer
dimensions, resulting in better dynamic resource utilization and
higher throughput.

The optimization algorithm we developed finds efficient Multi-
CLP designs within a given resource budget (DSP slices, BRAMs,
and bandwidth). For example, on the Virtex-7 690T FPGA, we
showed that a Multi-CLP accelerator yields a 3.8x higher through-
put than the state-of-the-art Single-CLP design, when accelerating
AlexNet with 16-bit fixed point arithmetic, corresponding to an im-
provement of dynamic utilization from 24% to 91%. For the more
recent SqueezeNet and GoogLeNet networks, our method results in
speedups of 2.2x and 2.0x, respectively. Further, we showed that the
disparity between the throughput of the Single-CLP and Multi-CLP
designs grows rapidly as the resource budget increases.

ACKNOWLEDGMENTS
The authors would like to thank Cheng-Yang Fu and Alex C. Berg
from the Computer Vision Group at the University of North Car-
olina at Chapel Hill for their help. This material is based on work
supported by the National Science Foundation (NSF) under Grant
Nos. 1533739 and 1453460. The experiments were conducted with
equipment purchased through NSF CISE Research Infrastructure
Grant No. 1405641.

REFERENCES
[1] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright

Jerger, and Andreas Moshovos. 2016. Cnvlutin: Ineffectual-neuron-free Deep
Neural Network Computing. In Proceedings of the 43rd International Symposium
on Computer Architecture (ISCA ’16). IEEE Press, Piscataway, NJ, USA, 1–13.
DOI:https://doi.org/10.1109/ISCA.2016.11

[2] M. Alwani, H. Chen, M. Ferdman, and P. Milder. 2016. Fused-layer CNN accel-
erators. In Proceedings of the 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’16). IEEE Computer Society, Washington, DC,
USA, 1–12. DOI:https://doi.org/10.1109/MICRO.2016.7783725

[3] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari Cadambi.
2010. A Dynamically Configurable Coprocessor for Convolutional Neural Net-
works. In Proceedings of the 37th Annual International Symposium on Com-
puter Architecture (ISCA ’10). ACM, New York, NY, USA, 247–257. DOI:https:
//doi.org/10.1145/1815961.1815993

[4] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: A Small-footprint High-throughput Ac-
celerator for Ubiquitous Machine-learning. In Proceedings of the 19th Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’14). ACM, New York, NY, USA, 269–284.
DOI:https://doi.org/10.1145/2541940.2541967

[5] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao: A
Machine-Learning Supercomputer. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO ’14). IEEE Computer

Society, Washington, DC, USA, 609–622. DOI:https://doi.org/10.1109/MICRO.
2014.58

[6] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architecture
for Energy-efficient Dataflow for Convolutional Neural Networks. In Proceedings
of the 43rd International Symposium on Computer Architecture (ISCA ’16). IEEE
Press, Piscataway, NJ, USA, 367–379. DOI:https://doi.org/10.1109/ISCA.2016.
40

[7] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2017. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE Journal of Solid-State Circuits 52, 1 (Jan 2017), 127–138.
DOI:https://doi.org/10.1109/JSSC.2016.2616357

[8] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, and Yuan Xie. 2016. PRIME: A Novel Processing-in-memory Architecture
for Neural Network Computation in ReRAM-based Main Memory. In Proceedings
of the 43rd International Symposium on Computer Architecture (ISCA ’16). IEEE
Press, Piscataway, NJ, USA, 27–39. DOI:https://doi.org/10.1109/ISCA.2016.13

[9] Ronan Collobert and Jason Weston. 2008. A Unified Architecture for Natural Lan-
guage Processing: Deep Neural Networks with Multitask Learning. In Proceedings
of the 25th International Conference on Machine Learning (ICML ’08). ACM,
New York, NY, USA, 160–167. DOI:https://doi.org/10.1145/1390156.1390177

[10] Clément Farabet, Berin Martini, Polina Akselrod, Selçuk Talay, Yann LeCun, and
Eugenio Culurciello. 2010. Hardware accelerated convolutional neural networks
for synthetic vision systems. In Proceedings of the 2010 IEEE International
Symposium on Circuits and Systems (ISCAS ’10). 257–260. DOI:https://doi.org/
10.1109/ISCAS.2010.5537908

[11] Clément Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Eugenio Culur-
ciello, and Yann LeCun. 2011. NeuFlow: A runtime reconfigurable dataflow
processor for vision. In CVPR 2011 WORKSHOPS. 109–116. DOI:https:
//doi.org/10.1109/CVPRW.2011.5981829

[12] Clément Farabet, Cyril Poulet, Jefferson Y Han, and Yann LeCun. 2009. CNP:
An FPGA-based processor for Convolutional Networks. In Proceedings of the
19th International Conference on Field Programmable Logic and Applications
(FPL ’09). 32–37. DOI:https://doi.org/10.1109/FPL.2009.5272559

[13] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <1MB model size. CoRR abs/1602.07360 (2016).

[14] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M. Aamodt, Natalie En-
right Jerger, and Andreas Moshovos. 2016. Proteus: Exploiting Numerical Pre-
cision Variability in Deep Neural Networks. In Proceedings of the 2016 Inter-
national Conference on Supercomputing (ICS ’16). ACM, New York, NY, USA,
Article 23, 23:1-23:12 pages. DOI:https://doi.org/10.1145/2925426.2926294

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems (NIPS ’12).
Curran Associates Inc., Red Hook, NY, USA, 1097–1105.

[16] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli Wang.
2016. A high performance FPGA-based accelerator for large-scale convolutional
neural networks. In Proceedings of the 26th International Conference on Field
Programmable Logic and Applications (FPL ’16). IEEE Computer Society, Los
Alamitos, CA, USA, 1–9. DOI:https://doi.org/10.1109/FPL.2016.7577308

[17] Aäron van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep
Content-based Music Recommendation. In Proceedings of the 26th International
Conference on Neural Information Processing Systems (NIPS ’13). Curran Asso-
ciates Inc., Red Hook, NY, USA, 2643–2651.

[18] Maurice Peemen, Bart Mesman, and Henk Corporaal. 2015. Inter-tile Reuse
Optimization Applied to Bandwidth Constrained Embedded Accelerators. In
Proceedings of the 2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE ’15). EDA Consortium, San Jose, CA, USA, 169–174.

[19] Maurice Peemen, Arnaud AA Setio, Bart Mesman, and Henk Corporaal. 2013.
Memory-centric accelerator design for Convolutional Neural Networks. In Pro-
ceedings of the 31st IEEE International Conference on Computer Design (ICCD

’13). 13–19. DOI:https://doi.org/10.1109/ICCD.2013.6657019
[20] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-

stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A Reconfigurable
Fabric for Accelerating Large-scale Datacenter Services. In Proceedings of the
41st Annual International Symposium on Computer Architecture (ISCA ’14).
IEEE Press, Piscataway, NJ, USA, 13–24. DOI:https://doi.org/10.1145/2678373.
2665678

[21] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng
Yu, Tianqi Tang, Ningyi Xu, Sen Song, Yu Wang, and Huazhong Yang. 2016.
Going Deeper with Embedded FPGA Platform for Convolutional Neural Net-
work. In Proceedings of the 24th ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’16). ACM, New York, NY, USA, 26–35.
DOI:https://doi.org/10.1145/2847263.2847265

https://doi.org/10.1109/ISCA.2016.11
https://doi.org/10.1109/MICRO.2016.7783725
https://doi.org/10.1145/1815961.1815993
https://doi.org/10.1145/1815961.1815993
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1109/ISCAS.2010.5537908
https://doi.org/10.1109/ISCAS.2010.5537908
https://doi.org/10.1109/CVPRW.2011.5981829
https://doi.org/10.1109/CVPRW.2011.5981829
https://doi.org/10.1109/FPL.2009.5272559
https://doi.org/10.1145/2925426.2926294
https://doi.org/10.1109/FPL.2016.7577308
https://doi.org/10.1109/ICCD.2013.6657019
https://doi.org/10.1145/2678373.2665678
https://doi.org/10.1145/2678373.2665678
https://doi.org/10.1145/2847263.2847265

Maximizing CNN Accelerator Efficiency Through Resource Partitioning ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

[22] Murugan Sankaradas, Venkata Jakkula, Srihari Cadambi, Srimat Chakradhar, Igor
Durdanovic, Eric Cosatto, and Hans Peter Graf. 2009. A Massively Parallel
Coprocessor for Convolutional Neural Networks. In Proceedings of the 20th
IEEE International Conference on Application-specific Systems, Architectures
and Processors (ASAP ’09). IEEE Computer Society, Washington, DC, USA,
53–60. DOI:https://doi.org/10.1109/ASAP.2009.25

[23] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R. Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A Convolutional Neural Network Accelerator with In-situ Analog Arith-
metic in Crossbars. In Proceedings of the 43rd International Symposium on
Computer Architecture (ISCA ’16). IEEE Press, Piscataway, NJ, USA, 14–26.
DOI:https://doi.org/10.1109/ISCA.2016.12

[24] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung
Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh. 2016. From high-level
deep neural models to FPGAs. In Proceedings of the 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO ’16). IEEE Computer
Society, Washington, DC, USA, 1–12. DOI:https://doi.org/10.1109/MICRO.2016.
7783720

[25] Yongming Shen, Michael Ferdman, and Peter Milder. 2017. Escher: A CNN
Accelerator with Flexible Buffering to Minimize Off-Chip Transfer. In Proceed-
ings of the 25th IEEE International Symposium on Field-Programmable Custom
Computing Machines (FCCM ’17). IEEE Computer Society, Los Alamitos, CA,
USA.

[26] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).

[27] Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, and Xiaowei Li.
2016. C-brain: A Deep Learning Accelerator That Tames the Diversity of CNNs
Through Adaptive Data-level Parallelization. In Proceedings of the 53rd Annual
Design Automation Conference (DAC ’16). ACM, New York, NY, USA, Article
123, 123:1-123:6 pages. DOI:https://doi.org/10.1145/2897937.2897995

[28] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma,
Sarma Vrudhula, Jae-sun Seo, and Yu Cao. 2016. Throughput-Optimized
OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Net-
works. In Proceedings of the 24th ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA ’16). ACM, New York, NY, USA, 16–
25. DOI:https://doi.org/10.1145/2847263.2847276

[29] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. 2015. Going deeper with convolutions. In Proceedings of the 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’15). 1–9.
DOI:https://doi.org/10.1109/CVPR.2015.7298594

[30] Ying Wang, Jie Xu, Yinhe Han, Huawei Li, and Xiaowei Li. 2016. DeepBurn-
ing: Automatic Generation of FPGA-based Learning Accelerators for the Neural
Network Family. In Proceedings of the 53rd Annual Design Automation Confer-
ence (DAC ’16). ACM, New York, NY, USA, Article 110, 110:1-110:6 pages.
DOI:https://doi.org/10.1145/2897937.2898003

[31] Xilinx. 2016. 7 Series FPGAs Memory Resources User Guide. (2016).
[32] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.

2015. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks. In Proceedings of the 23rd ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA ’15). ACM, New York, NY, USA, 161–
170. DOI:https://doi.org/10.1145/2684746.2689060

https://doi.org/10.1109/ASAP.2009.25
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/MICRO.2016.7783720
https://doi.org/10.1109/MICRO.2016.7783720
https://doi.org/10.1145/2897937.2897995
https://doi.org/10.1145/2847263.2847276
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1145/2897937.2898003
https://doi.org/10.1145/2684746.2689060

	Abstract
	1 Introduction
	2 CNN Background
	3 Resource Utilization Problem
	3.1 State of the Art Design
	3.2 Arithmetic Unit Utilization Problem

	4 Multi-CLP Design
	4.1 Multi-CLP Accelerators for CNNs
	4.2 Modeling CLP Cost and Performance
	4.3 Optimization of Multi-CLP Designs

	5 Design and Implementation
	5.1 Convolutional Layer Processor Template

	6 Evaluation
	6.1 Methodology
	6.2 Utilization Benefits of Multi-CLP
	6.3 Detailed Comparison: Single- vs Multi-CLP
	6.4 Model Validation
	6.5 CNN Accelerator Resource Utilization
	6.6 Projections to Future FPGAs

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

