
Appears in Proceedings of the 41st Annual IEEE/ACM Int’l Symposium on Microarchitecture, 2008

1

Abstract—L1 instruction-cache misses pose a critical performance
bottleneck in commercial server workloads. Cache access latency
constraints preclude L1 instruction caches large enough to
capture the application, library, and OS instruction working sets
of these workloads. To cope with capacity constraints, researchers
have proposed instruction prefetchers that use branch predictors
to explore future control flow. However, such prefetchers suffer
from several fundamental flaws: their lookahead is limited by
branch prediction bandwidth, their accuracy suffers from geomet-
rically-compounding branch misprediction probability, and they
are ignorant of the cache contents, frequently predicting blocks
already present in L1. Hence, L1 instruction misses remain a
bottleneck.

We propose Temporal Instruction Fetch Streaming (TIFS)—a
mechanism for prefetching temporally-correlated instruction
streams from lower-level caches. Rather than explore a program's
control flow graph, TIFS predicts future instruction-cache misses
directly, through recording and replaying recurring L1 instruc-
tion miss sequences. In this paper, we first present an information-
theoretic offline trace analysis of instruction-miss repetition to
show that 94% of L1 instruction misses occur in long, recurring
sequences. Then, we describe a practical mechanism to record
these recurring sequences in the L2 cache and leverage them for
instruction-cache prefetching. Our TIFS design requires less than
5% storage overhead over the baseline L2 cache and improves
performance by 11% on average and 24% at best in a suite of
commercial server workloads.

Keywords: instruction streaming, fetch-directed, caching, prefetching

1 INTRODUCTION

L1 instruction-cache misses pose a critical performance
bottleneck in commercial server workloads [1, 11, 12, 15, 17,
31, 33]. Commercial server workloads span multiple binaries,
shared libraries, and operating system code and exhibit large
instruction working sets that overwhelm L1 instruction caches
[12, 17, 31]. Although total on-chip cache capacity is growing,
low access latency and high fetch bandwidth requirements
preclude enlarging L1 instruction caches to fit commercial
application working sets. As a result, commercial server work-
loads incur instruction-related delays in the memory system
that account for as much as 25%-40% of execution time [12].

Instruction-cache misses are particularly expensive because
they contribute to system performance loss in multiple ways.
First, instruction fetch stalls directly prevent a core from
making forward progress because instructions are not available
for dispatch. Unlike data accesses, which can be overlapped
through out-of-order execution, instruction fetch is on the crit-

ical path of program execution, and nearly the entire latency of
an L1 instruction miss is exposed. Second, due to lower
average ROB occupancy, instruction-fetch stalls reduce the
number of load instructions simultaneously present in the ROB,
thereby indirectly reducing performance through a decrease in
memory-level parallelism.

To improve fetch unit performance despite limited instruc-
tion cache capacity, researchers have proposed a variety of
hardware prefetching schemes. The widely-implemented next-
line instruction prefetcher [29], despite its simplicity, substan-
tially reduces L1 instruction-cache misses in commercial server
workloads [17], but is only effective for straight-line code.
More advanced instruction prefetchers can predict discontin-
uous control flow by using the branch predictor to explore a
program’s control flow graph ahead of the fetch unit [5, 24, 31,
32], prefetching the instruction-cache blocks encountered along
the predicted path into the L1 cache.

Although state-of-the-art hardware prefetchers eliminate
many instruction misses, they suffer from four fundamental
flaws that limit their coverage and lookahead. First, the branch
predictors at the core of these prefetchers predict only a few
branches per cycle, limiting instruction prefetch lookahead.
Second, branch predictors issue predictions at basic block
rather than cache block granularity. Substantial long-range
prediction efficiency is lost when exploring control flow within
an instruction-cache block and around inner loops. Third,
misprediction probability compounds geometrically, limiting
prefetch accuracy. Finally, branch predictors are ignorant of
cache contents, predicting all future control flow. As a result,
the vast majority of predicted blocks are already present in L1,
incurring prediction overhead or requiring filtering and lookup
mechanisms.

Rather than exploring a program’s control flow graph, we
propose to predict the L1 instruction-cache miss sequences
directly. Our key observation, inspired by recent studies of data
prefetching [7, 8, 21, 30, 37], is that repetitive control flow
graph traversals lead to recurring instruction-cache miss
sequences, much like repetitive data-structure traversals lead to
recurring data-cache miss sequences. We show that nearly all
instruction-cache misses, including control transfers to non-
contiguous instructions, occur as part of such recurring
sequences, which we call temporal instruction streams. In
contrast to the instruction streams in [22, 23, 27], which
comprise a sequence of contiguous basic blocks, temporal

Temporal Instruction Fetch Streaming
Michael Ferdman1 3, Thomas F. Wenisch2,

Anastasia Ailamaki1 3, Babak Falsafi3 and Andreas Moshovos4
1Computer Architecture Lab (CALCM), Carnegie Mellon University, Pittsburgh, PA, USA

2Advanced Computer Architecture Lab (ACAL), University of Michigan, Ann Arbor, MI, USA
3Parallel Systems Architecture Lab (PARSA), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

4Department of ECE, University of Toronto, Toronto, Canada

Appears in Proceedings of the 41st Annual IEEE/ACM Int’l Symposium on Microarchitecture, 2008

2

instruction streams comprise recurring sequences of instruc-
tion-cache blocks that span discontinuities (taken branches)
within the instruction address sequence. We record temporal
instruction streams as they are encountered, and replay them to
predict misses, eliminating the inefficiencies that arise through
reconstructing the sequences indirectly with branch predic-
tions. Our hardware design, Temporal Instruction Fetch
Streaming (TIFS), embeds the storage required to track
temporal streams in the L2 tag and data arrays, imposing less
than 5% storage overhead. Through a combination of informa-
tion-theoretic analysis of repetition in instruction-cache miss
sequences, trace-driven hardware simulation, and cycle-accu-
rate modeling of a CMP system running commercial server
workloads, we demonstrate:

• Recurring streams of instruction misses. We demonstrate
that 94% of instruction-cache misses repeat a prior miss
stream, with a median stream length of over 20 cache blocks.

• Lookahead limits of branch-predictor-directed prefetch.
We find that, for approximately one-third of instruction-
cache misses, more than 16 non-inner-loop branches must be
correctly predicted to achieve a four-cache-miss lookahead.
TIFS lookahead is not limited by the branch predictor.

• I-streaming effectiveness exceeding the state-of-the-art.
TIFS operates on instruction-cache misses rather than the
basic-block sequence, improving accuracy, bandwidth effi-
ciency, and lookahead of instruction-cache prefetching.
TIFS improves commercial workload performance by 5%
on average and 14% at best over a system with fetch-directed
prefetching [24] and by 11% on average and 24% at best over
one with next-line instruction prefetching.

The remainder of this paper is organized as follows. We
demonstrate the need for improvement over next-line instruc-
tion prefetching in Section 2. We analyze examples of code
patterns that can lead to improved performance with TIFS in
Section 3. In Section 4, we present an information-theoretic
opportunity study to characterize repetition in instruction-miss
streams. Based on this study, we develop a hardware design for
TIFS in Section 5. We evaluate the effectiveness of TIFS on
real workloads in Section 6. In Section 7, we discuss related
work, and in Section 8 we conclude.

2 THE NEED FOR IMPROVED INSTRUCTION PREFETCHING

To motivate the need for further improvements to instruc-
tion prefetching, we begin with a preliminary performance
study of the sensitivity of commercial server workloads to
instruction prefetch accuracy beyond what is obtained with the
next-line instruction prefetchers in current processors. To
measure workload performance sensitivity, we simulate a
simple probabilistic prefetching model and vary its coverage.
For each L1 instruction miss (also missed by the next-line
instruction prefetcher), if the requested block is available on
chip, we determine randomly (based on the desired prefetch
coverage) if the request should be treated as a prefetch hit. Such
hits are instantly filled into the L1 cache. If the block is not
available on chip (i.e., this is the first time the instruction is
fetched), the miss proceeds normally. A probability of 100%

approximates a perfect and timely instruction prefetcher. We
include three commercial server workload classes in our study:
online transaction processing (OLTP), decision support (DSS),
and web serving (Web). We provide complete details of our
workloads in Section 4.1 and our simulation infrastructure and
performance measurement methodology in Section 6.1.

We plot results of this study in Figure 1. As these results are
derived from sampled simulations and are subject to sample
variability (see Section 6.1), we plot linear regressions to illus-
trate their trend. Our results demonstrate that both online
transaction processing (OLTP) workloads and Web-Apache are
highly sensitive to instruction prefetching—their performance
improves by over 30% with a perfect instruction prefetching
mechanism. In decision support system (DSS) queries, and in
Web-Zeus, the instruction working set is smaller, yielding less
sensitivity. Overall, it is clear that augmenting next-line instruc-
tion prefetching with a more capable mechanism can have
substantial performance impact.

3 DRAWBACKS OF EXISTING INSTRUCTION PREFETCHERS
To provide better intuition for the drawbacks of existing

instruction prefetch mechanisms, we perform an analysis of a
few common-case scenarios where a processor equipped with
next-line and branch-predictor–directed prefetchers may expe-
rience stalls due to instruction-cache misses. We perform this
investigation by extracting call-stack traces at instruction-cache
misses of interest, and then use application binary and kernel
symbol tables to map the call stack to function names. The
mapping enables us to locate and analyze the source code (for
Apache and Solaris) at these misses.

The specific examples we describe here do not by them-
selves account for a majority of processor front-end stalls
(though frequent, they still represent a small fraction of the
overall miss profile). Rather, each example illustrates a
common-case behavior that arises in many program contexts.
Analysis of these cases offers a deeper look at the drawbacks of
existing techniques.

3.1 Unpredictable sequential fetch
Surprisingly, both the next-line and the branch-predictor–

directed prefetchers sometimes fail to hide instruction-cache
miss latency even in functions with sequential instruction flow.
For a next-line instruction prefetcher, each fetch discontinuity

OLTP DB2 OLTP Oracle

Web Apache Web Zeus

DSS DB2 Q2 DSS DB2 Q17

1

1.1

1.2

1.3

1.4

1.5

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Coverage (%)

S
p

e
e
d

u
p

 o
v
e
r

N
e
x
t-

li
n

e
 P

re
fe

tc
h

e
r

Figure 1. Opportunity. Application performance improvement as an
increasing fraction of L1 instruction misses are eliminated.

Appears in Proceedings of the 41st Annual IEEE/ACM Int’l Symposium on Microarchitecture, 2008

3

can lead to such stalls. Upon a control transfer at the disconti-
nuity, the fetch unit retrieves the target instruction, and the
next-line instruction prefetcher initiates a prefetch of the next
few cache blocks. Often, execution of instructions in the first
cache block completes before prefetches of the subsequent
blocks complete, and some instruction-fetch latency is
exposed. It is this scenario that motivates the discontinuity
prefetcher [31]. The discontinuity prefetcher and more sophisti-
cated fetch-directed prefetchers [5, 24, 31, 32] have the
potential to eliminate these stalls if they provide sufficient
lookahead to predict the critical discontinuity. However, in
branch-heavy code, these prefetchers cannot run far enough
ahead of the fetch unit to hide all instruction-fetch latency.

The Solaris kernel scheduling code is critical to commercial
server workload performance. An example of a frequently-
invoked helper function from the scheduler code is
highbit(), which calculates the index of the most-significant
asserted bit in a double-word through a series of mask and
arithmetic operations organized in a sequence of branch
hammocks (shown in Figure 2 (a)). Although highbit()
spans only a few consecutive instruction-cache blocks, and
execution always proceeds through all blocks, the last block
incurs an instruction-cache miss in a large fraction of invoca-
tions, even with a fetch-directed prefetcher. The complex
control flow in the scheduling code preceding the invocation of
highbit() and the dense branch hammocks within it exceed
the prefetchers’ lookahead capabilities. Moreover, because the
scheduling code begins with synchronization instructions that
drain the processor’s reorder buffer, the instruction-cache miss
in highbit() is fully exposed and incurs a large penalty.

The sequence of instruction-cache misses experienced
while executing highbit() is always the same, and there are
only a limited number of call sites from which this function is
invoked. It is therefore possible for a hardware mechanism to
record the sequences of misses that lead up to and include the
highbit() function. Whenever a sequence of cache misses
that includes the highbit() function is detected within the
scheduler code, the previously-recorded sequence can be used
to predict all of the needed cache blocks before any of the
instructions of highbit() are executed. Therefore, unlike

next-line and branch-predictor–directed prefetchers whose
lookahead is limited by the number of branches that must be
traversed, temporal instruction streaming can properly prefetch
the function’s instruction-cache misses long before their use,
eliminating all of highbit()’s instruction-cache stalls.

3.2 Re-convergent hammocks
Predictor-directed prefetchers are not effective in code

regions that exhibit series of if-then-else statements that re-
converge in the program’s control flow (hammocks). The data-
dependent branches in such regions cause frequent branch
mispredictions, which thwart branch-predictor-directed
prefetch methods. The core_output_filter() function
found in the Apache 2.x web server illustrates this behavior.

Because of its central nature, core_output_filter() is
invoked from numerous call sites and contains a multitude of
highly data-dependent code paths and loops. The complexity of
core_output_filter() results in a large instruction
working set, over 2.5KB for this function alone, in addition to a
variety of helpers called from within its body. The “if” state-
ments in core_output_filter() serve as an example of
conditional branches that frequently cause processor stalls at
the re-convergence points. Because branch outcomes are data-
dependent and change with each invocation of the function,
branch predictors cannot look beyond the loops, conditional
paths, and sub-routine calls within branch hammocks in this
code. Branch mispredictions impede correct prefetches by a
fetch-directed mechanism; predicted prefetch paths are
discarded and the fetch-directed prefetcher restarts its control-
flow exploration each time a branch resolves incorrectly.
Hence, despite a fetch-directed prefetcher, execution of
core_output_filter() exhibits frequent instruction-cache
misses at the hammock re-converge points (Figure 2 (b)).

The hammocks in core_output_filter() eventually
re-converge on the same path. While the specific branch
outcomes are unpredictable, having a global view of the previ-
ously encountered cache-miss sequence enables prediction of
future misses at the hammock re-convergence points. In fact,
because the re-convergence points are present in all previously
recorded miss-address sequences, correct predictions can be
made by using any one of the sequences. Furthermore, the
complex, data-dependent computations that are present in
core_output_filter() are slow, allowing sufficient time
for a temporal instruction-stream prefetcher to fully hide all
instruction-miss latency.

4 OPPORTUNITY FOR TEMPORAL INSTRUCTION FETCH
STREAMING

Our analysis of the performance losses from instruction-
cache misses demonstrates the need to address on-chip instruc-
tion access stalls such as those described in Section 3. The key
idea of TIFS is to record streams of L1 instruction misses,
predict when these streams recur, and then stream instructions
from lower-level caches prior to explicit fetch requests. In this
section, we describe an information-theoretic analysis of repeti-
tion in instruction-cache misses to determine the potential to
eliminate misses with TIFS.

helper()

core_output_filter()highbit()

(a) (b)

I-cache block
boundary

conditional
branch

I-cache
miss

Figure 2. Instruction fetch example. Examples of cache misses incurred
by next-line and branch-predictor–directed prefetching with unpredictable
sequential fetch (a) and re-convergent hammocks (b).

Appears in Proceedings of the 41st Annual IEEE/ACM Int’l Symposium on Microarchitecture, 2008

4

4.1 Opportunity study methodology
TIFS relies on the repetition in L1 instruction miss

sequences. To determine the opportunity to eliminate misses
with TIFS, we study the amount of repetition in traces of the L1
instruction-cache misses of commercial server workloads.
Table I enumerates the details of our workload suite. We collect
traces with the FLEXUS full-system simulation infrastructure
[38]. We trace the DSS queries in their entirety, and four billion
instructions (one billion per core) from the remaining work-
loads. Our traces include all user and OS instruction fetches.
We study a 4-core single-chip CMP with split 64 KB 2-way set-
associative L1 caches and 64-byte blocks, and a next-line
instruction prefetcher that continually prefetches two cache
blocks ahead of the fetch unit (other model parameters do not
affect trace collection). A “miss” is an instruction fetch that
can’t be satisfied by the L1 instruction cache or next-line
instruction prefetcher.

We apply an information-theoretic approach to quantify
miss-stream repetition. Like similar studies of repetitive
streams in L1 data accesses [6], off-chip data misses [35, 36],
and program paths [16], we use the SEQUITUR [10] hierar-
chical data compression algorithm to identify repetitive sub-
sequences within the miss-address traces. SEQUITUR
produces a grammar whose production rules correspond to
repetitions in its input. Hence, grammar production rules corre-
spond to recurring miss-address streams.

4.2 Miss repetition
We apply SEQUITUR to quantify the maximum opportu-

nity for TIFS. Figure 3 shows a categorization of instruction
misses based on whether or not they repeat a prior temporal
miss stream. Non-repetitive misses do not occur as part of a
repetitive stream (i.e., they never occur twice with the same
preceding or succeeding miss address). On the first occurrence
of a repetitive stream, we categorize the misses as New. On
subsequent occurrences, the first miss in the stream is catego-
rized as Head and the remaining misses as Opportunity. We
distinguish Head and New from Opportunity because our hard-
ware mechanisms are not be able to eliminate these misses due
to training and prediction-trigger mechanisms. An example
temporal miss stream and categorization appear in Figure 4.

Our SEQUITUR analysis reveals that nearly all instruction
misses, on average 94%, are part of a recurring stream of
instruction-cache misses that may be eliminated by TIFS.
Opportunity is highest in OLTP workloads, which have the
largest instruction working sets among our workloads. This
offline trace analysis demonstrates the highly repetitive nature
of instruction execution—the same execution paths incur the
same temporal miss streams over and over.

4.3 Stream length
The length of repetitive access sequences directly translates

to prefetch coverage that a memory streaming mechanism can
achieve by predicting that sequence. The ability to follow arbi-
trarily long streams by periodically requesting additional
addresses distinguishes temporal streaming [35, 36, 37] from
prefetching approaches that only retrieve a constant number of
blocks in response to a miss (e.g., [7, 21, 30]). Without this
ability, the system would incur one miss for each group of
prefetched blocks. Furthermore, long streams improve prefetch
timeliness—after a stream head is detected, a simple rate-
matching mechanism enables the prefetcher to retrieve instruc-
tion-cache blocks ahead of the fetch unit for the rest of the
stream [37].

Figure 5 shows the cumulative distribution of recurring
stream lengths as identified by SEQUITUR. The stream lengths
shown in Figure 5 reflect only non-sequential instruction block
references; all sequential misses are removed from the traces to
simulate the effect of a perfect next-line instruction prefetcher
(stream lengths roughly double when sequential blocks are not
removed). The SEQUITUR analysis confirms that instruction-
miss streams are long—for example, in OLTP-Oracle, the
median length is 80 perfectly-repeating non-sequential blocks.
In comparison, prior work reports that off-chip temporal data-
miss streams exhibit a median length of 8 to 10 blocks [36].

Online Transaction Processing (TPC-C)
Oracle Oracle 10g Enterprise Database Server, 100 warehouses

(10 GB), 16 clients, 1.4 GB SGA
DB2 IBM DB2 v8 ESE, 100 warehouses (10 GB), 64 clients,

2 GB buffer pool
Decision Support (TPC-H on DB2 v8 ESE)
Qry 2 Join-dominated, 480 MB buffer pool
Qry 17 Balanced scan-join, 480 MB buffer pool
Web Server (SPECweb99)
Apache Apache HTTP Server 2.0, 4K connections, FastCGI,

worker threading model
Zeus Zeus Web Server v4.3, 4K connections, FastCGI

TABLE I. COMMERCIAL SERVER WORKLOAD PARAMETERS.

0%

20%

40%

60%

80%

100%

D
B

2

O
ra

c
le

Q
ry

2

Q
ry

1
7

A
p
a
c
h
e

Z
e
u
s

OLTP DSS DB2 Web

%
 L

1
 M

is
s
e
s

Opportunity Head New Non-repetitive

Figure 3. Opportunity. The opportunity to eliminate misses through TIFS
as revealed by our information-theoretic analysis of miss-address repetition.

w x y z w x y z w x y zp q r s

{ { {

{

Non-repetitive

New

Head

Opportunity

{{{

Figure 4. Example of opportunity accounting.

Appears in Proceedings of the 41st Annual IEEE/ACM Int’l Symposium on Microarchitecture, 2008

5

4.4 Stream lookup heuristics
The SEQUITUR opportunity study identifies all recurring

streams present in the miss sequence. Under some circum-
stances, such as divergent control flow, multiple distinct
repetitive streams begin with the same head address.
SEQUITUR always identifies the best match among these
alternatives—it measures the upper bound of repetition, and
hence represents perfect stream lookup. In contrast, a practical
hardware streaming mechanism must use a heuristic to deter-
mine which previously-seen stream among all distinct prior
alternatives should be fetched upon a subsequent miss to the
head address.

To guide the design of our streaming hardware, we consider
several possible heuristics for choosing the correct stream. The
results of our comparison are shown in Figure 6. The First
policy associates a head address to the first stream (earliest in
program order) that SEQUITUR identifies as starting with that
address. Digram uses the second address, in addition to the
head address, to identify which stream to follow. The Recent
heuristic continually re-associates a miss address with the
most-recently encountered stream headed by that address.
Finally, Longest associates a miss address with the longest
stream to ever occur following that address. Opportunity is the
bound on repetition established in Figure 3.

Our study reveals that the Longest policy is most effective.
Unfortunately, we are unaware of a practical implementation of
this heuristic, because hardware mechanisms can only discover
stream length after the fact, by counting successful prefetches.
Hence, like past designs [21, 37], TIFS uses the next-best
option, the Recent heuristic, as it is easy to implement in hard-
ware while still yielding high predictor coverage.

5 DESIGN

We separate our presentation of the TIFS hardware design
into two sections. For clarity of presentation, in Section 5.1 we
present the logical structure and operation of TIFS while omit-
ting the details of the hardware implementation. In Section 5.2
we present the physical organization of these structures in
TIFS, placing emphasis on a low hardware-cost implementa-
tion. Where possible, we virtualize the TIFS storage
structures [4]—that is, predictor storage is allocated within the

L2 cache rather than in dedicated SRAM. Virtualization allows
software to control and vary structure size allocation and parti-
tioning on a per-application or per-core basis, up to and
including disabling TIFS entirely to reclaim L2 capacity in the
event it is not effective for a particular workload.

5.1 Logical hardware overview
Figure 7 illustrates the logical structure and operation of

TIFS. The basic operation of TIFS mirrors prior address-corre-
lated prefetching proposals that target data accesses [8, 21, 37].
TIFS adds three logical structures to the chip: a set of Streamed
Value Buffers (SVBs), one per L1-I cache; a set of Instruction
Miss Logs (IMLs), one per L1-I cache; and a single Index
Table. As in prior stream buffer proposals [14], the SVB holds
streamed blocks that have not yet been accessed and maintains
the information necessary to continue fetching a stream. Each
IML structure maintains a log of all instruction-cache miss
addresses from the corresponding L1-I cache. The shared Index
Table, used to locate streams, maintains a pointer from each
address to the most recent global occurrence of that address in
any IML. Because the Index Table is shared among all IMLs,
an Index Table pointer is not limited to a particular IML,
enabling SVBs to locate and follow streams logged by other
cores.

5.1.1 Logging miss-address streams
As instructions retire, L1-I fetch-miss addresses are logged

in an IML. Addresses are logged only at instruction retirement
to reduce the impact of out-of-order and wrong-path execution.
To facilitate logging, ROB entries are marked if the instruction
misses in the L1-I cache during the fetch stage. IMLs record
physical addresses to avoid the need for address translation
during prefetch. As an address is appended to an IML, an entry
in the Index Table is created/updated with a pointer to indicate
the location inside the IML at which the address was logged.

5.1.2 Instruction streaming
The SVB tracks the current state of a stream flowing into its

L1 cache and serves as the temporary storage for streamed
blocks that have not yet been accessed by the processor core.
On every L1-I cache miss, the core checks if the accessed block
is present in the SVB. The SVB check is performed after the L1
access to avoid circuit complexity that might impact the fetch

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000

Temporal Instruction Stream Length

 (discontinuous cache blocks)

 %
 O

p
p

o
rt

u
n

it
y

Figure 5. Stream Length. Cumulative distribution of stream lengths (as
identified by SEQUITUR) for recurring temporal instruction streams.

OLTP DB2

OLTP Oracle

DSS Qry 2

DSS Qry 17

Web Apache

Web Zeus
0%

20%

40%

60%

80%

100%

D
B

2

O
ra

c
le

Q
ry

2

Q
ry

1
7

A
p
a
c
h
e

Z
e
u
s

OLTP DSS DB2 Web

%
 L

1
 I
n

s
tr

u
c
ti

o
n

 M
is

s
e
s

First Digram Recent Longest Opportunity

Figure 6. Stream Lookup Heuristics. Fraction of misses that can be
eliminated by each stream lookup heuristic.

Appears in Proceedings of the 41st Annual IEEE/ACM Int’l Symposium on Microarchitecture, 2008

6

critical path. Upon an SVB hit, the block is immediately allo-
cated in the L1 cache and the stream’s next block is prefetched.
SVB hits are also logged in the appropriate IML, ensuring that
the block will be fetched during the next stream traversal.

If the requested block is not found in the SVB, a new stream
is allocated to prefetch subsequent blocks. The SVB consults
the Index Table to find a pointer to the IML location where the
miss address was most recently observed. If found, a stream
pointer in the SVB is set to the corresponding IML location,
and the SVB begins reading the IML and prefetching blocks
according to the logged stream. As further blocks in the stream
are accessed, the SVB continues advancing the stream pointer
and prefetching additional blocks.

5.1.3 End of stream detection
In prior stream buffers [14, 28], in the stride predictors of

commercial systems [13], and in the simplest TIFS design,
stream buffers make no effort to guess where a stream might
end. However, as shown in Figure 5, streams vary drastically in
length, from two to thousands of blocks. Stopping too early
may result in lost coverage, while stopping too late may result
in erroneous prefetches and wasted bandwidth.

The SVB terminates a stream by remembering where the
stream ended the last time it was followed. As addresses are
logged in an IML, an additional bit is stored to indicate if the
address is recorded as the result of an SVB hit. When following
a stream, the SVB immediately fetches blocks if this bit is set
(indicating a correct prior prediction), but pauses after fetching
the first block where the bit is cleared (indicating a potential
stream end). If the block is accessed as a result of an L1-I miss,
the SVB resumes stream fetch.

5.2 Hardware implementation
Figure 8 depicts our proposed implementation of TIFS in

the context of a four-core chip multiprocessor. The physical
implementation differs from the logical description of
Section 5.1 in three respects. First, the SVB hardware simulta-
neously maintains several stream pointers and small queues of
upcoming prefetch addresses to allow for multiple parallel in-
progress streams. Multiple streams may arise because of traps,
context switches, or other interruptions to the usual control
flow. Second, although our logical design calls for a dedicated
storage structure for each IML, we implement TIFS with
minimal hardware overhead by virtualizing IMLs and storing
their contents inside the L2 data array as proposed in [4].

Finally, rather than implementing the Index Table as a separate
structure, we embed the IML pointers in the L2 cache as addi-
tional bits in the tag array.

5.2.1 Streamed value buffers
Figure 9 depicts the anatomy of the SVB. Our SVB design

is adapted from [35, 37]. The SVB contains a small fully-asso-
ciative buffer for temporary storage of streamed blocks. Each
entry includes a valid bit, tag, and contents of the instruction
block. Upon an SVB hit, the block is transferred to the L1 I-
cache and the SVB entry is freed. If the SVB becomes full,
entries are replaced using an LRU policy. To manage
prefetching for in-flight streams, the SVB maintains FIFO
queues of addresses awaiting prefetch and pointers into the
IML indicating the continuation of each active stream. As a
FIFO drains, further addresses are read from the IML and the
IML pointer is advanced. In this fashion, the SVB can follow a
stream of arbitrary length.

The SVB logic ensures that streams are followed (i.e.,
blocks are requested) sufficiently early to hide their retrieval
latency. The SVB matches the rate that blocks are fetched to the
rate at which the L1 cache consumes these blocks. The SVB
attempts to maintain a constant number of streamed-but-not-
yet-accessed blocks for each active stream. Across workloads,
we find that four blocks per stream is sufficient. Hence, the
SVB capacity can remain small (2 KB per core).

The key purpose of the SVB is to avoid polluting the cache
hierarchy if a retrieved stream is never used. By making
multiple blocks from a stream available simultaneously in a

L1-I Miss

C

Index Table

P
Q
R
C
D
E
F
G

Instruction Miss Log

L1-I { EFG.
L2

Streamed Value Buffer

D

(6)

(1) (2)

(3)

(4)

(5)

Figure 7. TIFS Operation. An L1-I miss to address C consults the index table (1), which points to an IML entry (2). The stream following C is read from the
IML and sent to the SVB (3). The SVB requests the blocks in the stream from L2 (4), which returns the contents (5). Later, on a subsequent L1-I miss to D, the
SVB returns the contents to the L1-I (6).

tags Stream

Index
Table IMLs

L2

L1-ICore SVBSVB

L1-ICore SVBSVB

L1-I CoreSVBSVB

L1-I CoreSVBSVB

Figure 8. Temporal Instruction Fetch Streaming in a 4-core CMP.

addrv block Q id

addr block Q idv

addr block Q idv

XYZ.IML ptr

ABC.IML ptr

Figure 9. Streamed Value Buffer details.

Appears in Proceedings of the 41st Annual IEEE/ACM Int’l Symposium on Microarchitecture, 2008

7

fully-associative buffer, the SVB also serves as a window to
mitigate small (e.g., a few cache blocks) deviations in the order
of stream accesses that may arise due to minor data-dependent
control flow irregularities.

5.2.2 Instruction miss logs
TIFS requires an allocation of on-chip storage to record

cache-miss addresses. We virtualize the IML storage structures,
placing cache-miss addresses directly in the L2 cache. From the
cache’s point of view, IML entries exist in a private region of
the physical address space. IML reads and writes are issued to
L2 as accesses to this address region, and are performed at
cache-block granularity (i.e., 64-byte cache blocks containing
twelve recorded miss addresses are read or written at a time).

The Index Table is realized as a part of the L2 tag array, as
an additional IML pointer field per tag; the width of this pointer
field places an upper bound on virtual IML size. Stream
lookups are performed on every L1-I fetch miss. Co-locating
the Index Table with the L2 tags provides a “free” lookup
mechanism performed in parallel with the L2 access. When an
access hits in the L2 tag array, the IML pointer is returned to the
corresponding SVB to initiate stream fetch. The stream fetch
proceeds in parallel with the L2 data-array access.

Each time an address is appended to an IML (at instruction
retirement), the IML pointer stored as part of the L2 tag must be
updated. IML pointer updates are queued separately from other
cache requests and are scheduled to the tag pipelines with the
lowest priority. If back-pressure results in full queues, updates
are discarded. Because of the time delay between cache access
and instruction retirement, IML pointer updates occasionally
fail to find a matching address in the tag arrays; such updates
are silently dropped.

6 EVALUATION

We evaluate TIFS in the context of a four-core chip multi-
processor. We study a system with aggressive, out-of-order
cores and decoupled front-end instruction fetch units [25]
which partially hide instruction-fetch latency in commercial
server workloads. We expect the impact of TIFS to be even
higher in simpler cores without these mechanisms, where all
instruction-fetch latency is exposed.

6.1 Methodology
We study TIFS using a combination of trace-based and

cycle-accurate simulation. We model a four-core CMP with
private L1 instruction and data caches and a shared, unified L2
cache. The L2 is divided into 16 banks with independently-
scheduled tag and data pipelines. The L1 caches are connected
to L2 banks with a full, non-blocking crossbar. Each bank’s
data pipeline may initiate a new access at most once every four
cycles. The minimum total L2 hit latency is 20 cycles, but
accesses may take longer due to bank conflicts or queueing
delays. A total of at most 64 L2 accesses, L1 peer-to-peer trans-
fers, and off-chip misses may be in flight at any time. We
configure our core model to resemble the Intel Core 2 microar-
chitecture, and base main-memory latency and bandwidth

parameters on the IBM Power 6. Further configuration details
appear in Table II.

Our base system includes a next-line instruction prefetcher
in each instruction fetch unit, and a stride prefetcher at L2 for
retrieving data from off chip. We account TIFS hits only in
excess of those provided by the next-line instruction prefetcher
(i.e., next-line hits are counted as L1 hits; we do not include
these in TIFS coverage even if TIFS could also prefetch the
blocks.)

6.2 Lookahead limitations of fetch-directed prefetching
A key advantage of TIFS is that it provides far greater

lookahead than other instruction prefetchers. TIFS lookahead is
bounded by temporal instruction stream length, and each IML
lookup provides twelve prefetch addresses. In contrast, fetch-
directed prefetching lookahead is limited by the number of
branches that can be predicted accurately between instruction-
cache misses.

To assess the lookahead limits of fetch-directed prefetching,
we analyzed the number of branches that must be predicted
correctly to prefetch four instruction-cache misses ahead of the
fetch unit. We exclude backwards branches in inner-most
loops, as a simple filter could detect such loops and prefetch
along the fall-through path. The results of our analysis appear
in Figure 10. For roughly a quarter of all instruction-cache
misses, a fetch-directed prefetcher must traverse more than 16
non-inner-loop branches to achieve a lookahead of just four
misses. With a branch predictor that can make only one or two
predictions per cycle, fetch-directed prefetchers fall far short of
the lookahead possible with TIFS.

6.3 Hardware requirements
Although they are large relative to L1 caches, application

instruction working sets are small relative to L2, which allows
TIFS to capture temporal instruction streams in IML storage
that is a small fraction of L2. Figure 11 shows the TIFS
predictor coverage as a function of IML storage capacity (for
this analysis, we assume a perfect, dedicated Index Table). Our
result confirms that a relatively small number of hot execution
traces account for nearly all execution. For peak coverage, we
find that each core’s IML must record roughly 8K instruction
block addresses, for an aggregate storage cost of 156 KB (8K
entries / core, 38 physical address bits + 1 hit bit / entry, 4 cores;

Cores UltraSPARC III ISA,
Four 4.0 GHz OoO cores
4-wide dispatch / retirement
96-entry ROB, LSQ

Main
Memory

3 GB total memory
28.4 GB/s peak bw
45ns access latency
64-byte transfer unit

L1-D
Cache

64KB 2-way
2-cycle load-to-use
3 ports, 32 MSHRs
64-byte lines

L2
Shared
Cache

8MB 16-way
20-cycle access latency
16 banks, 64 MSHRs
64-byte lines

I-Fetch
Unit

64KB 2-way L1-I cache
16-entry pre-dispatch queue
Hybrid branch predictor
16K gShare & 16K bimodal

Stride
Prefetch

Next-line I-prefetcher
32-entry D-stream buffer
Up to 16 distinct strides

TABLE II. SYSTEM PARAMETERS.

Appears in Proceedings of the 41st Annual IEEE/ACM Int’l Symposium on Microarchitecture, 2008

8

in total, less than 2% of the L2 cache capacity). Total IML
capacity requirements scale with core count (~40KB per core).

The Index Table stores a mapping from addresses to IML
pointers and is embedded in the L2 tag array. Each L2 tag is
extended with a 15-bit IML pointer, for an aggregate storage
cost of 240 KB (<3% increase in L2 storage). Storage costs for
a dedicated Index Table are comparable, as a dedicated table
requires fewer entries, but each entry must contain a tag as well
as the IML pointer. Index Table storage requirements are inde-
pendent of the number of cores, and instead scale with the
number of L2 tags.

Finally, each core’s SVB requires only minimal hardware: a
2KB buffer for instruction-cache blocks and several small
FIFOs and registers for prefetch addresses and IML pointers.

6.4 Traffic overhead
TIFS increases L2 traffic in two ways: (1) it prefetches

blocks which are never accessed by the CPU, which we call
discards; and (2) it reads and writes IML blocks. Correctly
prefetched blocks replace misses that occur in the base system,
thus they cause no increase in traffic.

We first consider discards. A discard occurs whenever TIFS
prefetches a block, and that block is replaced in the SVB by
another prefetch (i.e., the block is not fetched). Discards occur
most frequently when TIFS prefetches past the end of a repeti-
tive stream; our end-of-stream detection mechanism mitigates
this (Section 5.1). Figure 12 (left) shows TIFS coverage and
discards for a predictor with previously-cited IML sizes. The
coverage and discards are normalized to L1 fetch misses.

TIFS traffic overhead also includes reads and writes of the
virtualized IMLs. In the best case, if all instruction-cache
misses are streamed by TIFS, the IML read and write traffic are
each 1/12th (<8.5%) of the fetch traffic. Discards and short
streams increase these overheads. In Figure 12 (right), we show
the total L2 traffic overhead as a fraction of the base L2 traffic
(reads, fetches, and writebacks). TIFS increases L2 traffic on
average by 13%.

6.5 Performance evaluation
We compare TIFS performance to state-of-the-art

prefetching mechanisms and investigate the performance cost
of virtualizing TIFS hardware structures in Figure 13. All bars
are normalized to the performance of the next-line instruction
prefetcher included in our base system design. FDIP is a state-
of-the-art fetch-directed instruction prefetcher [24]. We make
several minor adjustments to the original FDIP design to tune it
for our workloads. First, the FDIP authors propose several opti-
mizations to minimize FDIP’s impact on L1 tag-port
bandwidth. To simplify our experiments, we omit these optimi-
zations, but provide FDIP unlimited tag bandwidth (i.e., no
impact on fetch). Second, the authors recommend allowing
FDIP to proceed roughly 30 instructions ahead of the fetch unit.
To maximize FDIP effectiveness in our environment, we
increase this depth to 96 instructions, but at most 6 branches.
Finally, for fairness, we assume a fully-associative rather than
FIFO prefetch buffer, as the SVB is fully-associative. In our
environment, these changes strictly improve FDIP perfor-
mance. The three TIFS bars represent our TIFS design with
unbounded IMLs, 156 KB of dedicated IML storage, and
156 KB of virtualized IML storage in the L2 data array, respec-
tively. Finally, Perfect indicates the upper bound achieved by a
perfect instruction streaming mechanism.

The TIFS performance improvements match the coverages
reported in Figure 12 and the sensitivity reported in Figure 1.
TIFS outperforms FDIP on all studied workloads except DSS

100%

0%

20%

40%

60%

80%

%
 L

1
 I

n
s
t.

 C
a
c
h

e
 M

is
s
e
s

OLTP DB2

OLTP Oracle

DSS DB2 Qry2

DSS DB2 Qry17

Web Apache

Web Zeus

0%

1 2 4 8 16 32 64 128 256 512 1024

%

Non-inner-loop Branch Predictions
Required for 4-miss Lookahead

Figure 10. Limited lookahead of fetch-directed prefetching. Cumulative
distribution of the number of correct non-inner-loop branch predictions a
branch-predictor-directed prefetcher must make to predict the next four
instruction-cache misses.

80%

100%

0%

20%

40%

60%

10 100 1000

%
 C

o
v
e

ra
g

e

OLTP Oracle OLTP DB2
Web Apache Web Zeus
DSS Qry 2 DSS Qry 17

10 100 1000

IML storage (kB)

Figure 11. IML capacity requirements.

0%

20%

40%

60%

80%

100%

120%

140%

160%

D
B

2

O
ra

c
le

Q
ry

2

Q
ry

1
7

A
p
a
c
h
e

Z
e
u
s

OLTP DSS

DB2

Web

%
 L

1
 I
n
s
tr

u
c
ti
o
n
 M

is
s
e
s

Coverage Miss Discard

0%

5%

10%

15%

20%

25%

D
B

2

O
ra

c
le

Q
ry

2

Q
ry

1
7

A
p
a
c
h
e

Z
e
u
s

OLTP DSS

DB2

Web

L
2
 T

ra
ff
ic

 I
n
c
re

a
s
e

IML Read IML Write Discards

Figure 12. Coverage, Discards, and Traffic Overhead.

Appears in Proceedings of the 41st Annual IEEE/ACM Int’l Symposium on Microarchitecture, 2008

9

DB2 Qry17, where instruction prefetching provides negligible
benefit. TIFS provides the largest benefit in the OLTP work-
loads, which have the largest instruction working sets. Limiting
IML capacity to 156 KB has no effect on performance. Virtual-
izing the IML marginally reduces performance in OLTP-DB2
because of a slight increase in L2 bank contention.

7 RELATED WORK

The importance of instruction prefetching has long been
recognized by computer architects. Sequential instruction
(next-line) prefetching was implemented in the IBM System
360 Model 91 in the late 1960’s [2], and prefetching into caches
was analyzed by Smith in the late 1970’s [29]. Although
computer architectures and workloads have evolved drastically
since then, simple next-line instruction prefetching remains
critical to the performance of modern commercial server work-
loads [17]. More recent work on instruction-stream prefetching
generalizes the notion of the next-line instruction prefetcher to
arbitrary-length sequences of contiguous basic blocks [23, 27].

A greater challenge lies in prefetching at fetch discontinui-
ties—interruptions in the sequential instruction-fetch sequence
from procedure calls, taken branches, and traps. The disconti-
nuity predictor [31] maintains a table of such fetch
discontinuities. As a next-line instruction prefetcher explores
ahead of the fetch unit, it consults the discontinuity table with
each block address and, upon a match, prefetches both the
sequential and discontinuous paths. Although it is simple and
requires minimal hardware, the discontinuity predictor can
bridge only a single fetch discontinuity; recursive lookups to
explore additional paths result in an exponential growth in the
number of prefetched blocks.

Rather than use a dedicated table, branch-predictor-directed
prefetchers [5, 24, 32] reuse existing branch predictors to
explore the future control flow of a program and identify cache
blocks for prefetch. Pre-execution and speculative threading
mechanisms [18, 34, 40] and Runahead Execution [20] simi-
larly use branch prediction to enable speculative control-flow
exploration and prefetching. TIFS differs from these
approaches in that it records and replays instruction-cache miss
sequences rather than branch outcomes, predicting directly the
anticipated future sequence of fetch discontinuities, which
improves prefetch timeliness. Furthermore, unlike TIFS,

neither next-line nor branch-predictor-directed mechanisms
can ensure timely prefetch of sequential blocks that follow a
discontinuity. TIFS is not affected by the behavior of unpredict-
able data-dependent branches, relying only on actual
instruction-cache miss sequences that occurred in the past for
future predictions. We compared the performance of TIFS with
Fetch Directed Instruction Prefetching (FDIP) [24] in
Section 6.5. We quantified the relationship between branch
prediction bandwidth and prefetch lookahead in Section 6.2.

Software approaches to reduce instruction-fetch bottlenecks
relocate rarely-executed code and increase the number of
sequentially executed instructions [22], improve cache line
reuse through gang-scheduling or data batching [12, 39], add
compiler-inserted instruction prefetches [19], or perform call
graph prefetching [3]. These approaches target the same bottle-
necks as TIFS, but all require detailed software analysis and
modification, and some are application-specific.

The TIFS design is based on recent proposals for address-
correlated prefetch of recurring temporal data streams [7, 8, 21,
30, 37]. These prefetchers target primarily off-chip data refer-
ences and require large off-chip tables to capture prefetcher
meta-data. As instruction working sets are orders-of-magnitude
smaller than data working sets, TIFS meta-data fits on chip (see
Section 6.3). To further reduce the hardware overhead of TIFS,
we employ a variant of predictor virtualization [4], a technique
for storing prefetcher meta-data in the L2 cache (see Section 5).

The term temporal stream, introduced in [37], refers to
extended sequences of data references that recur over the
course of program execution. Similar repetition in the sequence
of basic blocks visited by a program has been reported by Larus
[16] and underlies trace scheduling [9] and trace caches [26].
Temporal instruction streams differ from previously-defined
instruction streams [22, 23, 27] in two key respects: (1)
temporal instruction streams are defined at cache-block rather
than basic-block granularity, and (2) temporal instruction
streams span fetch discontinuities. TIFS efficiently records and
exploits long recurring temporal instruction streams.

8 CONCLUSIONS

L1 instruction misses are a critical performance bottleneck
in commercial server workloads. In this work, we made the
observation that instruction-cache misses repeat in long recur-
ring streams. We employed this observation to construct
Temporal Instruction Fetch Streaming (TIFS)—a mechanism
for prefetching temporally-correlated instruction streams from
lower-level caches. Unlike prior fetch-directed prefetchers,
which explore a program’s control flow graph, TIFS predicts
future instruction-cache misses directly, through recording and
replaying recurring L1 instruction-miss sequences. Through
full-system simulation of commercial server workloads, we
demonstrated that TIFS improves performance by 11% on
average and 24% at best.

ACKNOWLEDGEMENTS

The authors would like to thank Brian T. Gold, Nikolaos
Hardavellas, Stephen Somogyi, and the anonymous reviewers
for their feedback on drafts of this paper. This work was

1

1.1

1.2

1.3

1.4

1.5

DB2 Oracle Apache Zeus Qry 2 Qry 17

OLTP Web DSS DB2

S
p

e
e
d

u
p

 o
v
e
r

N
e
x
t-

li
n

e
 P

re
fe

tc
h

in
g

FDIP TIFS-unbounded IML TIFS-dedicated IML

TIFS-virtualized IML Perfect

Figure 13. TIFS Performance Comparison.

Appears in Proceedings of the 41st Annual IEEE/ACM Int’l Symposium on Microarchitecture, 2008

10

partially supported by grants and equipment from Intel, two
Sloan research fellowships, an NSERC Discovery Grant, an
IBM faculty partnership award, and NSF grant CCR-0509356.

REFERENCES

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on a
modern processor: Where does time go? The VLDB Journal, Sept. 1999.

[2] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo. The IBM system/
360 model 91: Machine philosophy and instruction handling. IBM Journal
of Research and Development, 11(1):8–24, 1967.

[3] M. Annavaram, J. M. Patel, and E. S. Davidson. Call graph prefetching for
database applications. ACM Transactions on Computer Systems,
21(4):412–444, 2003.

[4] I. Burcea, S. Somogyi, A. Moshovos, and B. Falsafi. Predictor virtualiza-
tion. Proc. 13th Int’l Conference on Architectural Support for
Programming Languages and Operating Systems, 2008.

[5] I-C. K. Chen, C.-C. Lee, and T. N. Mudge. Instruction prefetching using
branch prediction information. Int’l Conference on Computer Design,
1997.

[6] T. M. Chilimbi. Efficient representations and abstractions for quantifying
and exploiting data reference locality. Proc. SIGPLAN ’01 Conference on
Programming Language Design and Implementation, 2001.

[7] Y. Chou. Low-cost epoch-based correlation prefetching for commercial
applications. 40th Annual Int’l Symposium on Microarchitecture, Dec.
2007.

[8] M. Ferdman and B. Falsafi. Last-touch correlated data streaming. Int’l
Symposium on Performance Analysis of Systems and Software, 2007.

[9] J. A. Fisher. Trace scheduling: A technique for global microcode compac-
tion. IEEE Transactions on Computers, C-30(7):478–490, Jul. 1981.

[10] C. G. Nevill-Manning and I. H. Witten. Identifying hierarchical structure
in sequences: A linear-time algorithm. Journal of Artificial Intelligence
Research, 7, 1997.

[11] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A. Ailamaki, and
B. Falsafi. Database servers on Chip Multiprocessors: Limitations and
Opportunities. 3rd Biennial Conference on Innovative Data Systems
Research, 2007.

[12] S. Harizopoulos and A. Ailamaki. Steps towards cache-resident transac-
tion processing. Proc. 30th Int’l Conference on Very Large Data Bases
(VLDB’04), Aug. 2004.

[13] R. Hedge. Optimizing application performance on Intel Core microarchi-
tecture using hardware-implemented prefetchers. http://www.intel.com/
cd/ids/developer/asmo-na/eng/298229.htm.

[14] N. P. Jouppi. Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers. Proc. 17th Annual
Int’l Symposium on Computer Architecture, May 1990.

[15] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker.
Performance characterization of a quad Pentium Pro SMP using OLTP
workloads. Proc. 25th Annual Int’l Symposium on Computer Architecture,
Jun. 1998.

[16] J. R. Larus. Whole program paths. Proc. SIGPLAN ’99 Conference on
Programming Language Design and Implementation (PLDI), 1999.

[17] J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M. Levy, and
S. S. Parekh. An analysis of database workload performance on simulta-
neous multithreaded processors. Proc. 25th Annual Int’l Symposium on
Computer Architecture, Jun. 1998.

[18] C.-K. Luk. Tolerating memory latency through software-controlled pre-
execution in simultaneous multithreading processors. Proc. 28th Annual
Int’l Symposium on Computer Architecture, Jun. 2001.

[19] C.-K. Luk and T. C. Mowry. Cooperative prefetching: compiler and hard-
ware support for effective instruction prefetching in modern processors.
Proc. 31st Annual Int’l Symposium on Microarchitecture, Dec. 1998.

[20] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution: an
effective alternative to large instruction windows. IEEE Micro, 23(6):20–
25, Nov./Dec. 2003.

[21] K. J. Nesbit and J. E. Smith. Data cache prefetching using a global history
buffer. Proc. 10th Symposium on High-Performance Computer Architec-
ture, Feb. 2004.

[22] A. Ramirez, L. A. Barroso, K. Gharachorloo, R. Cohn, J. Larriba-Pey,
P.G. Lowney, and M. Valero. Code layout optimizations for transaction
processing workloads. Proc. 28th Annual Int’l Symposium on Computer
Architecture, Jun. 2001.

[23] A. Ramirez, O. J Santana, J. L Larriba-Pey, and M. Valero. Fetching
instruction streams. 35th Annual Int’l Symposium on Microarchitecture,
Dec. 2002.

[24] G. Reinman, B. Calder, and T. Austin. Fetch-directed instruction pre-
fetching, Proc. 32nd Annual Int’l Symposium on Microarchitecture, Dec.
1999.

[25] G. Reinman, B. Calder, and T. M. Austin. Optimizations enabled by a
decoupled front-end architecture. IEEE Transactions Computers,
50(4):338–355, 2001.

[26] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: a low latency
approach to high bandwidth instruction fetching. Proc. 29th Annual Int’l
Symposium on Microarchitecture, Dec. 1996.

[27] O. J. Santana, A. Ramirez, and M. Valero. Enlarging instruction streams.
IEEE Transactions Computers, 56(10):1342–1357, 2007.

[28] T. Sherwood, S. Sair, and B. Calder. Predictor-directed stream buffers.
33rd Annual Int’l Symposium on Microarchitecture, Dec. 2000.

[29] A. J. Smith. Sequential program prefetching in memory hierarchies.
Computer, 11(12):7–21, 1978.

[30] Y. Solihin, J. Lee, and J. Torrellas. Using a user-level memory thread for
correlation prefetching. Proc. 29th Annual Int’l Symposium on Computer
Architecture, May 2002.

[31] L. Spracklen, Y. Chou, and S. G. Abraham. Effective instruction
prefetching in chip multiprocessors for modern commercial applications.
Proc. 11th Int’l Symposium on High-Performance Computer Architecture,
2005.

[32] V. Srinivasan, E. S. Davidson, G. S. Tyson, M. J. Charney, and Thomas R.
Puzak. Branch history guided instruction prefetching. 7th Int’l Symposium
on High-Performance Computer Architecture, 2001.

[33] R. Stets, K. Gharachorloo, and L. A. Barroso. A detailed comparison of
two transaction processing workloads. IEEE Int’l Workshop on Workload
Characterization. Nov. 2002.

[34] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream processors:
improving both performance and fault tolerance. Proc. 9th Int’l Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS IX), Nov. 2000.

[35] T. F. Wenisch. Temporal Memory Streaming. PhD Thesis, Carnegie
Mellon University, Aug. 2007.

[36] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos.
Temporal streams in commercial server applications. Proc. IEEE Int’l
Symposium on Workload Characterization, Sept. 2008.

[37] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and
B. Falsafi. Temporal streaming of shared memory. Proc. 32nd Annual Int’l
Symposium on Computer Architecture, Jun. 2005.

[38] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe. SimFlex: statistical sampling of computer system simula-
tion. IEEE Micro, 26(4):18–31, Jul.-Aug. 2006.

[39] J. Zhou and K. A. Ross. Buffering database operations for enhanced
instruction cache performance. Proc. 2004 ACM SIGMOD Int’l Confer-
ence on Management of Data, 2004.

[40] C. B. Zilles and G. S. Sohi. Execution-based prediction using speculative
slices. Proc. 28th Annual Int’l Symposium on Computer Architecture, Jun.
2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

