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ABSTRACT
On-chip coherence directories of today’s multi-core systems are
not energy efficient. Coherence directories dissipate a significant
fraction of their power on unnecessary lookups when running
commercial server and scientific workloads. These workloads have
large working sets that are beyond the reach of on-chip caches of
modern processors. Limited to capturing a small part of the
working set, private caches retain cache blocks only for a short
period of time before replacing them with new blocks. Moreover,
coherence enforcement is a known performance bottleneck of
multi-threaded software, hence data-sharing in optimized high-
performance software is minimal. Consequently, the majority of
the accesses to the coherence directory find no sharers in the
directory because the data are not available in the on-chip private
caches, effectively wasting power on the coherence checks. To
improve energy-efficiency for future many-core systems, we
propose TurboTag, a filtering mechanism to eliminate needless
directory lookups. We analyze full-system traces of server and
scientific workloads and find that over 69% of accesses to the
directory find no sharers and can be entirely avoided. Taking
advantage of this behavior, TurboTag achieves a 58% reduction in
the directory’s dynamic power consumption.

Categories and Subject Descriptors: 
C.1.0 [Computer Systems Organization]: Processor Architec-
tures - General

General Terms:
Design, Performance

Keywords: 
Low Power, Coherence, Directory, Bloom, Filter

1. INTRODUCTION
Technological improvements in transistor voltage scaling slowed
down significantly in the recent years, forcing power and energy to
become the main constraints in processor design. To continue
improving processor performance, the architecture should be

modified to integrate multiple cores on-chip; with nearly all
components re-designed for scalability and energy efficiency.

The coherence directory is a component in modern CMPs which is
responsible for maintaining the information about the sharers of a
cache block. To enforce cache coherence, an energy-consuming
directory lookup must be performed for every miss in every private
cache. As the number of on-chip cores increases, both the number
of directory lookups and the energy consumed per lookup increase,
resulting in a super-linear increase in energy with respect to core
count. Today's manufacturers are already faced with a coherence
directory power problem [13]. Furthermore, a fundamental rede-
sign to solve the coherence directory power inefficiency is not
expected in the near future. Therefore, architects need effective
ways to reduce the power consumption of the existing on-chip
directory structures to enable increased core counts for several
technology generations.

We find that coherence directories dissipate a significant fraction
of their power on unnecessary lookups when running commercial
server and scientific workloads. These workloads typically have a
small primary working set that can be captured in a private cache
(32 or 64 KB) and a large secondary working set that does not fit in
on-chip caches of modern processors [8]. Due to the large
secondary working set, the workloads experience many private-
cache misses, causing blocks to be frequently replaced, and rarely
allowing them to remain in the private cache long enough to be
accessed by another core. Therefore, the vast majority of the
lookups in the on-chip coherence directory are unnecessary
because they fail to find a sharer in the directory. Furthermore, in
the cases where blocks are shared, highly optimized code tends to
avoid active sharing and frequent coherence activity. Conse-
quently, active sharing is limited in today’s workloads and the
majority of private cache misses lead to a needless lookup in the
directory because there are no sharers.

In this work, we propose TurboTag, a filtering mechanism for the
coherence directory to eliminate needless lookups. TurboTag is
based on the Bloom filter [3], an imprecise but space-efficient data
structure that tests set membership. TurboTag filters unnecessary
directory accesses using a compact structure that keeps track of
block addresses that are stored in the directory. We use trace-
driven simulation of a multi-core system running server and scien-
tific workloads to evaluate the TurboTag design. We find that
TurboTag is highly effective at eliminating power-hungry directory
lookups, eliminating 69% of all directory accesses and achieving
over 58% reduction in the dynamic power consumption compared
to a directory organization without TurboTag.

The rest of this paper is organized as follows. Section 2 provides
the background on CMP coherence, Section 3 evaluates the oppor-
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tunity to reduce power consumption, and Section 4 discusses the
design of TurboTag and its hardware implementation. We present
the evaluation results in Section 5. Section 6 presents the related
work. We conclude in Section 7.

2. DIRECTORIES IN CMPS
In this work, we consider a tiled CMP where many tiles are
connected in an on-chip interconnect that shuttles messages
between the tiles. Each tile in the system contains a processing
core, a private cache, and a slice of the shared last-level cache as
shown in Figure 1. Along with the shared cache slice, each tile
collocates a slice of the coherence directory that keeps track of
blocks maintained in the private caches. The memory address
space is statically-interleaved among the L2 and directory slices.

Directory organizations can be roughly classified as duplicate-
tag [2] or sparse [7]. A duplicate-tag directory is a cache that keeps
in each of its sets a copy of the tag bits of all blocks residing in the
sets of the private caches with the same index bits. Consequently,
every slice of a duplicate-tag directory needs a number of sets
equal to the number of sets of a private cache and an associativity
equal to the aggregate associativity of all private caches (cores
times private cache associativity). Because a duplicate-tag direc-
tory only stores the necessary tag bits, its size is minimal, but it
needs an associativity proportional to the number of cores. Sparse
directories limit the associativity of the directories by increasing
the number of sets of the directory. However, because the distribu-
tion of addresses in a directory is not uniform, sparse directories
increase the number of sets by a factor greater than the factor by
which the associativity is reduced. Additionally, due to the reduced
associativity of sparse directories, and consequently, the lack of
correspondence between a directory entry and a block frame,
entries in a sparse directory must also store a representation of
sharers (usually a bit-vector of sharers) in addition to the tag bits.

Increases in the on-chip core count and associativity of core-
private caches [16] have substantially increased the dynamic
power consumption of the on-chip coherence directories. For every
read miss in a private cache, a directory access must be performed
in parallel with the shared last-level cache lookup to ensure that
another private cache does not hold a more recent version of the

accessed block. Similarly, for every write miss in a private cache, a
directory access is needed to find any existing sharers of the
written block to invalidate their copies. The growing core count
increases the aggregate number of directory accesses, while both
growth of the core count and the private cache associativity [16]
increase the energy used by each directory access, with the two
effects substantially increasing the power consumption of the
aggregate on-chip directory as CMPs continue to scale.

3. WHY FILTER DIRECTORY LOOKUPS?
A directory handles coherence events specific to the coherence
protocol. We examine the cases of read, write, upgrade, and evic-
tion requests. For every private-cache miss, a read, write, or
upgrade request is sent to the directory. For every evicted block
from a private cache, an eviction request is sent to the directory.
For upgrade and eviction requests from the private caches, a corre-
sponding entry is known to exist in the directory, making a search
operation unnecessary (i.e., a backward pointer in the cache can
specify the location of the entry in the directory). Consequently, all
directory lookups happen as a result of read and write requests. On
a read request, a sharer must be added to an existing entry; on a
write request, shared copies referenced in an existing entry must be
invalidated; and, in both cases, a new entry must be allocated if a
reference to the accessed block is not found during the lookup.

Because private caches are small, workload working sets are large,
and multi-threaded workloads are highly optimized, most of the
private-cache misses are capacity or compulsory misses that result
in directory lookups that fail to find a corresponding entry in the
directory [11]. Therefore, the majority of the lookups performed on
read and write requests waste energy. We examined the directory
access patterns of a 16-core system with a shared L2 cache and
statically-interleaved 16-bank duplicate-tag directory (system and
workload details can be found in Table 1). Figure 2 shows the
directory accesses that did not find a corresponding entry in the
duplicate-tag directory as a fraction of all read and write requests
observed by the directory. We confirm that, on average, more than
69% of requests do not find the accessed block in the directory,
wasting the majority of the energy spent on directory lookups. It
should be noted that sparse directories waste a bigger fraction of
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FIGURE 1. Example of a CMP. Upper-level caches are private to 
processor cores. Private-cache coherence is enforced with a 
directory structure, located next to the lower-level shared cache.

FIGURE 2. Filtering opportunity. Percentage of coherence 
directory data accesses that do not find the searched block.
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their power on useless lookups because, compared to duplicate-tag
directories, they map fewer (at best map as many) entries.

Due to the fact that the vast majority of power-hungry directory
lookups are not necessary, a mechanism to accurately determine if
an entry is in the directory and consequently skip the needless
directory lookups can significantly reduce power consumption.

4. TURBOTAG
We propose to split the coherence directory into two structures: a
filter, responsible for determining whether or not the directory
access will find a match and the directory that contains sharer
information. The filter acts as power-efficient lookup structure,
confirming that a match in the directory does not exist and elimi-
nating the need for a costly directory access. As the basis of the
filter, we use the Bloom filter, a space- and power-efficient data
structure to test set membership.

4.1 Bloom Filters - Background
Bloom filters (or counting Bloom filters) are probabilistic data
structures used to test whether an element is not a member of a
set [3]. The structure of a counting Bloom filter is shown in
Figure 3(a). The filter structure comprises an array of m buckets,
initially all 0, and k hash functions (each bucket has L bits). To
insert an element into the filter, k buckets corresponding to the
element’s hash values are incremented (each hash function
produces a log(m)-bit index into the bucket array). A membership
test checks the k buckets corresponding to the hashed values of the
lookup key. If at least one of the k buckets is zero, the element is
not in the set. If all k buckets are non-zero, membership is
unknown and the element may be in the set. In case of an overflow
in a bucket, the bucket’s counter should not be decremented until
all elements are removed from the counting Bloom filter.

A hardware implementation of a counting Bloom filter requires
using an SRAM with k read/write ports or performing a multi-
cycle operation to read and write the contents once per cycle for k
cycles. A hardware realization of the Bloom filter technique that
uses multiple independent parallel single-ported SRAMs [15]
offers a less complex approach. The parallel Bloom filter imple-
mentation splits the bucket list into k independent banks (see
Figure 3(b)). Each hash function is used with only one of the
SRAM banks, independent of other hash functions. This approach

has the advantage of using single-ported SRAMs and completing
the insertion and removal operations without complex state
machines. Although the implementation may result in a slight
increase in the rate of false positive results from the filter, in prac-
tice, the probability of false positives is unaffected as long as k/m is
much less than 1.0 [15].

4.2 TurboTag Design
The TurboTag augments every directory slice in a CMP with a
counting Bloom filter to keep track of addresses in the underlying
coherence directory as shown in Figure 4. Coherence events
update the filter. When the last sharer evicts a block (via clean
eviction or dirty writeback), the corresponding buckets in the filter
are decremented. Upgrade requests do not consult the filter and are
handled directly by the directory. Whenever a new entry is allo-
cated in a directory as a result of a read or write event, the
corresponding counters in the filter are incremented.

TurboTag enables a power-efficient lookup mechanism to assert
that a lookup in the underlying directory is not needed. In case the
filter indicates that an entry potentially exists in the directory, a
directory search is performed to ensure correct operation of the
system. On every read and write event, the filter is consulted prior
to a search in the directory structure. If the filter indicates that the
accessed block is not present in the directory, the directory lookup
is skipped, reducing directory power consumption. The majority of
read and write accesses to the directory search for blocks that are
not present in the directory. Therefore, TurboTag eliminates the
majority of unnecessary directory searches on these requests. 

It is important to note that, the number of buckets in the filter and
the number of elements added to it determine the rate of false posi-
tives. When the filter is undersized, it will more frequently indicate
that an entry may be present in the set, when it is actually absent,
degrading the effectiveness of the filter. However, regardless of
filter ineffectiveness, correct system operation is always preserved.

5 EVALUATION
5.1 Methodology
We analyze the directory access patterns using simulation of a tiled
CMP that executes unmodified applications and operating system
in FLEXUS [19]. FLEXUS extends the Virtutech Simics functional
simulator with models of processing tiles, NUCA cache, on-chip
protocol controllers and on-chip interconnect. We summarize our
tiled architecture parameters in Table 1 (left).

The simulated system runs the Solaris 8 operating system and
executes the workloads listed in Table 1 (right). We include a
range of server and scientific workloads in our evaluation. We note
that our system configuration is similar to modern hardware,
although we conservatively select parameters that give TurboTag
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the least benefit. For example, today’s server processors use 2-, 4-,
and even 8-way [16] set-associative L1 data caches. While private
L1 caches with higher associativity allow more benefit from
filtering directory access, we evaluate 2-way caches to stress the
benefits of our approach even under pessimistic assumptions.

TurboTag benefits apply to today’s systems using the duplicate-tag
organization [2][13] and are even more effective for sparse directo-
ries [7] that are likely to be used in near-future designs. In this
work, we limit our evaluation of TurboTag to the duplicate-tag
directory only, noting that the benefits of TurboTag are strictly
greater for sparse, limited [7], and other [21] directory organiza-
tions that do not store precise sharer information (see Section 2).

We use CACTI 5.3 [18] for all power estimates, using the 45nm
technology node. Because directory accesses are not on the critical
path of the system (see detailed analysis in Section 5.4), we
assume ITRS-LSTP (low standby power) transistors to estimate
the delay and power consumption. ITRS-LSTP transistors dissi-
pate less static power compared to other models but are slower
than their ITRS-HP (high performance) counterparts. To estimate
directory power, we consider only the dynamic-power consump-
tion of SRAM storage that contains directory tags, neglecting the
power consumption of comparators and supporting logic. Our

Bloom filter has two banks and uses 4-bit buckets. However,
CACTI is limited to structures with a minimum output of 8 bits.
Due to this limitation, we estimate the power of the Bloom filter by
modeling an 8-bit SRAM structure and linearly scaling it to 4 bits.

5.2 Sensitivity Analysis
TurboTag performance is inversely proportional to the false-posi-
tives rate, depending primarily on the number of buckets used in
the Bloom filter. Figure 5 (left) shows the Bloom filter effective-
ness for a varying number of filter buckets for each workload.
Beyond 32K buckets, the false-positives rate drops to zero, effec-
tively reaching the maximum filter opportunity (Figure 2) at 64K
buckets. Across all workloads, a nearly identical trend is visible in
the relationship of the filter accuracy and the filter size. Significant
accuracy gains can be seen as the filter size is increased to 8K
buckets, with only marginal gains up to 16K and beyond.

To better demonstrate the power trade-offs of the TurboTag design,
the filter efficiency data shown in Figure 5 (left) are used to
compute the power consumption of TurboTag and the underlying
directory and are shown together in Figure 5 (right). Although a
greater number of buckets decreases the rate of false positives,
which reduces the number of accesses to the underlying coherence
directory and saves energy, accessing the larger filter structure

TABLE 1. System and application parameters.

CMP Size 16-cores

Processing Cores UltraSPARC III ISA; 2GHz

L1 Caches split I/D, 64KB 2-way
64-byte blocks, write-back

L2 NUCA Cache 1MB per core, 16-way
64-byte blocks

Main Memory 3 GB memory, 8KB pages

Memory Controller one per 4 cores
round-robin page interleaving

Interconnect 2D folded torus (4x4)

OLTP – Online Transaction Processing (TPC-C v3.0)

DB2
IBM DB2 v8 ESE,

100 warehouses (10 GB), 64 clients, 2 GB buffer pool

Oracle Oracle 10g Enterprise Database Server
100 warehouses (10 GB), 16 clients, 1.4 GB SGA

Web Server (SPECweb99)

Apache Apache HTTP Server v2.0.
16K connections, fastCGI, worker threading model

Zeus 16K connections, fastCGI
DSS – Decision Support Systems (TPC-H)

Qry 2, 16, 17 IBM DB2 v8 ESE, 480 MB buffer pool, 1GB 

Scientific

em3d 768K nodes, degree 2, span 5, 15% remote

ocean 1026x1026 grid, 9600s relaxations, 20K res., err tol 1e-07
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FIGURE 5. (left) Filter efficiency. The accuracy of the filter is 
shown as a function of Bloom filter size. The 64K filter is 
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itself requires more energy. As increasing the number of buckets
enables higher filtering accuracy, the combined power consump-
tion of TurboTag and the underlying directory quickly decrease,
leveling off at 8K. Beyond 8K buckets, the additional power dissi-
pation of the filter is sufficient to overcome the benefit of
marginally greater filter efficiency. We note that our directory-
power model accounts only for the storage power dissipation and
not for the power dissipation of comparators and other directory
logic, which may further increase the per-access savings achieved
by TurboTag, causing a larger filter design to yield maximal power
savings. Additionally, we note that a 3-bit bucket design has low
overflow rates; depending on the mechanism and frequency of
clearing overflows, a 3-bit design may be beneficial overall, and
would also push the optimal design point toward a larger filter size. 

5.3 Power Savings
We compare the power dissipation of the baseline directory
enhanced with TurboTag with 8K buckets and the power dissipa-
tion of the baseline directory without TurboTag. The dynamic
power consumption is computed based on access frequency of
each structure. For TurboTag, every directory access incurs four
accesses to the Bloom filter, two to read filter results, and two to
modify filter contents. Figure 6 shows a side-by-side comparison
of the directory with and without TurboTag, further breaking down
the power dissipation of TurboTag into the Bloom filter and direc-
tory components. We observe that the Bloom filter efficiently
handles a large fraction of the directory requests, preventing them
from accessing the underlying directory. On average, TurboTag
reduces the directory power consumption by 58%.

5.4 Performance Considerations
Accessing a Bloom filter before the directory access affects the
total directory latency. Although the accesses filtered by TurboTag
are resolved more quickly than the base system’s directory,
accesses that are first checked by the Bloom filter and then by the
underlying directory experience an increased latency. For accesses
that consult the underlying directory, an extra delay of the Bloom
filter is added, and for accesses that are filtered by the Bloom filter,
the latency is reduced to the access time of the filter alone. We use
CACTI to estimate the total access time of the Bloom filter and
directory storage structures and compare it to the access time of the

L2 cache slice which is performed in parallel with the directory
lookup. For the worst case, the combined delay of the Bloom filter
and the directory is approximately 2.3ns, whereas the tag access of
a 1MB L2 cache slice requires 4.5ns. We conclude that, despite the
additional filter latency, the directory access remains off of the crit-
ical path and does not negatively affect system performance.

5.5 Future Outlook
We estimate the impact of TurboTag on the directory power dissi-
pation of future CMPs by examining the filtering opportunity for a
range of private cache sizes. Figure 7 presents the per-workload
filtering opportunity for 32KB and 64KB caches that resemble L1
caches built today; as expected, smaller cache sizes increase the
filter opportunity as a result of a reduction in the aggregate storage
capacity of the private caches. Additionally, we present filtering
opportunity for 128KB and 256KB caches that are likely candi-
dates for the lower level of the multi-level private hierarchies of
today’s CMPs [13][16]. We note that filtering opportunity remains
high as the aggregate cache size is increased exponentially.

Overall, we find that multi-threaded server and scientific work-
loads tend to avoid sharing, leaving TurboTag filtering opportunity
largely unaffected as the aggregate cache size increases. Unlike
other workloads, OLTP DB2 exhibits a non-trivial amount of
active sharing between threads, decreasing the filtering opportu-
nity as the aggregate cache capacity increases. However, we expect
that, as the number of on-chip cores grows, the latency of on-chip
communication will push developers to further optimize code and
avoid thread communication, a change that will further increase
TurboTag filtering opportunity.

6. RELATED WORK
In this work, we examined the potential of TurboTag to reduce the
power consumption of the duplicate-tag coherence directory from
Barroso et al. [2]. However, the TurboTag technique directly
applies to other directory organizations such as the sparse directory
organization [7] from Gupta et al. and the tagless directory [21]
from Zebchuk et al. Kin et al. used a small filter cache [9] to
reduce power consumption of a larger cache. Whereas filter
caching relies on locality of reference of filter requests, TurboTag
filters requests that have no locality in the directory accesses,
filtering requests that will not be found in the directory. The
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behavior of TurboTag is therefore more closely resembles
detecting virtual synonyms with a Bloom filter [20] proposed by
Woo et al. and predicting cache misses [12] explored by Peir et al.

A number of prior mechanisms relied on the tendency of coher-
ence requests to not find a matching entry. Moshovos et al.
proposed Jetty [11] to filter snoop requests and RegionScout [10]
that relied on regions of addresses having similar behavior. Jetty
was later evaluated by Ekman et al. in the context of CMPs [6].
Many other researchers evaluated reducing snoop traffic via
filtering. Cantin et al. proposed region-based mechanisms to avoid
coherence traffic [4]. Salapura et al. proposed improving snoop
filter accuracy [14] by taking advantage of temporal locality in
snoop requests. Strauss et al. implemented snoop filtering [17] for
improved performance and energy. Chinthamani and Iyer evalu-
ated snoop filters on small-scale SMPs [5]. Ballapuram et al. used
Bloom filters and software hints [1] to reduce snoop traffic. Rather
than filtering snoop messages or snoop-induced lookups in small-
scale systems, TurboTag reduces coherence activity energy in the
coherence directory of larger-scale CMPs.

7. CONCLUSIONS
In this work, we showed that coherence directories dissipate a
significant fraction of their power on needless coherence checks.
Although coherence checks on each L1 cache miss are required for
correct operation, 69% of the private-cache misses find no sharer
in the directory, effectively wasting the energy for the coherence
checks. To reduce wasted energy in the directory, we proposed
TurboTag, a counting Bloom filter to eliminates needless directory
accesses. We evaluated the design of TurboTag on full-system
traces of server and scientific workloads and found that TurboTag
avoids nearly all directory searches for non-shared blocks,
eliminating over 69% of accesses to the underlying directory and
achieving a 58% reduction in the dynamic power consumption.
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