
Taming the Killer Microsecond
Shenghsun Cho, Amoghavarsha Suresh, Tapti Palit, Michael Ferdman and Nima Honarmand

Department of Computer Science, Stony Brook University
Stony Brook, NY, USA

{shencho, amsuresh, tpalit, mferdman, nhonarmand}@cs.stonybrook.edu

Abstract—Modern applications require access to vast datasets
at low latencies. Emerging memory technologies can enable faster
access to significantly larger volumes of data than what is possible
today. However, these memory technologies have a significant
caveat: their random access latency falls in a range that cannot be
effectively hidden using current hardware and software latency-
hiding techniques—namely, the microsecond range. Finding the
root cause of this “Killer Microsecond” problem, is the subject
of this work. Our goal is to answer the critical question of why
existing hardware and software cannot hide microsecond-level
latencies, and whether drastic changes to existing platforms are
necessary to utilize microsecond-latency devices effectively.

We use an FPGA-based microsecond-latency device emulator,
a carefully-crafted microbenchmark, and three open-source data-
intensive applications to show that existing systems are indeed
incapable of effectively hiding such latencies. However, after
uncovering the root causes of the problem, we show that simple
changes to existing systems are sufficient to support microsecond-
latency devices. In particular, we show that by replacing on-
demand memory accesses with prefetch requests followed by fast
user-mode context switches (to increase access-level parallelism)
and enlarging hardware queues that track in-flight accesses (to
accommodate many parallel accesses), conventional architectures
can effectively hide microsecond-level latencies, and approach
the performance of DRAM-based implementations of the same
applications. In other words, we show that successful usage of
microsecond-level devices is not predicated on drastically new
hardware and software architectures.

Index Terms—Killer microseconds, Emerging storage, Data-
intensive applications, FPGA

I. INTRODUCTION

Accessing vast datasets is at the heart of today’s computing
applications. Data-intensive workloads such as web search,
advertising, machine translation, data-driven science, and fi-
nancial analytics have created unprecedented demand for fast
access to vast amounts of data, drastically changing the storage
landscape in modern computing. The need to quickly access
large datasets in a cost-effective fashion is driving innovation
across the computing stack, from the physics and architecture
of storage hardware, all the way to the system software,
libraries, and applications.

The traditional challenge in accessing data is the increased
latency as the data size grows. This trend is observed at
virtually all levels of storage, whether the data reside in on-
chip storage, main memory, disk, or remote servers. Therefore,
architects have designed a variety of mechanisms to hide data
access latency by amortizing it across bulk transfers, caching
hot data in fast storage, and overlapping data transfer with
independent computation or data access.

Current latency-hiding mechanisms and storage interfaces
were designed to deal with either nanosecond-level fine-

grained accesses (e.g., on-chip caches and DRAM) or
millisecond-level bulk-access devices (e.g., spinning disks).
Hardware techniques, such as multi-level on-chip caches,
prefetching, superscalar and out-of-order execution, hardware
multi-threading, and memory scheduling are effective in hiding
nanosecond-level latencies encountered in the memory hierar-
chy. On the other hand, millisecond-level latencies of disks
and networks are hidden through OS-based context switching
and device management.

While these techniques are effective for conventional mem-
ory and storage devices, the computing landscape, especially
in data centers and warehouse-scale computers, is introducing
new devices that operate in the gap between memory and
storage—i.e., at latencies in the microsecond range. A vari-
ety of such technologies are being deployed today, such as
Flash memories (latencies in the tens of microseconds) [1]
and 40-100 Gb/s Infiniband and Ethernet networks (single-
digit microseconds) [2]–[4]. New devices, such as 3D XPoint
memory by Intel and Micron (hundreds of nanoseconds) [5],
are being introduced over the next several years.

Unfortunately, existing micro-architectural techniques that
handle fine-grained accesses with nanosecond-level latencies
cannot hide microsecond delays, especially in the presence
of pointer-based serial dependence chains commonly found
in modern server workloads [6]. At the same time, OS-based
mechanisms themselves incur overheads of several microsec-
onds [7], and while such overheads are acceptable for large
bulk transfers in traditional storage, they would fundamentally
defeat the benefits of emerging low-latency devices.

This fact, dubbed the “Killer Microsecond” problem [8], [9],
although clearly understood at an intuitive level, completely
lacks quantification and examination in technical literature.
In particular, in the context of microsecond-latency storage,
which is the target of this work, it is not clear what aspects
of current hardware and software platforms are responsible
for their inability to hide microsecond-level latencies. As
a result, it is not known whether effective usage of such
devices is preconditioned on fundamental hardware/software
changes in existing systems, or simply requires straightforward
modifications. In this paper, we undertake a quantitative study
of modern systems to find an answer to this question.

As we will discuss in Section II, we believe that adoption
and disruptive use of microsecond-latency storage devices in
data-intensive applications is incumbent on their integration as
memory, capable of serving fine-grained (i.e., cache-line size)
data accesses whose latency must be hidden from application
developers by the hardware/software platform. To investigate



the limits of such integration in modern systems, we developed
a flexible hardware/software platform to expose the bottle-
necks of state-of-the-art systems that prevent such usage of
microsecond-latency devices.

On the hardware side, we developed an FPGA-based storage
device emulator with controllable microsecond-level latency.
This hardware allows us to experiment with different device-
interfacing mechanisms (Section III) commonly found in
modern systems. On the software side, we used a synthetic
microbenchmark that can be configured to exhibit varying
degrees of memory-level parallelism (MLP) and compute-
to-memory instruction ratios—both of which are well-known
factors in the performance of data-intensive applications.

We used the microbenchmark and our FPGA platform
to find the bottlenecks of a cutting-edge Xeon-based server
platform in hiding microsecond-level latencies. Then, to verify
that the identified bottlenecks are relevant to real workloads,
we ran three open-source data-intensive applications on our
platform, and compared their performance with that of our
microbenchmark, showing that they follow the same general
trends and suffer from the same bottlenecks.

Our results indicate that, although current systems can-
not effectively integrate microsecond-latency devices without
hardware and software modifications, the required changes are
not drastic either. In particular, we show that simple software
modifications such as changing on-demand device accesses
into prefetch instructions combined with low-overhead user-
mode context switching, and simple hardware changes such as
properly sizing hardware structures that track pending memory
accesses (e.g., the prefetch queues) can go a long way in
effectively hiding microsecond-level latencies.

We also show that software-managed queue-based inter-
faces, such as those used in NVMe and RDMA devices, are not
a scalable solution for microsecond-latency storage. Instead,
these devices should be memory mapped—ideally, connected
to low-latency interfaces such as QPI links or DDR buses—
and accessed through load, store, and prefetch instructions. Al-
though today’s off-the-shelf processors do not readily support
such storage devices, the required modifications are simple.

Overall, the main contribution of this work is not in propos-
ing new hardware/software mechanisms to hide microsecond-
level latencies; rather, it is in showing—perhaps surprisingly
and in contradiction to our intuitive understanding of the
Killer Microsecond problem—that novel mechanisms are not
strictly necessary. We do so not through simulations, whose
representativeness of real systems are often hard to establish,
but through careful experimentation with real, commercially-
relevant hardware and software.

II. BACKGROUND

A. Trends in Low-Latency Data Access

The storage landscape is rapidly changing, especially in
data centers and warehouse-scale computers. On the one hand,
data-intensive workloads require fast access to large datasets.
On the other hand, density, cost-per-bit, and power scaling of
volatile (DRAM) and non-volatile (spinning disks and Flash)

TABLE I: Common hardware and software latency-hiding
mechanisms in modern systems.
Paradigm HW Mechanisms SW Mechanisms

Caching On-chip caches OS page cache
Prefetch buffers

Bulk transfer 64-128B cache lines Multi KB transfers from
disk and network

Overlapping

Super-scalar execution Kernel-mode context switch
Out-of-order execution User-mode context switch
Branch speculation
Prefetching
Hardware multithreading

storage technologies have already stagnated or are expected to
do so in the near future [10], [11].

Given these trends, the current solution to the “big-data-
at-low-latency” problem is to shard the data across many
in-memory servers and interconnect them using high-speed
networks. In-memory data stores [12], in-memory processing
frameworks [13], [14], in-memory key-value stores [15], [16],
and RAM Clouds [17] are all examples of this trend. In these
systems, although the storage medium (i.e., DRAM) provides
access latencies of tens of nanoseconds, a remote access still
takes a few hundreds to thousands of microseconds. This
extra latency is commonly attributed to the software stack
(networking and OS scheduling), network device interface, and
queuing effects in both user and kernel spaces [18], [19].

Fortunately, new non-volatile memory (NVM) and network-
ing technologies can provide a way out of this situation. Low-
latency high-density NVM devices, such as 3D XPoint [5],
will allow large amounts of data to be stored on a single
server, without requiring a lot of expensive and power-hungry
DRAM. Furthermore, where multiple servers are needed—for
capacity, availability, quality-of-service, or other reasons—fast
RDMA-capable networks, such as Infiniband and Converged
Ethernet [3], [4], can bring the remote data within a few
microseconds. However, successfully leveraging these devices
requires effective mechanisms to hide microsecond-level la-
tencies, as well as hardware/software interfaces that avoid the
high overheads of OS-based device management.

B. Latency-Hiding Mechanisms

Among the existing latency-hiding techniques, three
paradigms can be identified. Caching is useful in applications
with substantial temporal locality. Bulk transfers is useful if
there is significant spatial locality. Execution overlapping is
helpful if there is enough independent work to overlap with
the accesses, and the overhead of discovering and dispatch-
ing independent work is less than the access latency. These
paradigms are implemented using different mechanisms at
different layers of the computing stack, as listed in Table I.

Any storage technology can be optimized for either fast
fine-grained accesses (cache-line size) or slow bulk accesses
(page size or larger). The main determinants in this decision
are 1) the random access latency of the device, and 2) the



effectiveness of hardware and software mechanisms in hiding
that latency.1

Slow bulk accesses are only effective where there is sub-
stantial spatial locality to amortize the access time across
many useful data elements. Creating spatial locality requires
careful attention to the data layout and access patterns, and is
a notoriously difficult task. It can therefore be argued that
fast fine-grained accesses are preferable to bulk transfers,
particularly in the context of modern server applications that
exhibit little spatial locality [6].

On the other hand, in the presence of fine-grained accesses
and limited locality, latency hiding falls primarily onto execu-
tion overlapping techniques. Existing hardware mechanisms
have low overheads, but they can only find small amounts
of useful work to overlap with data accesses. Super-scalar
and out-of-order execution are limited to windows of about
100 instructions, and hardware multithreading can expand the
amount of available independent work only by a small factor.
Overall, these techniques have short look-ahead windows and
are only effective for hiding fast accesses. Notably, the main
benefit of these techniques is leveraging memory-level paral-
lelism (MLP) by finding and overlapping multiple independent
memory operations, as logic and arithmetic operations alone
have limited potential for hiding long DRAM latencies.

Software techniques, however, can look for independent
work across many threads. They can potentially hide larger
latencies, but come with significantly higher overheads. For
example, one study [7] found that the overhead of a kernel-
mode context switch can range from several to more than a
thousand microseconds. Obviously, such high-overhead mech-
anisms are not effective for hiding microsecond-level latencies.

We argue that, for microsecond-latency devices to have a
disruptive impact on data-intensive workloads—to give them
bigger data at lower latencies than possible today—they must
accommodate fast, fine-grained (cache-line size) accesses.
Therefore, the key question is whether existing latency-hiding
techniques (Table I), in conjunction with existing device-
interfacing mechanisms (Section III), allow effective use of
microsecond-latency devices as fast, fine-grained memory.

III. DEVICE ACCESS MECHANISMS

In this section, we enumerate the existing mechanisms
that could be used for interfacing with microsecond-latency
devices, and describe their interaction with the latency-hiding
mechanisms of the previous section. For some mechanisms,
simple reasoning clearly demonstrates their poor applicability
to fast fine-grained accesses. We describe these mechanisms
here, but omit them from the evaluation results. For the rest,
we quantitatively analyze their performance to uncover their
limitations in Section V.

In the process of studying the wide range of mechanisms
described here, we found that, by their nature, the imple-
mentation of all device access mechanisms corresponds to a

1There are other factors—such as read and write durability, power and
storage density, and persistence properties—that should be considered, but
latency and ability to hide it have historically been the most important.

pair of queues, one for requests and one for responses. To
perform a data access, a processor core writes a message into
the request queue; to indicate completion of the data access,
the device writes a message into the response queue. The
existence of these queues is sometimes non-obvious, hidden
by hardware abstractions. Nevertheless, it is the behavior of
the queues, and their interactions with the various software
and hardware components in the system, that dictate the
performance characteristics of the device interfaces. We will
elaborate more on this point as we describe each mechanism.

A. Software-Managed Queues

Kernel-Managed Software Queues. The age-old approach
to device access is through kernel-managed software queues.
The kernel allocates a structure in host memory, which is both
the request and the response queue. To perform an access, an
application performs system calls, and the kernel manages the
queues on behalf of the application.

Upon receiving the system call, the kernel stores the request
into a queue and performs a doorbell operation—usually a
memory-mapped I/O (MMIO) write—to inform the device
about the presence of a new request Then, the application
thread is de-scheduled and placed on an OS wait queue.

Triggered by the doorbell, the device reads the head element
of the request queue from memory, performs the access, stores
the result in the host memory, and updates the response queue
to indicate request completion. Finally, it raises an interrupt
to signal the host to check the response queue.

Kernel-managed queues perform well for millisecond-level
devices with bulk accesses. Although each request has a
high overhead—the system call, doorbell, context switch,
device queue read, device queue write, interrupt handler, and
the final context switch, adding up to tens or hundreds of
microseconds—the costs are still acceptable for millisecond-
level bulk-access devices. For microsecond-latency devices,
however, these overheads dwarf the access latency, making
kernel-managed queues ineffective. Therefore, we omit this
access mechanism from further consideration.
Application-Managed Software Queues. For faster devices
(e.g., Infiniband NICs), the excessive overheads of kernel-
managed queues have inspired alternative designs where the
kernel permits applications to directly manipulate the queue
contents and the doorbell mechanism.

Although this technique removes the kernel overheads, it
also loses important kernel functionality. First, the kernel
cannot schedule other threads while an access is outstanding.
Second, because this technique avoids interrupts, it requires
polling the completion queue.

To overcome these limitations, application-managed queue
implementations must rely on a cooperative user-level sched-
uler to keep the processor core busy after sending out
a request. The scheduler, invoked after each request, de-
schedules the current user-level thread, checks the response
queue to identify completed requests, and “wakes up” the user-
level threads that originally requested the newly-completed
accesses.



Although this approach avoids the system calls, kernel-level
context switches, and interrupt handling, it still operates a
costly MMIO doorbell after enqueuing each request. Doorbell
overheads can be reduced with a flag in the host memory that
indicates if the doorbell is needed for the next request. The
device continues checking the request queue until it reaches a
pre-defined limit or when the request queue is empty. It then
sets the doorbell-request flag. The host checks this flag to
determine whether it should operate the doorbell on the next
request, and clears the flag after doing so.

Additionally, reading one request at a time from host
memory unnecessarily serializes request processing. To avoid
serialization, the device can perform a burst read of several
requests from the head of the queue. This potentially over-
reads the available requests in the queue, but minimizes the
latency and overheads of reading the queue in situations where
multiple requests are typically present.

In modern systems, an application-managed software queue,
with a doorbell-request flag and burst request reads, is in
fact the best software-managed queue design for microsecond-
latency devices. We experimented with mechanisms lacking
one or both of these optimizations and found them to be strictly
inferior in terms of maximum achievable performance. There-
fore, we choose this highly-optimized mechanism to evaluate
the best performance achievable through software-managed
queues. Nevertheless, as our evaluation results indicate, the
overhead of software queue management manifests itself as a
major bottleneck for microsecond-latency devices.

B. Hardware-Managed Queues

High performance storage and networking interfaces have
traditionally relied on software-managed queues. However,
with the emergence of Storage Class Memory (SCM), sys-
tem architects may want to use memory interfaces for stor-
age devices. Memory interfaces are built around hardware-
managed queues, incurring lower overheads than software
queues. Moreover, they allow device storage to be accessed
using ordinary load and store instructions, similar to DRAM,
mitigating software development challenges.

On-Demand Accesses. While traditional uses of memory-
mapped IO (MMIO) are for device control and status checks,
an MMIO region behaves much in the same way as DRAM
and allows software to access the device like byte-addressable
memory. Software can insert a request into the hardware
request queue simply by performing a load or store operation
on the corresponding address. Response handling is performed
automatically by the hardware, waking up any dependent
instructions and allowing the load instruction to complete and
retire, all without any software overhead for explicit polling
or processing of the response queue.

Using hardware queues and their automatic management
entails both advantages and disadvantages for request han-
dling. On the upside, all of the processor’s latency-hiding
mechanisms are automatically leveraged. For example, MMIO
regions marked “cacheable” can take advantage of locality,

Listing 1: Prefetch-based device access function
int dev_access(uint64* addr) {

asm volatile ("prefetcht0 %0" :: "m"(*addr));
userctx_yield();
return *addr;

}

while an out-of-order core can issue multiple parallel accesses
to the device and overlap them with independent work.

On the downside, the size of the reorder buffer inherently
limits the amount of work that can overlap with a request.
Compared to DRAM accesses, a load from a microsecond-
latency device will rapidly reach the head of the reorder buffer,
causing it to fill up and stall further instruction dispatch until
the long-latency access completes and the load instruction
retires. Even worse, whereas the software-managed approach
is able to quickly add requests belonging to multiple software
threads into the request queue to perform in parallel, the
processor core is limited to discovering such accesses only
within a single software thread, severely restricting the extent
to which access-level parallelism can be exploited.

Modern CPUs implement simultaneous multi-threading
(SMT), partitioning the core resources into multiple hardware
contexts that execute independent software threads. SMT of-
fers an additional benefit for on-demand accesses by allowing
a core to make progress in one context while another context is
blocked on a long-latency access. In this way, SMT is able to
extract higher performance from a processor core when device
accesses are encountered. However, the number of hardware
contexts in an SMT system is limited (with only two contexts
per core available in the majority of today’s commodity server
hardware), limiting the utility of this mechanism.

Software Prefetching. The software- and hardware-managed
queues described above have been used with a wide range of
data access mechanisms. They accent the dichotomy between
storage and memory: storage devices use software-managed
queues, paying large overheads for queue management, but
benefiting from the ability to switch threads and continue
using the processor while requests are outstanding; memory
devices use hardware-managed queues, avoiding the queue
management overheads, but they are limited to the latency-
hiding techniques of the processor and the instruction-level
parallelism found within a small window of a single thread.

A best-of-both-worlds approach combines the performance
of hardware-managed queues with the flexibility of user-level
threading. Hardware queue management is needed to lower the
overhead of request queuing and completion notification, while
ultra-lightweight user-level threading is needed to overlap a
large amount of independent work with device accesses, and
enable many threads to perform device accesses in parallel.
Fortunately, today’s processors already offer the necessary
building blocks of this approach in the form of software
prefetching and the associated hardware queues.

Listing 1 presents the device access function for
the prefetch-based access mechanism. The non-binding
prefetcht0 instruction enqueues a memory address in the



hardware request queue. The prefetch request does not block
the processor pipeline, allowing the software to perform a
user-level context switch and continue running another thread,
without being limited by the size of the reorder buffer. If the
new thread also performs a device access, it issues another
non-binding prefetch, followed by a context switch to yet
another thread. The idea of hiding access latency like this,
using a prefetch followed by a context switch to other inde-
pendent threads, is not common today, but has been previously
considered in some systems. For example, Culler et al. use a
similar idea in the Threaded Abstract Machine [20], and the
MIT Alewife uses context switching after a cache miss [21].

As user-level threads continue to execute, the hardware is
responsible for automatically handling access requests in the
queue. Device accesses are issued to MMIO regions marked
as “cacheable,” accessing the microsecond-latency device and
reading a cache block of data surrounding the requested ad-
dress. When the access completes, the hardware is responsible
for completing the request and installing the cache block in
the L1 cache of the requesting core.

Eventually, all user-level threads run out of work, either
because they all issued a prefetch and performed a context
switch, or because they encountered a synchronization oper-
ation that prevents further progress. The user-level scheduler
then switches back to one of the threads that performed a
prefetch request and performs a regular load, which ideally
hits in the L1, and execution proceeds. If there are not enough
threads to hide the entire latency of a device access, the
regular load operation will automatically identify the presence
of the requested address in the hardware queue (MSHR,
the miss status holding register) and await its return. In
the meantime, the out-of-order core will continue to issue
subsequent independent instructions until the reorder buffer
fills up. When the prefetch request completes, the hardware
automatically, and with no software overhead, wakes up all
instructions dependent on the long-latency access and allows
the waiting load instruction to retire.

This mechanism can be effective at hiding microsecond-
level latencies provided that 1) there are enough threads on
each processor core, 2) switching among threads is inexpen-
sive, and 3) the hardware queues are large enough to accom-
modate the outstanding requests from all threads and all cores.
Our results indicate that, while the first two requirements are
relatively easy to meet, it is the small size of the hardware
queues—at multiple levels of the memory hierarchy—that
prevent sufficiently-many in-flight device accesses to hide
microsecond-level latencies. Therefore, increasing the queue
sizes can be a simple remedy for the Killer Microsecond
problem, without requiring drastic architectural changes in
modern processors, as we discuss in Section V.

IV. EVALUATION METHODOLOGY

To evaluate the device access mechanisms of Section III, we
use a PCIe-enabled FPGA board to emulate a configurable
microsecond-latency device. We use a Xeon-based server to
host the FPGA board and run the corresponding software

library. Together, our hardware and software platform covers
the three access mechanisms that we study in this work:
on-demand memory-mapped access, prefetch-based memory-
mapped access, and application-managed software queue.

Instead of using commercially available NVM storage de-
vices that allow both bulk and byte-level accesses (such as
Microsemi’s Flashtec drives [22]), we chose to build an FPGA-
based storage emulator for several crucial reasons. First, we
needed to experiment with different interface options and have
full control over their features (e.g., the queue-management
details of software queues). Second, we needed to experiment
with different ranges of device latency. Finally, and most
importantly, we needed to ensure that the internal performance
of the device does not become an artificial bottleneck that
could limit the number of in-flight accesses and thus mask the
system-level bottlenecks we were looking for. As we explain
in the next section, our FPGA design employs several non-
trivial design tricks to meet this challenge. Also, we initially
experimented with placing the emulator on the QPI intercon-
nect using the Intel HARP platform [23], but found the HARP
system overly restrictive due to some inherent assumptions in
its architecture, while the PCIe interface gave us the needed
flexibility in experimenting with different interfaces.

For the on-demand and prefetch mechanisms, the FPGA
is exposed to the host as a cache-line addressable memory,
accessible using standard memory instructions. Our prefetch-
based implementation performs a light-weight user-level con-
text switch immediately after triggering a device accesses
using software prefetch instructions. To study the software-
managed queues, a different FPGA design interacts with in-
memory software-managed descriptor queues to receive re-
quests and provide responses to the software. For this, we use
the same lightweight user-mode context switching mechanism,
but rather than performing a prefetch and relying on the
hardware to manage the request, software-managed in-memory
descriptor structures are used to communicate requests to the
device and software is used to check for request completion.

A. Microsecond-Latency Device Emulator

For the host system, we use an Intel Xeon E5-2670v3 dual-
socket server, with one CPU removed to avoid cross-socket
communication, and with hyperthreading disabled. Hardware
prefetching is also disabled to avoid interference with the
software prefetch mechanism. An Altera DE5-Net FPGA
board is connected via a PCIe Gen2 x8 link to the host.
The FPGA receives requests from the host and responds
with the requested cache line after a configurable delay. The
configured response delays account for the PCIe round-trip
latency (∼800ns on our system).

Because we study big-data applications, replete with point-
ers and data-dependent accesses, the emulated device must
faithfully reply to host requests with the correct memory
contents. This requires us to use the FPGA’s on-board DRAM
to store large amounts of data. Unfortunately, the FPGA
DRAM interface (DDR3 at 800Mhz) has high latency and
low bandwidth, which makes it impossible to emulate a high-



Fig. 1: Hardware design of the microsecond-latency device
emulator. Request Fetchers (gray boxes) are used by the
software-managed queue. Memory-mapped accesses use the
Request Dispatcher.

performance microsecond-latency device by performing on-
demand accesses to slow on-board DRAM.

To overcome this problem, we developed an access re-
play mechanism using the FPGA device. In this method,
we run each experiment twice. In the first run, we record
the application’s data access sequence and save the read
addresses and their corresponding data. Before starting the
second run, we load this sequence into the FPGA’s on-board
DRAM using a DMA engine. During this second run, the pre-
recorded sequence is continuously streamed using bulk on-
board DRAM accesses well in advance of the request from
the host, allowing the FPGA to precisely control the response
latency of the emulated accesses. This second run is the one
whose performance we measure and report in the paper.

We ensure that the memory access sequence remains deter-
ministic across these runs and different cores, which enables
us to reuse the same recorded access sequence (after applying
an address offset) to handle requests from multiple cores in our
multi-core experiments, significantly reducing the bandwidth
and capacity requirements of the on-board DRAM.

The complexity of this design (detailed below) is necessary
to ensure that the internal device logic does not become the
limiting factor when we increase the number of parallel device
requests. This is crucial for finding performance bottlenecks
of the host system; otherwise, the FPGA-induced limits would
prevent the manifestation of the host bottlenecks.

Memory-Mapped Hardware Design. Figure 1 presents
our emulator’s internal architecture. For the on-demand
and prefetch-based mechanisms, the FPGA exposes a byte-
addressable memory region over a PCIe BAR (Base Address
Register) to the host. We modified the host processor’s MTRRs
(Memory Type Range Registers) to map the BAR region
as cacheable, enabling us to use regular loads and software
prefetch instructions to perform device accesses through the
processor’s cache hierarchy The FPGA also exposes a control
interface to perform DMA transfers of the recorded access
sequences into the on-board DRAM.

Replay modules maintain synchronization between the pre-

recorded access sequences stored in on-board DRAM and the
host requests. Because PCIe transactions do not include the
originating processor core’s ID, we subdivide the exposed
memory region and assign each core a separate address range,
to enable steering core requests to their corresponding replay
modules. Once a host request is matched by a replay module,
a response is enqueued in a delay module, which sends the
response to the host via PCIe after a configurable delay.
To ensure precise response timing, incoming requests are
timestamped before dispatch to a replay module, enabling the
delay module to determine when a response should be sent.

The above scheme works for the vast majority of host
accesses. However, a CPU occasionally experiences cache hits
or performs wrong-path speculative accesses, resulting in the
replay modules observing missing, reordered, or spurious ac-
cesses compared to the pre-recorded sequence. A naı̈ve replay
module implementation quickly locks up due to a mismatch
between the replay and request sequences. To overcome these
deviations, our replay module tracks a sliding window of the
replay sequence and performs an age-based associative lookup
for each request.

CPU cache hits result in replay entries that never match a
host request and are thus skipped. We do not immediately age
out older entries once a match is found, but instead temporarily
keep skipped accesses in the window to ensure they are found
in case of access reordering.

Spurious requests present a greater challenge. Although
they are initiated by wrong-path instructions, it is nevertheless
critical to respond to them correctly, because the responses
are cached in the CPU’s on-chip hierarchy and responding
with incorrect data may break later execution. When the replay
module cannot match a host request within the lookup window,
the request is sent to the on-demand module, which reads the
data from a copy of the dataset stored in a separate on-board
DRAM. The ratio of spurious requests compared to regular
accesses is minute. Therefore, the on-board DRAM channel
on which these data are accessed is lightly loaded, and we can
still meet the response delay deadlines for nearly all accesses.

Software-Managed Queue Design. In this interface, the
software puts memory access descriptors into an in-memory
Request Queue and waits for the device to update the corre-
sponding descriptor in an in-memory Completion Queue. Each
descriptor contains the address to read, and the target address
where the response data is to be stored. The device ensures
that writes to the Completion Queue are performed after writes
to the response address.

Given this protocol, the emulator’s architecture differs from
that of the memory-mapped design in a number of ways.
The hardware interface exposes per-core doorbell registers
that are associated with the request fetcher modules. After
adding a request to request queue, the host software triggers
the request fetcher by performing an MMIO write to the
corresponding doorbell. Once triggered, the request fetcher
continuously performs DMA reads of the request queue from
host memory, and forwards these requests to the corresponding



core’s replay module. Unlike the memory-mapped design,
where the delay module sends a single read completion packet
to complete the request, here the delay module performs
two write transactions: one to transfer the response data and
another to write to the completion queue. Also, because the
device accesses are explicitly generated by the software, there
are no missing or spurious accesses, leaving the on-demand
read module unused for this interface.

To amortize the PCIe overheads of descriptor reads, the
request fetcher retrieves descriptors in bursts of eight, starting
from the most-recently observed non-empty location in the
request queue, and continues reading so long as at least one
new descriptor is retrieved during the last burst. Continually
fetching new descriptors eliminates the need for the host soft-
ware to perform a costly doorbell operation after enqueuing
each request. Instead, when no new descriptors are retrieved
on a burst, the request fetchers update an in-memory flag to
indicate to the host software that a doorbell is needed to restart
the fetcher for the next access.

B. Support Software

We developed a parallel, high-performance software frame-
work to interact with microsecond-latency devices. The frame-
work includes kernel drivers to expose the device (via MMIO
or software-managed queues as described in Section IV-A),
a user-level threading library, and an API to perform fine-
grained device accesses. We built and evaluated the platform
on Ubuntu 14.04 with kernel 3.18.20. We used the GNU Pth
library [24] for user-level threading, extending it with our
device access mechanisms and optimizing heavily for modern
hardware and our use cases. To reduce interference from
unrelated system threads in our experiments, we use Linux’s
isolcpu kernel option to prevent other processes from being
scheduled on the cores where we perform our measurements.

The library and its API are designed to minimize application
source code changes compared to traditional software that
expects its data to be in memory. To avoid changing the
application code, the exposed API only requires the application
to use the standard POSIX threads, and to replace pointer
dereferences with calls to dev_access(uint64*). This
device access function is synchronous to the calling thread and
returns only after the device access is complete. The library
transparently handles all low-level details of performing the
accesses and switching user-level threads to overlap access
latency with execution of other threads. This design, keeps
changes to the application source code minimal.

API functions for the prefetch model are implemented with
a sequence of “prefetch, scheduler call, load” (expecting the
load to hit on the prefetched line in the L1), as shown in
Listing 1. In this case, the scheduler simply switches between
threads in a round-robin fashion.

The software-managed queue model, on the other hand,
requires a more sophisticated support software that re-
quires close integration between the scheduler and queue-
management code. The scheduler polls the completion queue
only when no threads remain in the “ready” state. The threads

are managed in FIFO order, ensuring a deterministic access
sequence for replay.

Finally, taking advantage of devices with microsecond-level
latencies requires an extremely optimized context switch and
scheduler. After significant optimizations, we were able to
reduce the context switch overheads from 2 microseconds in
the original Pth library to 20–50 nanoseconds, including the
completion queue checks.2

C. Benchmarks

We begin our study using a carefully-crafted microbench-
mark that gives us precise control over the memory accesses it
performs. We then validate our microbenchmark behavior and
relate it to real-world scenarios by porting three open source
applications to our framework. In both the microbenchmark
and applications, only the main data structures are emulated
to be stored in the microsecond-level storage, while the ap-
plication code, as well as hot data structures (including stack,
global variables, etc.) are all placed in the main memory (i.e.,
DRAM).

Microbenchmark. The microbenchmark enables controlled
analysis of the performance characteristics of the various
access mechanisms. Its main loop includes a device access
followed by a set of “work” instructions that depend on
the result of device access, mimicking real applications that
would use the accessed value. To avoid perturbing the memory
hierarchy, the work comprises only arithmetic instructions, but
is constructed with sufficiently-many internal dependencies so
as to limit its IPC to ∼1.4 on a 4-wide out-of-order machine.
The microbenchmark supports changing the number of work
instructions performed per device access. We refer to this
quantity as the work-count throughout the paper.

A single-threaded microbenchmark is used to measure the
DRAM baseline and the on-demand access mechanism. We
use multi-threading to overlap microsecond-latency accesses
for the prefetch and software-managed queue mechanisms. In
either case, each thread repeatedly performs a device access
followed by work instructions.

In all cases, we make each microbenchmark access go
to a different cache line, ensuring that results are straight
forward to interpret because there is no temporal or spatial
locality across accesses. All reported results are averaged
over 1 million iterations of the microbenchmark loop. For the
baseline, we replace the device access function with a pointer
dereference to a data structure stored in DRAM.

We report microbenchmark performance as “normalized
work IPC”. We define “work IPC” as the average number of
“work” instructions retired per cycle. To compute the normal-
ized work IPC, we divide the work IPC of the microbenchmark
run (with device accesses) by the work IPC of the single-thread
DRAM baseline.

Applications. In addition to the microbenchmark, we ran
the following open source software on our platform, using

2This required sacrificing some functionality, such as the ability to deliver
pending signals to individual threads, that was not important for our use case.



the microsecond-level device for their key data structures.
Importantly, we kept the code changes to a minimum by
maintaining the standard POSIX threading model and the
demand-access programming model used in the original code.

• The BFS (breadth first search) benchmark is a graph traver-
sal benchmark from Graph500 [25]. BFS begins with a
source vertex and iteratively explores its neighbors, until
reaching the destination vertex. Graph traversal is a central
component of many data analytics problems, such as rec-
ommendation systems, social media modeling, and route
optimization.

• The Bloom filter benchmark is a high-performance imple-
mentation of lookups in a pre-populated dataset. Bloom
filters are space-efficient probabilistic data structures for
determining if a searched object is likely to be present in
a set. Bloom filters are routinely employed in many large-
scale computations such as genome analysis.

• The Memcached benchmark performs the lookup operations
of the Memcached [26] in-memory key-value store that is
widely used to speed up dynamic content generation appli-
cations by caching the results of expensive sub-operations,
such as database queries.

We are interested in observing the behavior of these ap-
plications with regard to performing their core data structure
accesses, but without being biased by the memory-system
behavior of the work that they do after the data accesses (the
work differs between implementations and relies on additional
auxiliary data structures not stored in the microsecond-latency
device). Therefore, we modify the applications, removing
code not associated with accessing the core data structures,
and replacing it with the benign work loop from our mi-
crobenchmark. For each application, we report its “normalized
performance” obtained by dividing the execution time of
the device-access version by the execution time of a single-
threaded baseline version where data is stored in DRAM.

V. RESULTS AND ANALYSIS

In this section, we identify the performance bottlenecks
faced by microsecond-latency devices when used as high-
capacity storage with fine-grained accesses. Our goal is to
understand the integration options and limitations imposed by
widely-available modern systems that are most likely to host
such devices.

A. On-Demand Access

We first consider the case of unmodified software that
simply uses the microsecond-level device as normal memory
using on-demand memory-mapped accesses. For these experi-
ments, we use our microbenchmark which performs a memory
load operation to access a word of data followed by work
instructions with an IPC of ∼1.4. The requests are serviced
by a 1µs-, 2µs-, and 4µs-latency device which, providing a
64-byte cacheable block in response to a load.

Figure 2 shows the device performance compared to our
baseline that stores the data in DRAM. As expected, within the

0.0

0.2

0.4

0.6

0.8

1µs Latency 2µs Latency 4µs Latency

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

work-count 50

work-count 100

work-count 500

work-count 1000

work-count 5000

Fig. 2: On-demand access of microsecond-latency device.
The values are normalized to the single-threaded on-demand
DRAM baseline.

range of a reasonable number of work instructions per memory
load, the performance drop is abysmal and likely precludes
the use of microsecond-level devices in any performance-
conscious system. Only when there is a large amount of work
per device access (e.g., 5,000 instructions), the performance
impact of the device access is partially abated. However,
with such infrequent device accesses, the usefulness of the
microsecond-level devices would be questionable to begin
with.

Implications. It is impractical to use microsecond-latency
devices as drop-in DRAM replacements with unmodified
software and hardware. Given the instruction window size
of modern processors (∼100–200 instructions), out-of-order
execution cannot find enough independent work—in partic-
ular, independent device accesses—to hide device latency.
Therefore, software changes are required to assist hardware
in discovering independent work.

B. Prefetch-Based Access

Next, we consider the technique where a software prefetch
instruction is used to access the device before performing a
light-weight context switch to another thread (Listing 1).

Hardware Queues with Prefetch-Based Access. Figure 3
shows the performance of this system with 1µs, 2µs, and
4µs device access latencies. The values are normalized to the
single-threaded on-demand DRAM baseline. As the number of
threads rises, the system effectively hides a greater portion of
the microsecond-level latency, improving performance relative
to the DRAM baseline. Longer device latencies result in
a shallower slope because a smaller fraction of the device
latency is overlapped.

These results show that the simple round-robin user-mode
context switch has minimal performance impact. At 10 threads
and 1µs device latency, the performance is similar to running
the application with data in DRAM. Notably, the microsecond-
latency device marginally outperforms DRAM. This is because
the DRAM baseline suffers from DRAM latency, which is not
fully overlapped with useful work. In comparison, prefetch-
based system overlaps all device accesses with work and
device accesses from other threads, thereby reducing the
perceived device latency. Figure 4 shows the effect when more
work is performed per device access. As expected, with more



0.0

0.5

1.0

1.5

0 2 4 6 8 10 12 14 16

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Threads

1µs
2µs
4µs

Fig. 3: Prefetch-based access with various latencies. The val-
ues are normalized to the single-threaded on-demand DRAM
baseline.

0.0

0.5

1.0

1.5

0 2 4 6 8 10 12 14 16

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Threads

work-count 500
work-count 100
work-count 50

Fig. 4: 1µs prefetch-based access with various work counts.
The values are normalized to the single-threaded on-demand
DRAM baseline.

work, fewer threads are needed to hide the device latency and
match the performance of the DRAM baseline.

Figure 3 also reveals the first limitation of the prefetch-
based technique on modern hardware. Once requests are issued
with software prefetch instructions, the outstanding device
accesses are managed using a hardware queue called Line
Fill Buffers (LFBs) in Intel processors. In essence, LFBs
are miss status holding registers (MSHRs) and are used to
track pending cache misses in case of memory accesses. To
the best of our knowledge, all state-of-the-art Xeon server
processors have at most 10 LFBs per core, severely limiting
number of in-flight prefetches. As a result, after reaching 10
threads, additional threads do not improve performance. This is
particularly noticeable for slower devices, where more threads
are needed to hide device latency.

Multicore Effectiveness. To understand the multicore scala-
bility of prefetch-based accesses, Figure 5 shows the behavior
of the same microbenchmark running concurrently across
multiple cores on the same CPU. We continue to plot the
performance as a function of the number of threads per core,
and normalize all results to the performance of a single-core
DRAM baseline to maintain consistency across figures.

With a few threads per core, the multi-core performance
scales linearly compared to the baseline. Each core uses its
LFBs to track outstanding device accesses, providing aggre-
gate performance. This is best seen for 4µs latency, which
shows that the multi-core systems are not limited to 10 simul-
taneous accesses and can exceed the performance of a single

0.0

0.5

1.0

1.5

0 2 4 6 8 10 12 14 16

N
o

rm
al

iz
ed

 P
e

rf
o

rm
an

ce

Threads

8 core 1µs 4 core 1µs 1 core 1µs
8 core 4µs 4 core 4µs 1 core 4µs

Fig. 5: Multicore prefetch-based access with various latencies.
The values are normalized to the single-threaded on-demand
DRAM baseline.

core (capped at 10 threads by the LFB limit). Unfortunately,
another hardware cap emerges, limiting this technique from
being effective on multi-core systems. Although the LFBs
across cores are independent, the on-chip interconnect between
the cores and the PCIe controller has another hardware queue
which is shared among the cores. This shared queue becomes
yet another bottleneck that limits performance improvements
as the thread count increases.

We do not have sufficient visibility into the chip to de-
termine the location of the shared queue. However, we have
experimentally verified that the maximum occupancy of this
queue is 14. We have also verified that the queue is not
a fundamental property of the on-chip ring interconnect by
confirming that a larger number of simultaneous DRAM
accesses can be outstanding from multiple cores (e.g., at
least 48 simultaneous accesses can be outstanding to DRAM).
Regardless of the exact nature of this bottleneck, its existence
limits the use of any tricks for leveraging the LFBs of multiple
cores to increase the number of simultaneous device accesses
and obtain higher performance.

Impact of MLP. The microbenchmark results presented thus
far are straightforward to interpret, but are not necessarily
representative of real applications. In particular, real applica-
tions are likely to perform multiple independent data accesses
for a given amount of work, allowing for the latency of the
data accesses to be overlapped. For example, in Memcached,
after key matching is done, value retrieval can span multiple
cache lines, resulting in independent memory accesses that
can overlap with each other. We therefore consider variants
of our benchmark having memory-level parallelism (MLP)
of 2.0 and 4.0. We modify the code to perform a single
context switch after issuing multiple prefetches. In the DRAM
baseline, the out-of-order scheduler finds multiple independent
accesses in the instruction window and issues them into the
memory system in parallel. In each case, the microsecond-
latency device results are normalized to the DRAM baseline
with a matching degree of MLP.

The results comparing the MLP variants are presented in
Figure 6. We label these variants as 1-read, 2-read, and 4-read,
and the 1-read case is the same microbenchmark used in the
previous graphs. Similarly to the 1-read case, the 2- and 4-read
variants gain just as much performance from the first several



0.0

0.5

1.0

1.5

0 2 4 6 8 10 12 14 16

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Threads

1-read
2-read
4-read

Fig. 6: 1µs prefetch-based access at various levels of MLP.
Each line is normalized to the corresponding DRAM baseline.

threads and are just as effective as the 1-read case. However,
performing multiple accesses per thread prior to context switch
consumes LFBs more rapidly, and significantly reduces the
number of threads that can be leveraged. While the 1-read
case can scale to 10 threads before filling up the LFBs, the
2-read system tops out at 5 threads, and the 4-read system
peaks at 3 threads. In summary, we see that the LFB limit is
more problematic for applications with inherent MLP, severely
limiting their performance compared to the DRAM baseline.
For brevity, we omit the multi-core and higher-latency results
with MLP because they follow identical trends as the 1-read
microbenchmark, topping out at 14 aggregate accesses.

Implications. The combination of fast user-mode threading
and prefetch-based device access has the potential to hide
microsecond-level latencies. The main obstacle in realizing
this potential in modern systems is the limited hardware queue
sizes that prefetch requests encounter on their way to the
device. If the per-core LFB limit of 10 could be lifted, given
enough threads, even 4µs-latency devices could match the
performance of DRAM. Moreover, if the chip-level queue-
size limit of 14 were increased, the prefetch-based mechanism
could effectively scale to multicore systems.

Given these results, some simple back-of-the-envelope cal-
culations can determine the required queue sizes at different
levels of the memory hierarchy. Each microsecond of latency
can be effectively hidden by 10-20 in-flight device accesses
per core. Therefore, the per-core queues (of which LFB is
one example), should be provisioned for approximately “20
× expected-device-latency-in-microseconds” parallel accesses.
Chip-level shared queues, of which the 14-entry queue is
an example, should support “20 × expected-device-latency-
in-microseconds × cores-per-chip” to have sufficient access
parallelism for the whole chip. Processor vendors can make
similar calculations for all queues encountered by the prefetch
instructions on their path to the device and size them accord-
ingly, to ensure a balanced system design.

It appears that shared hardware queues on the DRAM access
path are larger than on the PCIe path. Therefore, integrating
microsecond-latency devices on the memory interconnect in
conjunction with larger per-core LFB queues may be a step
in the right direction.

We must emphasize that such hardware changes are not
sufficient alone. Software changes (i.e., prefetching + fast

0.0

0.5

1.0

1.5

0 4 8 12 16 20 24 28 32

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Threads

prefetch-based 1µs
prefetch-based 4µs
application queues 1µs
application queues 4µs

Fig. 7: Comparison of the application-managed queues and
prefetch-based accesses with 1µs and 4µs device latencies.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 4 8 12 16 20 24 28 32

N
o

rm
al

iz
ed

 P
e

rf
o

rm
an

ce

Threads

8 core 1µs 4 core 1µs 1 core 1µs
8 core 4µs 4 core 4µs 1 core 4µs

Fig. 8: Multicore comparison of software-managed queues
with 1µs and 4µs device latencies.

context switch) are needed to create a high degree of accesses-
level parallelism. With this approach, the programming model
remains unchanged and the application changes are mini-
mized, with the device access complexity encapsulated in the
threading library. Using such software, and with the hardware
queues properly sized, we do not foresee any reason that
would prevent conventional processors from effectively hiding
microsecond-level latencies and approaching the performance
of DRAM for data-intensive applications.

C. Application-Managed Software Queues

The hardware queues in modern processors limit the
prefetch-based access performance of microsecond-latency
devices. We therefore consider systems that do not rely on
hardware queues and instead keep the queues in memory, using
a light-weight descriptor and doorbell interface to interact
between queues stored in host memory and the device.

Effectiveness of application-managed queues. We begin
with a direct comparison of the prefetch-based access and
application-managed queues in Figure 7. Two effects are
evident. First, for higher latency, when the prefetch-based
access encounters the LFB limit, the application-managed
queues continue to gain performance with increasing thread
count. Second, although the thread count is not bounded by a
hardware queue, the application-managed queues incur signifi-
cant queue management overhead, which fundamentally limits
the peak performance relative to the prefetch-based access. At
10 threads and 1µs, or 24 threads and 4µs, all of the device
latency is effectively overlapped and peak performance is
achieved. However, the queue management overhead incurred



0.0

0.5

1.0

1.5

2.0

0 4 8 12 16 20 24 28 32

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Threads

(a) 1 Core

0.0

0.5

1.0

1.5

2.0

0 4 8 12 16 20 24 28 32

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Threads

1-read

2-read

4-read

(b) 4 Cores

Fig. 9: Impact of MLP on software-managed queues with one and four cores. Each line is normalized to the corresponding
DRAM baseline.

for each access limits the peak performance of the application-
managed queues to just 50% of the DRAM baseline.

Multicore effectiveness. Figure 8 shows the scalability of
the application-managed queues to multiple cores. Unlike the
prefetch-based mechanism that was limited to 14 requests
across cores, the application-managed queues have no such
limitations and achieve linear performance improvement as
core count increases.

Unfortunately, at eight cores, the system encounters a
request-rate bottleneck of the PCIe interface, limiting further
performance improvements. The PCIe protocol includes sig-
nificant per-request overhead beyond its payload. In our case,
the response data size is only one cache line (64 bytes),
but there is a 24-byte PCIe packet header added to each
transaction, a 38% overhead. In addition, the device must send
PCIe reads to access the descriptors, followed by writes of
the actual response data into host memory, and then writes
of request completion indications. This significantly increases
the number of PCIe transactions required to serve each device
access request, compared to the prefetch-based mechanism.
Although we took significant steps to minimize the overheads
(e.g., burst request reads to amortize the PCIe transaction
costs), the sheer number of small requests wastes the available
PCIe bandwidth. As a result, of the 4GB/s theoretical peak of
our PCIe interface, the eight-core system is only able to use
2GB/s (50%) to transfer useful data.

Impact of MLP. Figure 9 shows the performance of the
application-managed queues in the presence of MLP. Similar
to prefetch-based systems, the relative performance compared
to the DRAM baseline with MLP is noticeably worse than
without MLP. The queue management overhead in software
increases with the number of device accesses, even when the
accesses are batched before a context switch. As a result, the
peak performance of the application-managed queues on a
workload with MLP of 2.0 is 45%, relative to the DRAM
baseline. Going to an MLP of 4.0, the impact is even greater,
lowering the normalized peak performance to only 35% of
the corresponding DRAM baseline. Figure 9b compares the
behavior of workloads with different MLPs for four cores. The
increased amount of data transfer per unit of work puts greater
strain on the PCIe bandwidth, reaching peak performance at

four cores (instead of eight cores in the case of MLP of 1.0)
and much more quickly (at below 16 threads) for MLP of 4.0.

These results show that the impact of MLP on application-
managed queues is even more severe than on the prefetch-
based design. With an MLP of 4.0, the queue management
overheads and PCIe bandwidth constraints limit the four-
core system to just 1.3× performance relative to the DRAM
baseline. We do not include the results for 2µs and 4µs
latencies for brevity; they are analogous, achieving identical
peaks to 1µs, but at proportionally higher thread counts.

Implications. On systems where prefetch-based access is
limited by hardware queues, application-managed queues can
present a scalable solution to the killer-microsecond problem.
However, they have significantly higher software overheads
that primarily arises from queue management. Performance is
determined by the number of parallel requests, which in turn is
limited by the queue management overhead and interconnect
bandwidth. Given the current trends of increasing bandwidth
with every new generation of PCIe and other interconnects—
hundreds of gigabytes per second are not out of reach—
the bandwidth is not likely to be major bottleneck for high-
end devices. Queue-management overheads, however, are not
easily remedied, as software must work to submit requests and
to check for completion notifications from the device.

Additionally, from a programmability point-of-view,
prefetching has a clear advantage over application-
managed queues: hardware support for cache coherence.
If microsecond-latency storage is to be treated as memory,
they should support both read and write requests from
multiple processor cores. In the case of prefetching, the
device data is stored in hardware caches and kept coherent
across cores in the event of a write. With the software-
managed queues, every read or write request to the device
will use a different DRAM location for the response data,
making hardware-based coherence moot. Supporting writes
with software-managed queues will either preclude sharing
across cores, or require complex software cache coherence,
neither of which is palatable to software developers seeking
easy-to-use, high-performance memory interfaces.



0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10 12 14 16

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Threads

(a) Prefetch-based access, 1 Core.

0.0

0.5

1.0

1.5

2.0

0 4 8 12 16 20 24 28 32

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Threads

BFS

Bloomfilter

Memcached

Microbenchmark 4-read

(b) Application-managed queues, 1 Core.

0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10 12 14 16

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Threads

(c) Prefetch-based access, 8 Cores.

0.0

0.5

1.0

1.5

2.0

0 4 8 12 16 20 24 28 32

N
o

rm
al

iz
ed

 P
e

rf
o

rm
an

ce

Threads

(d) Application-managed queues, 8 Cores.

Fig. 10: One- and eight-core performance at 1µs latency for the application benchmarks, shown alongside a 4-read
microbenchmark for comparison.

D. Application Case Studies

To confirm that our microbenchmark results are broadly ap-
plicable to more practical applications, we extracted the main
data-access code of three open source data-intensive applica-
tions (Section IV-C) and compared their performance trends to
the microbenchmark. For the baseline DRAM implementations
of these applications, data accesses are performed on-demand
on DRAM without software modification. For the device-based
implementations, we modify the applications to batch device
requests. The nature of the applications permits batches of
four reads for Memcached and Bloomfilter, but limits us to
two reads for BFS due to inherent data dependencies.

Figure 10 presents the relative performance of the applica-
tions using the prefetching and application-managed queues,
with 1µs device latency, normalized to their respective DRAM
baselines. It is immediately evident that the DRAM baselines
allows the cores to find MLP and issue memory accesses in
parallel, just as we are able to do through our manual batching
effort. As a result, the application behavior is very similar to
the microbenchmark behavior in the presence of MLP.

Comparing Figures 10a and 10b shows the effectiveness of
the two access mechanisms (prefetch vs. queue). Although the
single core performance of the prefetch-based access is always
limited by the LFBs, it can still achieve adequate performance
(between 35% to 65% of the DRAM baseline) before reaching
the LFB limit. On the other hand, due to software overheads,
the application-managed queues only reach 20% to 50% of
the baseline performance with a single core.

Comparing Figures 10c and 10d reveals the scalability
of the access mechanisms while running on eight cores.
The hardware queue limitations fundamentally prevent the

prefetch-based access from achieving adequate application
performance. On the other hand, while the scalability of the
application-managed queues is not inherently limited, the ag-
gressive use of interconnect bandwidth for queue management
takes a significant toll on the peak performance that can be
achieved, with the final performance of the eight-core runs
peaking at between 1.2x to 2.0x of the DRAM baseline
performance of a single core.

Implications. Data-intensive applications exhibit some
memory-level parallelism, exacerbating the need to support
a large number of in-flight requests to microsecond-level
devices. If the bottlenecks identified in the previous sections
are lifted, we expect applications to show scalability while
effectively hiding microsecond-level device latency with high
thread counts. However, on existing hardware, microsecond-
latency devices can achieve only modest performance (∼50%
of baseline DRAM) on a single core. On multiple cores,
modern systems fair extremely poorly compared to multi-core
DRAM baselines.

VI. RELATED WORK

Barroso [8] coined the phrase “Killer Microsecond” to refer
to microsecond-level latencies for which we do not have
appropriate latency-hiding mechanisms. To the best of our
knowledge, our work is the first to measure the extent of this
problem in existing server platforms. Inspired by the need for
fast context switching mechanisms to hide latencies, Barroso
et. al [27] propose a low-latency context caching mechanism
in hardware. Such mechanisms are complimentary to our
user-threading based methods, and make them more efficient,
but are not a requirement. Sukhwani et al. [28] described



an FPGA-based proprietary DDR emulator. Our emulation
system is similar in spirit, but we selected the PCIe interface
because it provides sufficient flexibility to experiment with
both hardware- and software-managed queuing mechanisms
in one platform.

There are many proposals for architecting NVM devices as
something other than a simple drop-in replacement for block-
based disks. The MMIO-based access mechanisms evaluated
in this paper can be applied to any such proposal as long as
they expose the storage/memory device to applications using
load/store instructions for fine-grained accesses [29]–[41].

Although, this work only focuses on read accesses, a signif-
icant number of proposals on NVM devices are motivated by
their write-related properties, such as write endurance, write
latency, and persistence and consistency issues. Some propos-
als target efficient designs to support transactional semantics
for persistent updates [31], [34]–[38], [40], [42], [43] to
improve the performance in the presence of various atomicity
and consistency requirements. Some proposals are motivated
by wear-leveling requirements and limited write endurance of
Flash and other NVM devices [30], [44], [45], or their high
write latencies [46], [47]. These techniques often absorb the
writes into faster storage elements, typically DRAM, that act
as a cache with respect to the NVM device. Finally, some
modern processors now include instructions to support proper
handling of cached persistent data [48].

VII. CONCLUSION

Although emerging technologies can accommodate the need
for vast amounts of low-latency storage, existing mechanisms
for interacting with storage devices are inadequate to hide
their microsecond-level latencies. In this work, we use a
microsecond-latency device emulator, a carefully-crafted mi-
crobenchmark, and three data-intensive applications to uncover
the root causes of this problem in state-of-the-art systems.
We then show that simple changes to existing systems are
sufficient to support microsecond-latency devices. In par-
ticular, we show that by replacing memory accesses with
prefetches and user-mode context switches and enlarging hard-
ware queues for in-flight accesses, conventional architectures
can effectively hide microsecond-level latencies and approach
the performance of DRAM-based implementations of the same
applications. In other words, we show that successful usage
of microsecond-level devices is not predicated on employing
drastically new hardware and software architectures.

It is worth mentioning that, in this paper, we only investi-
gated the performance impact of microsecond-latency device
reads, and did not consider writes. Fortunately, because writes
do not have return values, are often off the critical path, and
do not prevent context switching by blocking at the head of
the reorder buffer, their latency can be more easily hidden
by later instructions of the same thread without requiring
prefetch instructions. On the other hand, as discussed in Sec-
tion V-C, write operations have significant programmability
implications, and should be further investigated in future work.

ACKNOWLEDGEMENTS

This work was supported by a Google Faculty Research
Award and NSF Grant #1452904. The experiments were
conducted with equipment donated by Intel Corporation and
purchased through NSF Grant #1405641.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy, “Design Tradeoffs for SSD Performance,” in Annual
Technical Conference, ser. ATC’08. Berkeley, CA, USA: USENIX
Association, 2008. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1404014.1404019

[2] M. Technologies, “InfiniBand Performance,” http://www.mellanox.com/
page/performance infiniband.

[3] M. Technologies, “RoCE vs. iWARP Competitive Analysis,” http://www.
mellanox.com/related-docs/whitepapers/WP RoCE vs iWARP.pdf.

[4] J. Vienne, J. Chen, M. Wasi-Ur-Rahman, N. S. Islam, H. Subramoni,
and D. K. Panda, “Performance Analysis and Evaluation of InfiniBand
FDR and 40GigE RoCE on HPC and Cloud Computing Systems,” in
Proceedings of 20th Symposium on High-Performance Interconnects,
ser. HOTI ’12. Washington, DC, USA: IEEE Computer Society, 2012.
[Online]. Available: http://dx.doi.org/10.1109/HOTI.2012.19

[5] Intel, “Intel and Micron Produce Breakthrough Memory Technology,”
https://newsroom.intel.com/news-releases/intel-and-micron-produce-
breakthrough-memory-technology, July 2015.

[6] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: A study of emerging scale-out workloads
on modern hardware,” in Seventeenth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XVII. New York, NY, USA: ACM, 2012.
[Online]. Available: http://doi.acm.org/10.1145/2150976.2150982

[7] C. Li, C. Ding, and K. Shen, “Quantifying the Cost of Context Switch,”
in Workshop on Experimental Computer Science, 2007. [Online].
Available: http://doi.acm.org/10.1145/1281700.1281702

[8] L. A. Barroso, “Landheld Computing,” ISSCC 2014
Panel on “Data Centers to Support Tomorrowś Cloud”.
http://www.theregister.co.uk/Print/2014/02/11/google research three
things that must be done to save the data center of the future.

[9] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan, “Attack of the
Killer Microseconds,” Commun. ACM, vol. 60, Mar. 2017. [Online].
Available: http://doi.acm.org/10.1145/3015146

[10] I. T. R. for Semiconductors, “Process Integration, Devices, and Struc-
tures,” 2011.

[11] L. M. Grupp, J. D. Davis, and S. Swanson, “The Bleak Future
of NAND Flash Memory,” in Proceedings of 10th USENIX
Conference on File and Storage Technologies, ser. FAST’12. Berkeley,
CA, USA: USENIX Association, 2012. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2208461.2208463

[12] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani, “Tao: Facebook’s distributed
data store for the social graph,” in Annual Technical Conference, ser.
USENIX ATC’13. Berkeley, CA, USA: USENIX Association, 2013.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2535461.2535468

[13] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale
graph processing,” in Proceedings of 2010 International Conference on
Management of Data, ser. SIGMOD ’10. New York, NY, USA: ACM,
2010. [Online]. Available: http://doi.acm.org/10.1145/1807167.1807184

[14] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of
2nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. Berkeley, CA, USA: USENIX Association, 2010.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1863103.1863113

[15] B. Fitzpatrick, “Distributed caching with memcached,” Linux J., vol.
2004, Aug. 2004. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1012889.1012894

http://dl.acm.org/citation.cfm?id=1404014.1404019
http://dl.acm.org/citation.cfm?id=1404014.1404019
http://www.mellanox.com/page/performance_infiniband
http://www.mellanox.com/page/performance_infiniband
http://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
http://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
http://dx.doi.org/10.1109/HOTI.2012.19
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology
http://doi.acm.org/10.1145/2150976.2150982
http://doi.acm.org/10.1145/1281700.1281702
http://www.theregister.co.uk/Print/2014/02/11/google_research_three_things_that_must_be_done_to_save_the_data_center_of_the_future’
http://www.theregister.co.uk/Print/2014/02/11/google_research_three_things_that_must_be_done_to_save_the_data_center_of_the_future’
http://doi.acm.org/10.1145/3015146
http://dl.acm.org/citation.cfm?id=2208461.2208463
http://dl.acm.org/citation.cfm?id=2208461.2208463
http://dl.acm.org/citation.cfm?id=2535461.2535468
http://doi.acm.org/10.1145/1807167.1807184
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1012889.1012894
http://dl.acm.org/citation.cfm?id=1012889.1012894


[16] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.
Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford,
T. Tung, and V. Venkataramani, “Scaling memcache at facebook,” in
Proceedings of 10th USENIX Conference on Networked Systems Design
and Implementation, ser. nsdi’13. Berkeley, CA, USA: USENIX
Association, 2013. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2482626.2482663

[17] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazières, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum,
S. M. Rumble, E. Stratmann, and R. Stutsman, “The Case for
RAMClouds: Scalable High-performance Storage Entirely in DRAM,”
SIGOPS Oper. Syst. Rev., vol. 43, Jan. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1713254.1713276

[18] G. Blake and A. G. Saidi, “Where does the time go? characterizing tail
latency in memcached,” in Intl. Symposium on Performance Analysis of
Systems and Software, March 2015.

[19] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F.
Wenisch, “Thin servers with smart pipes: Designing soc accelerators
for memcached,” in Proceedings of 40th International Symposium on
Computer Architecture, ser. ISCA ’13. New York, NY, USA: ACM,
2013. [Online]. Available: http://doi.acm.org/10.1145/2485922.2485926

[20] D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. von
Eicken, “Tam-a compiler controlled threaded abstract machine,” J.
Parallel Distrib. Comput., vol. 18, Jul. 1993. [Online]. Available:
http://dx.doi.org/10.1006/jpdc.1993.1070

[21] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz,
J. Kubiatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung, “The
mit alewife machine: Architecture and performance,” in Proceedings
of 22nd International Symposium on Computer Architecture, ser.
ISCA ’95. New York, NY, USA: ACM, 1995. [Online]. Available:
http://doi.acm.org/10.1145/223982.223985

[22] “Flashtec NVRAM Drives,” https://www.microsemi.com/product-
directory/storage-boards/3690-flashtec-nvram-drives.

[23] “Intel-Altera Heterogeneous Architecture Research Platform Program,”
http://bit.ly/1Pwo9IM.

[24] R. S. Engelschall, “GNU Pth - The GNU Portable Threads,” https://
www.gnu.org/software/pth/.

[25] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500,” Cray Users Group (CUG), 2010.

[26] A. Vorobey and B. Fitzpatrick, “memcached - memory caching daemon.”
[27] L. A. Barroso, J. Laudon, and M. R. Marty, “Low latency thread

context caching,” Jul. 5 2016, uS Patent 9,384,036. [Online]. Available:
https://www.google.com/patents/US9384036

[28] B. Sukhwani, T. Roewer, C. L. Haymes, K.-H. Kim, A. J. McPadden,
D. M. Dreps, D. Sanner, J. Van Lunteren, and S. Asaad, “Contutto:
A novel fpga-based prototyping platform enabling innovation in the
memory subsystem of a server class processor,” in Proceedings of
50th International Symposium on Microarchitecture, ser. MICRO-
50 ’17. New York, NY, USA: ACM, 2017. [Online]. Available:
http://doi.acm.org/10.1145/3123939.3124535

[29] A. Badam and V. S. Pai, “SSDAlloc: Hybrid SSD/RAM Memory
Management Made Easy,” in Proceedings of 8th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI’11.
Berkeley, CA, USA: USENIX Association, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1972457.1972479

[30] A. Badam, V. S. Pai, and D. W. Nellans, “Better Flash Access
via Shape-shifting Virtual Memory Pages,” in Proceedings of 1st
Conference on Timely Results in Operating Systems, ser. TRIOS
’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2524211.2524221

[31] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson, “NV-Heaps: Making Persistent Objects
Fast and Safe with Next-generation, Non-volatile Memories,” in
Proceedings of 16th International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS
XVI. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/1950365.1950380

[32] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System Software for Persistent Memory,”
in Ninth European Conference on Computer Systems, ser. EuroSys
’14. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2592798.2592814

[33] J. Huang, A. Badam, M. K. Qureshi, and K. Schwan, “Unified Address
Translation for Memory-mapped SSDs with FlashMap,” in Proceedings

of 42nd International Symposium on Computer Architecture, ser.
ISCA ’15. New York, NY, USA: ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2749469.2750420

[34] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-
Performance Transactions for Persistent Memories,” in Twenty-First
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’16. New York,
NY, USA: ACM, 2016. [Online]. Available: http://doi.acm.org/10.1145/
2872362.2872381

[35] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory Persistency,”
in Proceedings of 41st International Symposium on Computer
Architecuture, ser. ISCA ’14. Piscataway, NJ, USA: IEEE Press, 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2665671.2665712

[36] P. M. Programming, “Linux NVM Library,” http://pmem.io/.
[37] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell,

“Consistent and Durable Data Structures for Non-volatile Byte-
addressable Memory,” in Proceedings of 9th USENIX Conference
on File and Stroage Technologies, ser. FAST’11. Berkeley, CA,
USA: USENIX Association, 2011. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1960475.1960480

[38] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
Persistent Memory,” in Proceedings of 16th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XVI. New York, NY, USA: ACM, 2011.
[Online]. Available: http://doi.acm.org/10.1145/1950365.1950379

[39] C. Wang, S. S. Vazhkudai, X. Ma, F. Meng, Y. Kim, and C. Engelmann,
“NVMalloc: Exposing an Aggregate SSD Store As a Memory Partition
in Extreme-Scale Machines,” in Proceedings of 26th International
Parallel and Distributed Processing Symposium, ser. IPDPS ’12.
Washington, DC, USA: IEEE Computer Society, 2012. [Online].
Available: http://dx.doi.org/10.1109/IPDPS.2012.90

[40] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln:
Closing the Performance Gap Between Systems with and Without
Persistence Support,” in Proceedings of 46th International Symposium
on Microarchitecture, ser. MICRO-46. New York, NY, USA: ACM,
2013. [Online]. Available: http://doi.acm.org/10.1145/2540708.2540744

[41] J. Yang, D. B. Minturn, and F. Hady, “When poll is better than
interrupt,” in Proceedings of 10th USENIX Conference on File and
Storage Technologies, ser. FAST’12. Berkeley, CA, USA: USENIX
Association, 2012. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2208461.2208464

[42] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better I/O Through Byte-addressable, Persistent Memory,”
in Proceedings of 22nd Symposium on Operating Systems Principles,
ser. SOSP ’09. New York, NY, USA: ACM, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1629575.1629589

[43] Z. Deng, L. Zhang, N. Mishra, H. Hoffmann, and F. T. Chong,
“Memory cocktail therapy: A general learning-based framework
to optimize dynamic tradeoffs in nvms,” in Proceedings of 50th
International Symposium on Microarchitecture, ser. MICRO-50 ’17.
New York, NY, USA: ACM, 2017. [Online]. Available: http:
//doi.acm.org/10.1145/3123939.3124548

[44] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and T. Moscibroda,
“Dynamically Replicated Memory: Building Reliable Systems from
Nanoscale Resistive Memories,” in Fifteenth Edition of ASPLOS on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XV. New York, NY, USA: ACM, 2010.
[Online]. Available: http://doi.acm.org/10.1145/1736020.1736023

[45] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase
Change Memory As a Scalable DRAM Alternative,” in Proceedings
of 36th International Symposium on Computer Architecture, ser.
ISCA ’09. New York, NY, USA: ACM, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1555754.1555758

[46] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High
Performance Main Memory System Using Phase-change Memory
Technology,” in Proceedings of 36th International Symposium on
Computer Architecture, ser. ISCA ’09. New York, NY, USA: ACM,
2009. [Online]. Available: http://doi.acm.org/10.1145/1555754.1555760

[47] V. Technology, “Non-Volatile Memory and Its Use in Enterprise Appli-
cations,” http://www.vikingtechnology.com/uploads/nv whitepaper.pdf.

[48] Intel, “Intel Architecture Instruction Set Extensions Programming
Reference,” https://software.intel.com/sites/default/files/managed/b4/3a/
319433-024.pdf, February 2016.

http://dl.acm.org/citation.cfm?id=2482626.2482663
http://dl.acm.org/citation.cfm?id=2482626.2482663
http://doi.acm.org/10.1145/1713254.1713276
http://doi.acm.org/10.1145/2485922.2485926
http://dx.doi.org/10.1006/jpdc.1993.1070
http://doi.acm.org/10.1145/223982.223985
https://www.microsemi.com/product-directory/storage-boards/3690-flashtec-nvram-drives
https://www.microsemi.com/product-directory/storage-boards/3690-flashtec-nvram-drives
http://bit.ly/1Pwo9IM
https://www.gnu.org/software/pth/
https://www.gnu.org/software/pth/
https://www.google.com/patents/US9384036
http://doi.acm.org/10.1145/3123939.3124535
http://dl.acm.org/citation.cfm?id=1972457.1972479
http://doi.acm.org/10.1145/2524211.2524221
http://doi.acm.org/10.1145/1950365.1950380
http://doi.acm.org/10.1145/2592798.2592814
http://doi.acm.org/10.1145/2749469.2750420
http://doi.acm.org/10.1145/2872362.2872381
http://doi.acm.org/10.1145/2872362.2872381
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://pmem.io/
http://dl.acm.org/citation.cfm?id=1960475.1960480
http://dl.acm.org/citation.cfm?id=1960475.1960480
http://doi.acm.org/10.1145/1950365.1950379
http://dx.doi.org/10.1109/IPDPS.2012.90
http://doi.acm.org/10.1145/2540708.2540744
http://dl.acm.org/citation.cfm?id=2208461.2208464
http://dl.acm.org/citation.cfm?id=2208461.2208464
http://doi.acm.org/10.1145/1629575.1629589
http://doi.acm.org/10.1145/3123939.3124548
http://doi.acm.org/10.1145/3123939.3124548
http://doi.acm.org/10.1145/1736020.1736023
http://doi.acm.org/10.1145/1555754.1555758
http://doi.acm.org/10.1145/1555754.1555760
http://www.vikingtechnology.com/uploads/nv_whitepaper.pdf
https://software.intel.com/sites/default/files/managed/b4/3a/319433-024.pdf
https://software.intel.com/sites/default/files/managed/b4/3a/319433-024.pdf

	Introduction
	Background
	Trends in Low-Latency Data Access
	Latency-Hiding Mechanisms

	Device Access Mechanisms
	Software-Managed Queues
	Hardware-Managed Queues

	Evaluation Methodology
	Microsecond-Latency Device Emulator
	Support Software
	Benchmarks

	Results and Analysis
	On-Demand Access
	Prefetch-Based Access
	Application-Managed Software Queues
	Application Case Studies

	Related Work
	Conclusion
	References

