
Domains Do Change Their Spots:

Quantifying Potential Abuse of Residual Trust

Johnny So, Najmeh Miramirkhani, Michael Ferdman, Nick Nikiforakis
Stony Brook University

Abstract—When domains expire and are released to the public,
adversaries can re-register them with the hope of exploiting residual
trust from clients that are unaware of the change in ownership.
Because domain name resolution is integral to the web, possible
clients run the gamut from humans browsing the web to automated
and periodic processes such as system updates. For an adversary, this
trivially yields access to an attack vector that can affect a multitude
of diverse systems and devices. We reason that some domains which
experience residual trust and are valuable from a security perspective
are not valuable from a dropcatching perspective and, as such, can
be re-registered by an adversary without participating in fiercely
competitive auctions for expired domains.

In this paper, we present an investigation into this attack vector
using a top-down, opportunistic approach, as opposed to bottom-up
approaches used by prior work that target specific systems and
infrastructure. Throughout a one-month re-registration period, we
identify potentially valuable dropped domains using a threshold of
passive DNS resolutions, re-register, and deploy them with basic
honeypot services. We then analyze the traffic to these domains to find
instances of residual trust that can be exploited. Our honeypot services
recorded, over a four-month period, 650,737,621 requests from
5,540,379 unique IP addresses situated in 22,744 different autonomous
systems to the 201 re-registered domains. Although a majority of
these domains may not pose significant security risks, we are most
concerned with and thus focus our discussion on unusual domains
which receive orders of magnitude more traffic and types of traffic
that are significantly different from the other domains. These include
domains which previously functioned as a torrent tracker, an API
for a computer lab usage statistics service used by many universities,
an API that was a point of contact for a common Android haptics
library, security company DNS sinkhole servers, an Internet radio
and music station, command-and-control servers for malware and
potentially unwanted programs, and an email tracker. Our findings
demonstrate that expired domains pose a real threat to the security
of the Internet ecosystem and that adversaries with modest budgets
can compromise a wide range of systems and services by merely
registering previously-popular domains that were left to expire.

I. INTRODUCTION

The Domain Name System (DNS) is the distributed phone book
of the Internet, tying human-readable domain names to their actual
IP address(es). Because DNS is integral to the web experience,
DNS queries are ever-present, yet abstracted away from the normal
user experience. Queries are performed in the background and
are answered by optimized, local, and dedicated DNS resolvers
that find the IP address for a given domain name in milliseconds.
Unsurprisingly, details such as the domain registration process and
the registration life cycles are not important to users.

Perhaps the most pressing yet unimportant detail is that domains
can expire and change ownership without the users’ knowledge. If
a domain expires and changes ownership, its residual trust — the
historical reputation — is implicitly transferred to its new owners [1].
There are no standards or built-in mechanisms that warn clients
when a previously contacted domain is now operated by a different
entity. This enables an attack surface that exploits prior trust and
is a subset of the overall problem of integrity verification on the

web. If a malicious actor were to re-register an expired domain with
residual trust, they would be able to exploit all residual trust traffic.
All clients that depend on domain name resolution are susceptible
to contributing to residual trust traffic, and potential clients run the
gamut from end users, to JavaScript libraries, to system updates.

There has been a rising interest in expired domains; industry
interest took shape in the rise of the dropcatch ecosystem in which
companies build complex infrastructure to re-register valuable
expired domain names as soon as they are released to the public. The
dynamics behind this phenomenon and its resultant industry were
studied by previous works [2], [3], [4]. The value of such domains
is typically derived from characteristics such as their string length,
previous amount of traffic, popularity ranking in lists such as Alexa’s
Top 1 Million, and past indexing in search engines.

On the other hand, academic interest took shape in investigating
how expired domains can enable an attack on what may be an
otherwise secure system. For example, Lever et al. have found
instances of residual-trust issues in domain names used by browser
extensions [1], as well as malware and potentially unwanted
programs [5]. Alowaisheq et al. discovered that even dangerous
domains that were sinkholed by security researchers and governments
are eventually allowed to expire and can therefore be re-registered and
used to revive dormant botnets [6]. Other researchers have pointed
out the interaction between web security mechanisms and expired
domains, showing that the latter can be abused to inject malicious
JavaScript in popular domains [7] as well as evade previously secure
CSP policies [8]. In all these cases, the abuse of residual trust in
these domains would compromise the security of entire systems and
potentially harm the privacy of a significant portion of their user base.

By taking a step back, we observe that prior work from the
academic community favored a bottom-up approach, in which they
began with analyzing a target system (such as extensions, malware,
and CSP policies) and then discovered and quantified how expired
domains can compromise them. In this paper, we present the first
top-down approach to investigate this problem — we re-register
domains in a target-agnostic fashion and then not only detect but also
quantify the potential abuse of residual trust in our pool of domains.
Our approach resembles that of an opportunistic attacker who
re-registers a number of expired domains and discovers that some of
them still receive traffic because of residual trust, whereas a bottom-up
approach first identifies systems of interest and then attempts to
re-register particular domains in hopes of exploiting residual trust.
Using our top-down approach, we find that not only are the specific
worries described by these bottom-up works likely to occur in reality,
but they are also not financially difficult to successfully execute.

Our study seeks to understand and quantify the feasibility for
valuable domains to slip by the dropcatch industry and be obtained
by lower-budget registrants. With the ever-increasing number of
domain registrations [9] and consequently ever-increasing number
of domain expirations, we argue that a better understanding of the

feasibility and severity of this attack vector is necessary to ensure
the security of not only end users but also dependent systems. In
particular, there are domains that would not be considered valuable
from a typical monetary or dropcatching perspective, but may hold
significant value from a security perspective. Domains that do not
serve end-user-facing content have no need for a memorable name
nor do they appear in common domain ranking lists. Some common
examples include domains for DNS name servers, API servers, or
CDN servers. To this end, we design an experiment to simulate the
process of a potential malicious actor aiming to re-register expired
domains whose residual trust can be exploited to cause harm to the
security and privacy of dependent systems and end users.

We summarize our contributions as follows:
• Large-scale analysis and profiling of residual trust

traffic to 201 domains over four months. We empirically
demonstrate that it is likely for a new owner to identify the type
of service previously offered on a particular domain using not
only residual traffic logs, but also third-party references on the
Internet and historical archives. Using this method, we were
able to confidently categorize 128 domains from our pool of re-
registered domains. Additionally, we find evidence that residual
trust traffic is not guaranteed to decay over time; that is, it is
possible to continue to receive traffic because of residual trust
for months after a domain experiences a change in ownership.

• Design, implementation, and evaluation of an

infrastructure to aid in identifying domains with

exploitable residual trust traffic. Our top-down approach
comprises automated pipelines for the selection, re-registration,
and deployment of expired domain candidates as well as for
the detection of residual trust traffic in our domains.

• Evidence that residual trust abuse can affect millions of

different IP addresses over tens of thousands of different

autonomous systems, even with a simple domain selection

strategy, and it does not require heavy financial invest-

ment. We spend a total of $1,464.64 to re-register 201 domains
and, after profiling the re-registered domains, find that some
would enable an adversary to not only gather information but
also manipulate and compromise unaware clients and systems.
These include notable, high-volume domains which previously
functioned as a torrent tracker, an API for a computer-lab-usage
statistics service used by many universities, an API that was a
point of contact for a common Android haptics library, security
company DNS sinkhole servers, an Internet radio and music sta-
tion, command-and-control centers for malware and potentially
unwanted programs (PUPs), and an email tracker [10].

II. RESIDUAL TRUST IN DNS

Information about domains is managed by registrars and registries
who follow standardized processes created by the Internet Corporation
for Assigned Names and Numbers (ICANN). Depending on the
top-level domain (TLD) and the corresponding managing entity,
such processes may vary. For example, country-code TLDs are
managed by their respective countries, whereas generic TLDs are
managed by ICANN. Domains are generally registered for several
years, after which they expire and must be renewed. Generic TLDs
follow ICANN’s Expired Registration Recovery Policy (ERRP) [11],
a process which grants expiring domain owners buffer time to
renew their domain before it is released to the public. The ERRP
mandates that domain registrars attempt to notify domain owners

twice (up to one month) before expiration and once (within five days)
after expiration. After the registrar deletes a domain, it enters the
Redemption Grace Period, during which the expired domain owner
can still renew the domain, although typically at a higher price. The
expired domain becomes publicly available for re-registration five
days after the grace period ends.

As there is no inherent mechanism to warn of changes in domain
ownership, it is likely that unaware clients continue to attempt to con-
tact domains after expiration and after their deletion by their registrar.
If a deleted domain is purchased and receives such residual traffic,
the new owner will have access to all incoming communications from
these clients. In this scenario, traditional techniques such as HTTPS
will not maintain confidentiality. In fact, any encryption technique
that derives a key through communication with the server will not
maintain the confidentiality of the data, since the receiver is operated
by the re-registrant. Perhaps the only communications that might
remain opaque to a re-registrant are obscure or non-standard methods
which may be nontrivial to reverse engineer.

It is important to acknowledge that there have been remote identity
verification mechanisms that were proposed such as HTTP Public
Key Pinning (HPKP) [12]. HPKP would be able to notice that
the identity of the server has changed because of a change in the
server’s public key, but HPKP is now deprecated [13] because of its
difficulty to use and risks such as rendering a site unusable and hostile
pinning [14]. Even if HPKP were enabled for the domain, it would
be difficult to determine whether a pinning violation was caused by a
misconfiguration or an attack. It would also be difficult to determine if
the new domain owner is malicious and attempting to exploit residual
trust or benign and merely offering new content on the domain.

As the new owner is privy to all communication to their domain,
they would be able to identify the type of service previously offered
by the domain and build specific infrastructure in an attempt to
gather more information from higher levels of interaction with
clients. Depending on the nature of the services previously offered
by the domain, the new owner can gain varying levels of personally
identifiable information, including IP addresses, geolocation, device
fingerprints, and user credentials.

To the best of our knowledge, this study is the first to use a top-down
approach to investigate the feasibility of residual trust abuse. We design
and implement pipelines to automatically identify potentially valuable
domains, re-register and deploy them, and identify cases of residual
trust. We adopt a domain selection strategy that relies on passive DNS,
which refers to the capturing of live DNS records, consequently build-
ing partial replicas of DNS zones, and storing them in a database [15].
Passive DNS data help to answer questions that are difficult or im-
possible with standard DNS, such as historical resolution information
(e.g., “What IP address did this domain name point to in the past?”).

III. EXPERIMENT DESIGN & METHODOLOGY

In this section, we present the rationale behind our experimental
design, beginning with our strategy for domain selection and
automated infrastructure for re-registration, deployment, and
monitoring. We end with detailing the methodology of residual trust
detection in our traffic analysis.

A. Domain Selection

Our domain selection criterion is derived from the intuition
that domains with a large amount of traffic pre-expiration are
more likely to receive traffic post-expiration because of their sheer

High DNS Traffic Low DNS Traffic Placebo Hosts

1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910

0

2000

4000

6000

8000

Virtual Machine ID

N
u
m

b
e
r

o
f
R

e
q
u
e
s
ts

Fig. 1. Traffic received on recently expired and re-registered domains. Each virtual
machine was assigned a unique IP address. Placebo hosts are control hosts that do
not have an associated domain name.

popularity, whether the traffic is from unaware users or to-be-updated
infrastructure tools. The number of DNS resolutions for a domain is
an appropriate proxy for the amount of traffic received by a domain,
because DNS is one of the fundamental services on the Internet and
the protocol is necessary to resolve domain names to IP addresses.
We use a commercial passive DNS database [16] as our proxy to
gauge DNS activity for a given domain and attempt to re-register
domains with a high number of pre-expiration resolutions.

Because dropcatchers are known to re-register domain names as
soon as they become available and may spend hundreds of thousands
of dollars for that privilege [3], [4], we focus on domain names
that are of no interest to them. Namely, the threat model that we
investigate is that of an attacker who can opportunistically identify
the “hidden gems” that dropcatchers missed (i.e., ones that were not
registered immediately after being dropped) and can register them for
nominal prices (i.e., the typical price of a domain registration). This
attacker will register domains based on how many times they used to
be resolved by DNS when they were active, as opposed to looking for
the same traits that dropcatchers look for (e.g., their historical Alexa
ranking, how short each domain is, if there’s a website available for
it on Internet Archive, etc.) [4].

We first conducted two small-scale monitoring experiments before
our domain registration process: the first to determine whether the
intuition that valuable domains expire and receive residual trust traffic
is reasonable and the second to determine an appropriate empirical
threshold for the number of historical DNS resolutions to use for our
domain selection. In the former, we use the passive DNS database and
re-register ten historically high-traffic domains several hours after they
were released for public registration. These domains were selected
by sorting a sample of 20K domains that were dropped on June 13,
2019 by the number of their historical DNS resolutions. Because these
domains remained on the market for several hours after they became
available, we know that dropcatchers were not interested in them;
according to Lauinger et al., dropcatchers register their target domains
mere seconds after they are released [3]. As part of our control groups,
we also re-registered ten historically low-traffic domains, and created
ten placebo machines that are not associated with any domain names.
These machines receive traffic only from network-scanning bots that
probe online IPs. All machines in the three groups logged the times-
tamp and client IP address of each HTTP(S) request and responded
with a blank page. In addition, to ensure that there is no difference in
network placement, we place all the groups in the same class-C subnet.

Fig. 2. Pre-expiration vs. post re-registration DNS resolutions of a random sample
of re-registered dropped domains. After re-registration, the number of DNS resolutions
is generally lower by one order of magnitude. All sampled domains with over 1 million
pre-expiration resolutions receive at least over 10K resolutions after re-registration.

Figure 1 shows the number of requests received by each container
in a one-week period. We observe that the low-traffic group and the
placebo group received similar volume of HTTP(S) traffic; these
low-traffic domains did not receive more traffic than any other online
container, regardless of whether their IP resolved from a registered
domain. On the other hand, we observed that two historically
high-volume domains received more than twice as much traffic as
any historically low-volume or placebo container. This suggests that
the domain names which were not deemed valuable by dropcatchers
are still referenced by third-party, dependent infrastructure that is
unaware of the change in ownership.

In our second motivating experiment, we obtained a list of dropped
domains on June 20, 2019 and monitored the domains to select
those that were re-registered within two weeks. This sample includes
a mix of domains that were dropcaught and domains that were
re-registered later. For each selected domain, we compared its total
number of DNS resolutions (accounting for SOA, A, NS, and MX
records) at the time of its expiration with its number of additional
DNS resolutions two weeks after re-registration. Figure 2 compares
the number of lookups after re-registration with the number before
expiration, showing that the number of resolutions after re-registration
is generally one order of magnitude lower than the number of
resolutions pre-expiration. We empirically choose a threshold of 1
million resolutions pre-expiration which is a likely indicator that the
domain will receive over 10K resolutions within two weeks after
re-registration. This experiment also served as an estimate of the
amount of traffic that our re-registered domains would receive. We
restrict the TLDs considered to the most popular (.com, .net,

.org, .info and .biz) to narrow down the set of domain
candidates. Although the TLDs we consider are popular among
dropcatchers, our domain selection strategy is different from that of
typical dropcatchers as described by Miramirkhani et al. [4], which
reduced the contention for the domains that we selected.

Our domain registration process consisted of a pilot phase and
a main phase. In our pilot phase, we experimented with domain
selection strategies and re-registered 29 domains; in our main phase,
we re-registered 172 domains over the course of one month beginning
on August 8, 2019. For the first 20 days, we randomly sampled the
dropped domains to reduce the number of queries to the passive DNS
database, due to service quotas. In the last 10 days, we were able to
query all dropped domains and identify more candidates. On several
occasions, our daily candidate identification process resulted in sets

Fig. 3. A diagram of our system modules. Our deployment module also installs honeypot services for each registered domain and all logs, including raw packet capture
files, are collected by our raw log storage. All the dashed lines on the right-hand side belong to an iterative process involving manual analysis.

of domains with similar lexical structures (e.g., vvol1kans.com,
vvol1ccan.com, wol1ck.com, wol1kkano.com, and
vvol1can.com). These domains used squatting techniques that
were more complex than typical techniques [17], [18], [19], [20],
[21] and were difficult to automatically detect; for this reason,
we manually filtered out these similar domains. For each set of
similar domains, we opted to keep the one with the highest amount
of traffic. In rare cases, if we were able to find some interesting
characteristics of a lower-volume domain, we would select it instead
of the highest-volume domain.

Our main registration phase identified 550 domains of interest; of
these, 321 domains (58% of all identified) were manually identified as
highly similar to another candidate and excluded from consideration.
We were unable to register 57 domains (24% of the remaining
candidates) because they were re-registered by another entity. It
is unclear whether these domains were immediately caught or
re-registered hours after they were dropped because our module
executed at regular intervals. We were able to successfully re-register
172 (75%) of the remaining candidates.

B. Infrastructure

Figure 3 presents a high-level overview of our system, comprising a
domain selection module, container and honeypot deployment module,
log collector, and traffic analyzer. The domain selection module
performed daily queries to Domainmonster [22], DynaDot [23],
NameJet [24], Pool [25], and SnapNames [26] to obtain a list of
domains that were about to expire and followed the process outlined
in the previous section to select the domains considered valuable
enough to attempt to re-register.

Upon a successful re-registration of the domain name, the
deployment module creates a new container on the host machine,
allocates it a unique IP address (from our range of two class C blocks),
and creates the corresponding DNS records in our two name servers.
We use wildcard DNS (NS, A, and MX) records to capture requests
to all subdomains to quantify the effects of residual trust as accurately
as possible. In addition to the containers for re-registered domains, we
also randomly create containers that are not tied to any domain name,
but are otherwise identically configured and located in the same IP
address range. Following our terminology from Section III-A, we
call these extra containers placebos and use them to filter out traffic
to our domain servers that is not caused by residual trust. We do not
register domains for these placebo hosts to minimize our costs and
because we had already observed that they receive similar amounts of
traffic as historically low-traffic domains from our initial experiment.
Because these servers are not tied to any domain name, clients

can only discover them through network scanning. We reason that
these network-probing clients will also contact our domain servers,
enabling us to use traffic to our placebo servers as a type of negative
filter in our analysis of residual trust traffic (we further elaborate on
how we accomplish this in Section III-D).

We configure the containers with well understood and popular
protocols on the Internet, as the protocols that will actually receive
residual trust traffic will vary depending not only on the specific
domains registered, but also on the time of re-registration for
these domains. Moreover, traffic on non-standardized ports may
be associated with more than one service which would make it
challenging to interpret incoming traffic to these ports on the fly. As
a result, the deployment module configures containers to listen for
traffic on only the most common service ports, namely HTTP(S),
SSH, Telnet, and FTP. All HTTP(S) requests are served a custom 404
error page with bot traps (see Section III-D), along with a script that
attempts to collect a browser fingerprint. HTTPS is supported using
an X.509 certificate from Let’s Encrypt [27]. The SSH service is
a medium-interaction honeypot that logs a large selection of possible
events [28]. The Telnet and FTP services are low-interaction and
collect only the credentials of the login attempts [29].

In addition to the honeypot service logs, we collect packet captures
of the first 64 bytes of every packet entering the containers. The
logs are regularly collected from each container by a log-collector
module and stored on a large network-attached storage device. Our
traffic analyzer then ingests all raw logs from the log collector into
an Elasticsearch database [30].

C. Residual Trust Detection

Public systems on the Internet are bound to receive large amounts
of automated traffic, whether they are from spam, benign crawlers
for search engines and historical archives, or malicious fingerprinting
tools and vulnerability scanners. Identifying such automated traffic
is a prerequisite to our further analysis of residual trust traffic. As a
first step in our analysis, we therefore distinguish between two types
of accesses, bot traffic and trust traffic, using architectural
elements, request characteristics, and IP blocklists.

Our traffic analysis pipeline combines the intuition behind the
common block-listing and allow-listing approaches. The pipeline
comprises a series of bot filters followed by trust filters
that query our database. If a request matches a specific filter, the
corresponding client IP address is tagged with the filter type and name.
An IP address may be associated with multiple bot filters and
trust filters, but bot filters (the block-lists) are assigned more
weight than trust filters (the allow-lists) — any IP address with

Fig. 4. Sankey diagram of the results of the bot and residual trust detection pipeline on HTTP(S) traffic. Each flow represents an exclusive set of IP addresses and each
node a stage in the filtering process. Each IP is bucketed in the first matching filter flow and the filters were applied sequentially to all client IP addresses in the top-down
order depicted, for each horizontal depth level from the initial node. For example, if an IP is tagged with bot filters of {dnsbl, bot-fingerprint} and a trust filter
of residual-path, the IP address would be in the flow [init, bot, dnsbl] because bot precedes trust and dnsbl precedes bot-fingerprint. IP
addresses are marked neutral if they have neither filter tag applied (i.e., they did not exhibit any indication that their requests resulted from bot or trust traffic).
Section III-D includes a detailed discussion of the analysis pipeline.

a mix of both types will be marked bot. Thus, an IP address will be
characterized as a) bot if it has any bot filter tags, b) trust if it
has no bot filter tags and any trust filter tags, or c) neutral
if it has no associated filter tags.

We categorize clients at IP address granularity. Although an IP
address can be shared by multiple clients, it is difficult to determine the
client or session boundaries for a given IP address from a server-side
perspective. Using heuristics (e.g., consider all requests from the same
IP address within 60 seconds of one another to be one session) is prone
to false positives in bot classification. We instead opt for a broader, IP
address granularity, and note that any number of IP addresses is a lower
bound of the actual number of clients behind those IPs. For classifying
residual trust traffic, this approach is conservative — if any of the ac-
cesses from an IP address are classified as bot, all requests from that
IP address are considered as bot. In most cases, we present the resid-
ual trust traffic results as a percentage of IP addresses tagged trust.

D. Bot and Trust Indicators

We develop a traffic analysis pipeline which comprises a series
of filters. The filters rely on architectural elements, suspicious request
characteristics, and external resources. Architectural elements are
intrinsically part of our system: the placebo servers, bot traps, and
a JavaScript fingerprinting script. Most of the other filters are derived
from suspicious request characteristics (e.g., resembles an exploit
or fingerprint attempt) that were manually identified for each type
of service. Our last type of filter relies on information gleaned from
external resources, such as web archives and IP blocklists used for
traditional networking rules. All filters are run sequentially and the
results of this filter for HTTP(S) traffic can be seen in Figure 4.

a) Architectural elements (placebos, bot traps, and fingerprints):

Placebo servers are servers that are not associated with any expired
domain names, but are otherwise identical in configuration. They
are allocated at random IP addresses from the same range and run
the same set of services as our domain servers. Because the placebo
servers are not associated with any of the domains we re-register,
all traffic they receive is not related to residual trust from DNS. We
therefore use them as a control group to learn the network signatures
of bot traffic, and we mark all IP addresses that access any service
on any placebo hosts as bots. The corresponding tag that represents
this filter in Figure 4 is placebo.

Our second and third architectural mechanisms affect only the
HTTP(S) service, with which we serve a web page that includes “bot
traps” and an innocuously-named fingerprinting script (utils.js).
We use the popular FingerprintJS [31] fingerprinting script, extended
with a function to also send a POST request to a public IP
geolocation service. Bot traps are designed to lure bots into requesting
certain paths that would never be requested by an end user web
browser [10], [32]. Every trap is associated with a unique URL in
its href attribute or in its content, and these trap elements include
a) inconspicuous 1x1 images, b) HTML comments, c) dynamically
removed content after the page is loaded using JavaScript, d) elements
that are not displayed (i.e., display=none), and e) elements that
inherit the invisible property from their parents.

Crawlers can fall for all of the traps or none of them, depending
on their crawling logic. However, prior work has shown that bot
behavior is generally too simple to avoid all of these traps [33]. Even
sophisticated crawlers, such as those used for research or by search
engines like Google, still fall for these traps. Moreover, we discovered
that 4,764 unique IP addresses that self-identified as bots in the HTTP
User-Agent header fall for these bot traps (approximately 43.42% of
all IPs that self-declare themselves as a bot). We tag any IP addresses
that request trap paths as bots and the corresponding tag in Figure 4
is bot-path.

Our last architectural mechanism is an augmented fingerprinting
script [31], which also collects the document referrer and sends an
extra POST request for the current IP address geolocation before
sending the final fingerprint in the payload of a POST request back
to the container. The lack of a fingerprint can be used to identify
bots, because most do not support JavaScript [33]. Although some
crawlers support JavaScript, the benign ones can be easily identified
by the User-Agent header and by their well-known IP address
ranges. If these values are spoofed (such that one is pretending to
be a crawler), in our results, it will constitute a false negative rather
than a false positive of an instance of residual trust (which is still
aligned with our goal of quantifying the lower bound on the amount
of residual trust traffic). We use the fingerprints for multiple filters:

• for each fingerprint, if the User-Agent contains “bot” or
a reverse DNS lookup on the IP address yields a domain that

Listing 1. Filter to detect and tag IP addresses for repeated login attempts. d1 and
d2 are Levenshtein distances. bot_like_pw checks whether the password
contains a common variant of the domain name and whether the password is similar
to one from RockYou’s leak.

1 def tag repeated logins (ip , d1=1, d2=2, t=120) :
2 is bot = False
3 is user = False
4 for r1 in get reqs from ip(ip) :
5 is bot = bot like pw(r1 .domain , r1 .pw, d2)
6 i f is bot :
7 break
8 for r2 in get similar reqs (ip , r1 , d1 , t) :
9 is bot = bot like pw(r2 .domain , r2 .pw, d2)

10 i f is bot :
11 break
12 is user = len (s reqs) > 0
13 i f is user :
14 break
15 tag ip (ip , is bot , is user)

contains popular search engine keywords (e.g., “google”), the
IP address will be tagged as a bot

• for each request from a major browser (detected using the
User-Agent header [34]), mark the IP address with bot

or trust depending on whether there is a corresponding
fingerprint for the request

In our dataset, we observe approximately 1M fingerprints
from 52K unique IP addresses. The corresponding tag that
represents these filters in Figure 4 are bot-fingerprint and
user-fingerprint.

b) Request characteristics: Our second major type of traffic
analysis filters rely on suspicious-request characteristics for each
service. For our HTTP(S) service, the filters focus on request paths;
for the credentials-based services (SSH, Telnet, and FTP), the filters
focus on username and password combinations.

Our bot filters for web traffic identify attempts to a) use exploits
(e.g., a path traversal attack [35] or a CVE for a web service),
b) access a backdoor (e.g., /shell.php), c) fingerprint the web
service [33] (e.g., common paths used by BlindElephant [36]),
d) access backups files (e.g., /wp-config.old), and e) make
a login request with HTTP method POST. The content that we serve
does not include a POST login form, so these have to be automated,
credential-stuffing requests. The corresponding IP addresses are
tagged with bot-path in Figure 4.

We also manually categorized the services offered by each domain
on the HTTP(S) protocol, pre-expiration, and assign a confidence level
of low or high. We rely on, in decreasing order of priority, the Wayback
Machine for historical archives, combing Google for references to
the domain, and identifying request patterns in our logs to assign
a category representing the type of service the domain previously
offered. If we could not categorize a domain on the HTTP(S) protocol,
we attempt to use the most popular port to categorize traffic. If the
most popular port for such a domain is a standard port, we include a
breakdown, otherwise we place the domain in the Unknown category.

To identify request patterns, we make use of our database’s
optimized query and aggregation functionality [30]. For each domain
in our dataset, we start with a traffic sample of at most 3 requests
per IP address per data shard [37] and find keywords in request paths
that are significantly more popular within the particular domain as
compared to across all domains [38]. Requests for paths that match

TABLE I
HIGH-LEVEL TRAFFIC VOLUME STATISTICS TO HONEYPOT SERVICES IN

DOMAIN SERVERS.

Service # Requests # Unique IPs # ASNs

HTTP(S) 421M 5.2M 21K
SSH 195M 110K 5.4K

Telnet 34M 240K 8.6K
FTP 279K 6K 1.1K

Total 651M 5.5M 23K

these significantly more popular keywords within the domain are
then aggregated for manual inspection.

In addition to a category label, each domain is also annotated with
a confidence level of: a) low if we can only infer from third-party
references or popular request paths, or b) high if we found an archived
version of the domain no older than six months and the URL structure
of the archived page is similar to the traffic patterns we observed.

For the domains with a high confidence label, we manually compile
a list of residual paths for each domain: paths that used to exist on the
domain pre-expiration. Through inspection of the links on an archived
domain’s homepage, we construct a per-domain set of residual
path patterns. Main navigation links and other prominent endpoints
were prioritized in the set for each domain. If many service-relevant
endpoints were found to have the same request path prefix (e.g.,
/a/b/c, /a/b/d), we subsume them into a wildcard query
record with the longest matching prefix (e.g., /a/b/*) to account
for potential new paths that were added after the archival date. The
residual path patterns for each domain also include traffic patterns
observed in our logs that are of similar structure to the ones in the
archived version. General paths that are common to many domains
and are not service-specific are excluded (e.g., /contact). Client
IP addresses that request any of these residual paths are marked with
the trust filter residual-path in Figure 4.

For our credentials-based services, we rely on credential patterns
to identify suspicious requests. Our main filters match requests with
the following characteristics:

• (Bot) passwords in the 1,000 most popular passwords of the
RockYou database breach [39],

• (Bot) passwords that contain the domain name [33],
• (Bot) username and password combinations that are also

used in traffic to our placebo servers. There is a potential for
false negatives if there are legitimate username and password
combinations that have been guessed by bots.

• (Trust) multiple login attempts with credentials that are nearly
the same (max Levenshtein distance of 1 for username and for
password) within a window of 120 seconds. Listing 1 includes
a more detailed description of the algorithm. We reason that
bots are more likely to attempt logins from credentials lists,
as opposed to brute-force guessing, and these credentials are
a farther distance apart. Repeatedly attempting the same or
very similar credentials yields less potential gain and can be
an indication of human behavior (i.e., trying to log in again
thinking there was a typo in the password).

Our last filter that uses request characteristics identifies suspicious
requests from a packet structure perspective instead of a particular
service’s perspective. We base this filter on prior network monitoring
efforts which identified a characteristic of some Mirai variants that
send TCP SYN probes with the TCP sequence number set to the desti-

Fig. 5. Number of unique IP addresses that contact the ten least and most popular
placebo servers and expired domains daily. The popularity of each server was ranked
using the total number of unique IP addresses in its traffic.

nation IP address when displayed byte-by-byte in dotted-decimal nota-
tion (e.g., 0x48c1af41 for 72.193.175.65) [40]. We scan
our TCP header capture files and mark the IP addresses that match
this condition as bots. The corresponding tag in Figure 4 is mirai.

c) IP blocklists: IP blocklists are our sole external bot detection
mechanism. Blocklists are well-established in industry and are
commonly used for routing and firewall rules [41]. We use multiple
DNS blocklist (DNSBL) providers and IP blocklists related to
reputation and cyber crime as aggregated and categorized by
FireHOL [42]. DNS blocklists were created for and typically used to
protect mail servers against spam mail. Although our primary purpose
is not to detect which IP addresses send spam mail, it is likely that
any traffic coming from these addresses are not due to residual trust.
We use 52 DNSBL providers including Spamhaus [43], SORBS [44],
and Barracuda Central [45].

IV. TRAFFIC ANALYSIS

In this section, we report our findings on the data collected from 201
re-registered domains in the time period from August 1, 2019 to De-
cember 1, 2019. Our honeypot services collected a total of 650,737,621
requests to our re-registered domain servers from 5,540,379 unique
IP addresses distributed among 22,744 unique autonomous systems;
see Table I for a breakdown of the number of requests, number of
unique IP addresses, and number of autonomous systems for each
service. We begin by conducting a high-level verification of our
filtering mechanisms and then characterizing the traffic volume and
port popularity of our servers using packet-level and honeypot service
log-level perspectives. We then present the results of using the bot and
trust indicators described in Section III-D and detail the high-level
temporal characteristics of the residual trust traffic for select domains.

A. High-Level Verification of Filtering Mechanisms

Because we conducted our experiment in the wild, we do not have
access to a ground-truth dataset. The closest data point to ground truth
could be the fingerprinting script that was served over HTTP(S), but
this would not capture some valid use cases (e.g., if a domain used to
respond to requests from automated tools that have no need to support
JavaScript). We opted to perform a high-level verification of our
results by considering the blocklist filters (DNSBLs and FireHOL’s IP
blocklists) as a ground truth, comparing the result of using the other
filtering mechanisms with the result of using only the blocklist filters.

The blocklist filters marked 1,866,840 IP addresses as suspicious
(bot-like); all other filtering mechanisms marked 417,282 IP addresses
as suspicious. There are 332,513 IP addresses (79.68% of 417,282)
that were flagged suspicious by both the blocklist filters and another

Fig. 6. Traffic volume levels for all domains. Bucket labels were assigned based on
either the total number of inbound packets or of honeypot service log requests. The
corresponding value for a bucket on a day is the mean of all its domains’ value for
that day. The intervals in each label refer to percentile threshold cutoffs. The low traffic
bucket comprises up to the 50th percentile and medium up to the 90th percentile. Note
the 100th percentile domain is different depending on the grouping strategy.

filter. This suggests that most IP addresses which exhibit suspicious
behavior are likely to already be on a blocklist and that the filtering
mechanisms confirm one another. However, the non-blocklist
filters have their own merit in identifying IP addresses that exhibit
suspicious behavior without the need to resort to a trusted third party
(i.e., the provider of a blocklist).

B. Characterizing Volume and Popularity

a) Stratified traffic volume: Figure 5 shows the distribution
of the number of IP addresses that contact the ten most and least
popular placebo servers and domains. We compare the same number
of servers in each group because we deployed fewer placebo servers
(52) than domain servers (201). We find that the less popular domains
receive traffic from a similar number of IP addresses as our placebo
hosts, but the more popular domains receive substantially more traffic,
more than an order of magnitude more IP addresses compared to
the most popular placebo servers.

Beyond the large difference in traffic volume between the placebo
servers and domain servers, we also see a pronounced difference
in traffic volume within our domain servers. Figure 6 visualizes the
underlying distribution of traffic to our domain servers by grouping
domains depending on both their aggregate packet count and honeypot
service log count using the 50th and 90th percentiles as thresholds.
The packet-level grouping reveals that there is a vast amount of traffic
that is not captured by our service logs — the 100th percentile server
in the packet-level grouping is not the same as the 100th percentile
server in the log-level grouping because of vast amounts of traffic
to ports without running services. For the packet-level grouping, the
highest-volume server is tianxingmeng.com which received
significant traffic to the ports {8000,6600}, whereas, for the log-level
grouping, ipv6tracker.org received the largest number of
service requests as it previously hosted a torrent tracker on port 80.

Fig. 7. Similarity heatmap of the five most popular inbound ports (by number of
packets received) for all 253 containers (placebos and domains) in our experiment.
Axis labels correspond to an ID number for each container, temporally ordered by
re-registration date. All placebo containers appear on the axes before containers
associated with re-registered domains (thus comparisons between placebo containers
are in the top-left corner).

We further elaborate on the characteristics of the traffic to these two
domains in Section V.

b) Dissimilar types of traffic: We characterize the type of traffic
received by each server as an ordered tuple of their five most popular
inbound ports (by raw packet count) and disregard the magnitudes.
Hence, using this representation, we compare only the port numbers
and the order of the most popular ports, and not the number of
packets sent to each port. Figure 7 summarizes this in the form of
a heatmap whose values are weighted Jaccard similarity scores of the
five most popular inbound ports for two servers. A high score (dark
color) means that the five most popular inbound ports for one server
are similar to the five most popular inbound ports for another server.

From the dark square region in the upper-left of the heatmap,
we find that the majority of placebo servers receive traffic to the
same ports. There are notable outliers whose most popular ports are
radically different from the rest of the servers and they are visualized
as white rows and columns. Interestingly, we see an outlier placebo
server at A. Whereas the most popular ports for placebo servers
were typically [22,80,23,25,2222], A’s most popular ports were
[23,22,445,80,8089]. We attribute this phenomenon to a one-off
cause as it is unique among all placebos and there would be no reason
for a network scanner to probe only the particular IP address for A

and not others in the network. The other outliers are all from our
domain servers. B corresponds to two domains which previously
functioned as sinkhole DNS name servers for a security company, and
C corresponds to another high-volume DNS server. D corresponds to
two domains that received large amounts of traffic to ports 8000 and
6600. We take a closer look at the traffic to these outliers in Section V.

c) Port popularity: Requests sent to ports that do not have
an associated service listening on them are bound to not receive a
reply. Thus, honeypot services on expired domains might increase
port popularity only if the clients responsible for the traffic value
meaningful replies (i.e. expect replies to be in a certain format).
We find that the lack of interaction and associated service for
non-honeypot ports does not deter certain clients from contacting

Fig. 8. Traffic volume for the ten most popular ports to all domains.

some of our domains, as can be seen in Figure 8. Many of these
are worrisome; we find that the five most popular non-honeypot
ports include both standardized ports for DNS and SMTP and
non-standardized but popular ports for alternative HTTP and
Internet radio/music [46], [47]. Owning a DNS name server enables
controlling all clients who depend on the server for domain resolutions.
Mail server owners are able to eavesdrop on email communications,
regardless if the communication is encrypted with TLS. Controllers
of popular radio and music servers can cherrypick content that will
be absorbed by their listeners. We make these examples concrete in
Section V by discussing particular domains that offered these services.

We also note that there is a distinct popularity ordering among our
honeypot services, with HTTP(S) as the most popular and followed
by SSH, Telnet, and FTP, and suspect that the lack of depth in
interaction provided by our credentials-based honeypot services might
have contributed to this phenomenon. Thus, we present the results of
our residual trust detection pipeline on, mainly, the HTTP(S) service
traffic in the next section.

d) Profiling domains: We report our findings from our manual
domain service profiling for the 201 re-registered domains in detail
in Table II. Of the domains selected by our strategy, approximately
20.90% were previously gambling websites that used real world cur-
rency and 16.42% were related to crime, either offering contrabands,
document forgery, or serving as a command-and-control server.

Many of these services can be abused by an adversary who obtains
ownership of the corresponding domain, particularly if they are high
volume. A malicious actor who closely monitors traffic to each domain
could identify, profile, and then straightforwardly categorize a domain
with residual trust traffic. With a general idea of what the domain pre-
viously offered, they would be able to better tailor their own honeypot
services to gather and exfiltrate personally identifiable information.

C. Pipeline Results for Honeypot Services

We broadly distinguish the HTTP(S) protocol from the credentials-
based services because of the difference in interaction and available
information for each request. Although we serve the same 404
page to all HTTP(S) requests, the requests allow for a higher level
of interaction (and consequently more log information) than the
credentials-based services that only collect login attempts. Clients

TABLE II
HTTP(S) SERVICE PROFILING BREAKDOWN FOR EVERY DOMAIN.

PORT H REPRESENTS HTTP AND HTTP(S) ON PORTS 80 AND 443 AND NON-H
POPULAR PORTS INCLUDE {23,25,1443,8000,6600}. TRAFFIC VOLUME LEVELS

WERE ASSIGNED BASED ON THE 50TH AND 90TH PERCENTILE OF TOTAL PACKET

COUNTS TO EACH DOMAIN SERVER.

Category Port Conf. Volume Bucket Total

Low Conf. L M H

Gambling H 3 39 25 16 1 42
Crime H 5 30 20 12 3 33

Streaming H 3 12 6 9 0 15
Adult H 0 12 6 6 0 12

Company H 0 8 2 3 3 8
DNS 53 0 5 0 0 5 5
Non-H 0 4 1 1 2 4

Downloads H 0 4 3 0 1 4
API H 0 3 0 0 3 3

Email 25 0 1 0 0 1 1
Other H 0 13 5 7 1 13

Unknown - 60 - 32 26 2 60

Total 73 128 100 80 21 201

making a request for a specific URL on HTTP(S) will expect to receive
certain content and, if this expectation is not met, they may attempt
a request for another URL. With each request, we are able to log
HTTP headers of interest and potentially collect an associated browser
fingerprint. Thus, our pipeline for HTTP(S) traffic is more intricate and
has more filters than our pipeline for the credentials-based services.

In fact, because our credentials-based services collect minimal
information, it is hard to distinguish trust traffic from bot

traffic for these services. For SSH and Telnet traffic, we find that
no IP addresses were marked trust; for FTP traffic, we find that
one IP address (0.017%) was marked trust with the repeated
credentials filter. This IP address sent two requests to one of our
domains from a Google IP address; we can conclude with high
confidence that this case is a false positive because the domain was
not affiliated with Google. As such, we focus our discussion on our
findings from the HTTP(S) traffic.

Most of our domains did not receive substantial trust traffic, as
shown in Figure 9. The two cumulative distribution functions of the
percentage of IP addresses marked bot or trust are symmetrical.
Notably, although the majority of our re-registered domains have little
potential for abuse of residual trust, they are not the ones that we are
concerned with. Rather, the outliers that lie at the extremes of each
curve are of most interest. These are high-volume domains with traffic
originating from millions of IP addresses. We summarize the impact of
the domains with the highest trust-related HTTP(S) traffic in Table III.

Figure 4 details the breakdown of the effects of each bot and
trust indicator from Section III-D. Each node in the diagram
represents a stage in the filtering process and its corresponding set
of unique IP addresses, and the width of each flow from node A

to B represents the number of unique IP addresses in A that were
filtered by B. The sets of IP addresses represented by each node
are exclusive and the top-down order of nodes describes the unique
criteria satisfied by those IP addresses. In summary, we find that at
least 50.58% of the IP addresses in our HTTP(S) traffic are unaware
of changes in domain ownership and send residual trust traffic to
our servers. In contrast, approximately 43.59% of the IP addresses
exhibit bot-like behavior and 5.82% could not be classified as
either bot or trust using our indicators.

Fig. 9. CDF of the percentage of bot and trust HTTP(S) traffic for each domain in
terms of unique number of IP addresses. Over 95% of domains received over 95%
bot traffic, and only 7% of domains received over 1% trust traffic.

D. Temporal Characteristics

Figure 10 visualizes both the daily number of unique IPs that
contact domains on high-volume, non-honeypot ports on the left and
the daily number of unique trust-tagged IP addresses that visit
domains with a large percentage of trust-related traffic on the right.
From the left-hand plot, it appears that the number of IPs that attempt
to contact a non-honeypot service on these domains largely remains
constant over our analysis time window. This suggests that residual
trust traffic is not guaranteed to decay over time, or, at least, not within
a period of a few months after an expired domain is re-registered.

As for the right-hand side, we see evidence for both sides, namely
that residual trust traffic may largely remain stable or that it may grad-
ually decay. Domains labstats.go, avantmobile.com

and facecommute.com exposed APIs which were accessed by
automated and unaware clients and exhibited stable trust-related traffic.
This implies that the clients who attempt to contact these domains
have not been updated. Similarly, domain tianxingmeng.com

likely hosted a radio and music streaming station and now also
experiences stable trust-related traffic after re-registration. The
other two domains, cpttrk.com and parastrok.info,
previously hosted an advertising service and a sports news website
and they both experience volatile trust-related traffic. In particular,
we see that the curve for parastrok.info, which previously
offered news articles, dies off less than a month after re-registration
of the domain. The curve for cpttrk.com also decreases, but
gradually over time and experiences large and sudden spikes.

Both plots suggest that residual trust traffic is not guaranteed to
decay over time. Depending on what the domain was previously used
for and the clients that contact it, it may be difficult to reconfigure
the clients to use another point of contact. On the other hand, we
also see evidence that residual trust traffic could decay over time.
In fact, we see that in some cases it may suddenly drop, indicating an
update or reconfiguration in the clients, or gradually decay over time
with a volatile instantaneous behavior. In conclusion, although we see
that the potential for residual trust abuse may be mitigated over time,
we cannot rely on this phenomenon because it is not guaranteed.

V. CASE STUDIES

In this section, we present several case studies from our pool of
registered domains, demonstrating the magnitude and wide range
of abuse possible via the mere re-registration of previously-popular
domains. Table III presents the statistics of the HTTP(S) traffic for

Fig. 10. Temporal (in)stability of trust-related traffic. The left side plots the daily number
of unique IP addresses that contact domains on high-volume, non-honeypot ports. The
right plots the daily number of unique trust-tagged IP addresses from HTTP(S)
analysis that contact domains with a large percentage of trust-related traffic on all ports.

the top ten domains with the highest percentage of trust-tagged
IP addresses, while Table IV shows the statistics in non-honeypot
service traffic to high-volume domains.

a) APIs: ipv6tracker.org previously functioned as a
popular torrent tracker, a component that aids peers in discovering
one another. Torrent trackers maintain a list of peers that expressed
interest in a given torrent, enabling the tracker to inform new clients
about the peers it can connect to. This expired domain received
the most traffic to honeypot services in our dataset, and it was
beyond our expectations and ability to efficiently handle. We only
retain data for a one-month window for this domain, and we note
from Figure 6 that its presence led to a system-wide outage of our
infrastructure near the beginning of September. Because we did not
expect significant new findings from this domain, we opted to leave
it offline to limit further resource use and log space consumption.
We observe a daily average of approximately 7M requests before
the container started to experience availability problems. Almost all
requests are to /announce, /announce33, and /scrape

on host tracker.ipv6tracker.org with query keys
such as info_hash, peer_id, port, uploaded, down-
loaded, and left and the User-Agent header set to a torrent
client (e.g., uTorrent, BitTorrent, and qTorrent). This trivially grants
the ability to gather information and create a database of files seeded
and downloaded by all the peers in the network. Controlling such a
popular torrent tracker would expose a large threat vector that would
affect over 2.5M unique IP addresses situated in over 9.4K ASNs.

Other noteworthy domains that exposed an API are
labstats.go, fgmail2.com, and avantmobile.com.
labstats.go was previously an API domain for Labstats, a tool
that tracks time, location, and method of student usage of computer
lab resources, trusted by over a thousand colleges according to

their website [48]. Residual trust traffic requests are for the paths
/Assign/ServerSlot and /Api/Client. Control of this
domain would allow for large-scale exfiltration of data from higher
education facilities. In a similar fashion, owning fgmail.com

would also yield valuable information because it previously
functioned as an email tracker. We know from prior work that email
tracking is privacy-harming and it is not uncommon for senders to
intentionally leak email addresses to third-party trackers [49].

Control of avantmobile.com would allow for gathering
of personally identifiable information on a much larger scale
because it exposed an API for an Android libary. Profiling this
domain was the result of combining different pieces of residual
information. We began by noting that the majority of requests
are HTTP POSTs to /log and /sync for the subdomain
api.avantmobile.com with the User-Agent header set to
a version of okhttp, a popular Android HTTP library. Using
a Java decompiler to investigate archived versons of Android
applications, we found that disparate apps that were on Google
Play [50], [51], [52] used a common third-party haptics library,
com.immersion.content, which contained string references
to api.avantmobile.com. It is unclear whether this library
was the original or a modified version as it is no longer offered by
the publisher, but it appears to have been used by many Android
apps. These apps are no longer available in the Google Play store,
but an APK mirror self-reports over 500K downloads for one of
them from their website [52]. We confirmed our suspicions when we
captured DNS queries for api.avantmobile.com by running
these mobile apps on an emulator and monitoring network traffic.
Furthermore, the top 10 ASNs by the number of IPs observed in the
traffic to the avantmobile.com domain are all ISPs that offer
telecommunications services. The last mentions we found for the do-
main are social media accounts on Facebook [53] and Instagram [54]
referring to an “Avant Mobile” company that lists the domain as their
website, although we suspect this to be a front for malicious behavior.

In summary, obtaining control of high-volume APIs can be quite
attractive to attackers. In the case of a torrent tracker, the new owner
can learn which peers host which files, their locations, and attempt
to attack connecting clients. In the case of a service trusted by many
educational institutions, the new owner gains a method to attack many
geographically diverse institutions trusted by the general populace.
In the case of a suspicious domain contacted by a widely-used mobile
application library, the new owner can gather highly confidential
information about a vast array of people for further use.

b) Malicious activity: We discovered multiple domains in
our dataset linked to malicious activity. Of this group, facecom-
mute.com received the largest amount of traffic. According to
some malware detection services, it previously functioned as a
command-and-control server [55]. Common request paths to this do-
main include /bots/{log,install-failure,update-
additional-data} and /api/{poll,log}. Query key
parameters in the requests point to an entity named cloudnet

(e.g., cloudnet_{guid,file,process}) and likely refer
to their C2 entities hosted in the cloud. Another expired domain
previously used for malicious purposes is gbox-data.net.
According to VirusTotal, it is linked to a family of PUPs
named Guardbox [56]. This domain was unique in that clients
used subdomains as if they were request paths (i.e., clients
would send a GET / request to gb-alive-msg.gbox-

data.net instead of a GET /gb-alive-msg request to

TABLE III
SERVICE, VOLUME, AND TRUST STATISTICS IN HTTP(S) TRAFFIC TO THE TOP TEN DOMAINS WITH THE HIGHEST PERCENTAGE OF TRUST-TAGGED IPS.

BUCKET RESULTS USING BOTH METRICS (RAW PACKET COUNT AND SERVICE LOG COUNT) FOR DOMAIN TRAFFIC VOLUME GROUPING FOR EACH DOMAIN AS

DISCUSSED IN SECTION III ARE INCLUDED. THE LAST COLUMN DESCRIBES THE PERCENTAGE OF IP ADDRESSES THAT WERE TAGGED AS TRUST. SEE SECTION V
FOR IN-DEPTH CHARACTERIZATIONS OF SOME OF THESE DOMAINS.

Domain Service Traffic Bucket Traffic Statistics Trust %

Category Description Packets Logs Requests IPs ASNs

labstats.go API Computer lab usage High High 144M 52K 1.5K 86.93%
ipv6tracker.org Downloads Torrent tracker High Max 138M 2.5M 9.4K 79.27%

avantmobile.com API Android haptics library High High 23M 683K 8.1K 38.95%
tianxingmeng.com Non-HTTP Internet radio & music Max High 121K 28K 1.1K 35.38%
facecommute.com Crime Command and control High High 55M 1.3M 6.0K 27.72%

cpttrk.com Company Advertising High High 886K 34K 2.8K 17.06%
parastrok.info Other News High High 13M 133K 6.1K 16.09%
fgmail2.com Company Email tracking Medium Medium 80K 9.2K 1.5K 14.92%

rgbdomsrv.com Crime Adware High High 12M 294K 5.3K 7.57%
tattooes.info Other Images Medium High 611K 16K 2.5K 1.88%

gbox-data.net). Obtaining control of domains associated with
malicious activity and botnets would enable new owners to hijack
these networks of compromised machines at low financial cost.

c) Name servers: DNS servers are crucial to the Internet.
There have been many attacks on and misconfigurations of DNS
infrastructure that paralyze regions of the web [57], [58]. Surprisingly,
we were able to register multiple high volume name servers; see Table
IV. Even more surprising, two of the name servers were sinkholes for
a security company contracted by many ISPs to protect against DoS
attacks [59]. Security sinkhole name servers are typically responsible
for receiving traffic from infected machines attempting to resolve
the domain of their main C&C server. By obtaining control of such
servers, a malicious actor can potentially hijack all of the C&C
botnets that security companies and registrars worked to redirect. We
were also able to obtain control of internetemc.com, which
belonged to an ISP in Georgia. It did not receive as many requests as
one might expect for having belonged to an ISP, most likely because
this domain was a secondary name server.

Re-registration of name servers is particularly critical, because
it enables the new owner to attack all clients that rely on the
name servers. Furthermore, the issue is compounded by traditional
techniques such as load balancing. If an attacker gains control
of a fraction of a load-balanced set of name servers, network
administrators face more difficulty in diagnosing the problem because
it manifests in non-deterministic behavior.

d) Stale content and resources: We obtained a class of expired
domains that offered now-stale content and resources on the web.
The most notable is tianxingmeng.com, which was our
highest traffic domain in terms of raw packet count. Based on the
massive number of packets to ports {8000,6600}, it is likely that
the domain previously hosted an internet radio stream [47], [46].
Obtaining control of such a domain enables the owner to manipulate
its content however they wish. This, in turn, enables an adversary
to more easily conduct social engineering attacks and cause social
unrest through techniques such as fake news. Other domains in this
category include ctnetload1.com, which served a JavaScript
file (/js/?wkey=qKpVXT) used by cryptocurrency blogs
including smartereum.com [60], forklog.media [61],
and profitgid.ru [62], which we identified using the HTTP
Referer header present in some requests and verified using the
Wayback Machine. We found that forklog.media still
included this stale script in February 2020 [61], over 6 months since

we had re-registered the domain. Another notable domain in this class
is tattooes.info, whose gallery of tattoo images was indexed
by search engines including Google. Obtaining control of a domain
that delivers content and resources to other domains can enable social
engineering and supply chain attacks.

e) Mirrored domains: After profiling and categorizing each
of the domains we registered, we found evidence of several domains
belonging to the same entity. These mirrored domains resolved
to the same IP address before they expired and were structurally
similar, but not to the extent of typosquatting one another (e.g.,
leon4399.com and leon5044.com). In particular, we found
mirrored domains for five different entities, four of which offered
online gambling services and one offering a document forgery service.
The largest gambling service entity created a new mirrored domain
on a daily basis [63], which appears to be a strategy for evading
domain blocklists.

Re-registering mirrored domains would enable an adversary to
more easily perform phishing attacks. For example, if an adversary
obtains an old mirror of an online service and deploys identical
or similar content, a user may be misled to enter their credentials.
The attacker could then use these credentials to authenticate with
the actual domains used by the service and inflict financial harm
or compromise other accounts belonging to the same user. The
adversary could also manipulate the served content however they
wish, potentially injecting malicious scripts or malware that will
be downloaded by unsuspecting users. Moreover, because mirrored
domains receive only a fraction of the entire user base, it may be
difficult for service administrators to diagnose the problem.

VI. RELATED WORK

The security community has previously investigated the abuse of
residual trust in expired domain names in a bottom-up, or targeted,
approach. Prior work began with a target in mind and investigated
how expired domains could be used to exploit residual trust traffic
to and from these targets. For example, Moore and Clayton studied
what became of expired US bank domains after such banks shut
down, merged with other institutions, or in general stopped using
their domains [64]. Lever et al. introduced the concept of residual
trust and how it implicitly transfers to new owners [1]. The authors
also observed the growing phenomenon of residual trust abuse and
proposed a defense mechanism to locate potential changes in domain
ownership. In later work, the authors discovered that expired domains

TABLE IV
SERVICE, VOLUME, AND TRUST STATISTICS IN NON-HONEYPOT SERVICE TRAFFIC TO HIGH-VOLUME DOMAINS.

BUCKET RESULTS USING BOTH METRICS (RAW PACKET COUNT AND SERVICE LOG COUNT) FOR DOMAIN TRAFFIC VOLUME GROUPING FOR EACH DOMAIN AS

DISCUSSED IN SECTION III ARE INCLUDED. SEE SECTION V FOR IN-DEPTH CHARACTERIZATIONS OF SOME OF THESE DOMAINS.

Domain Service Traffic Bucket Traffic Statistics

Port Description Packets Logs Packets IPs ASNs

tianxingmeng.com 8000 Radio Max High 2.3B 1.45M 1.9K
icuesta.net 53 DNS High Low 359M 63.5K 8.0K

tianxingmeng.com 6600 Music Max High 247M 550K 1.4K
arbor-sinkhole.net 53 DNS High Low 123M 10.2K 619
internetemc.com 53 DNS High Medium 66M 26.2K 3.2K

abiling.com 53 00 DNS High Low 22M 10.5K 1.5K
asert-sinkhole.net 53 DNS High Low 7.7M 5.0K 400
nobelgroup.biz 25 SMTP High High 7.5M 580 107

teraz.biz 53 DNS High Medium 6.9M 600 45

also present security risks in the context of malware [5]. Similarly,
Gruss et al. generalized the phenomenon of “use-after-free” exploits
to the context of email addresses in which adversaries can not only
re-activate specific, expired addresses from a free-mail provider,
but also revive all the email addresses previously associated with
an expired domain [65]. Finally, some works have investigated the
possible abuse of expired domains in the context of remote JavaScript
inclusions [7], Content Security Policies [8], and Android apps [66].

In contrast to the bottom-up approach of prior work, in this
paper we used a top-down, target-agnostic approach of identifying
expired domain names of potential value that escaped the attention
of aggressive dropcatchers. The contributions of this approach are
twofold: 1) confirming that the attack vector, which was originally
discovered in a bottom-up fashion, is indeed feasible for an adversary
to execute even if they were not targeting a specific entity, and
2) discovering the scope and severity of the potential harm that could
be caused by an opportunistic attacker through the abuse of residual
trust. Our results demonstrate that opportunistic adversaries may be
granted access to millions of unique IP addresses situated in tens
of thousands of autonomous systems merely by spending an average
of $7.29 for the registration of each expired domain. Similar to our
top-down approach, Borgolte et al. investigated the opportunity to
hijack domain names in a target-agnostic fashion, by identifying
dangling DNS resolutions on public clouds [67].

Similar in nature to how we extract historical DNS information
to use as a feature for another process, there have been numerous
methods that propose using some aspects of DNS information to detect
malicious behavior. Some attempt to classify malicious websites with
direct use of DNS information [68], [69]. Others propose proxy met-
rics that score malicious intent behind co-occurrence in DNS queries
to blocklisted domains [70] and repeated queries to DNSBLs [71].
Lastly, researchers have proposed systems that attempt to predict future
malicious behavior with only static properties such as nameserver
properties and domain registration information [72], [73], [74].

VII. DISCUSSION & CONCLUSIONS

In this paper, we demonstrate the alarming potential abuse of
residual trust with a systematic yet opportunistic approach that begins
with re-registering previously popular expired domains and detecting
residual trust traffic to these domains. In contrast to a bottom-up,
targeted approach that involves the analysis of a specific system to
discover its valuable domain names and the subsequent monitoring
infrastructure required to detect when one of them may be dropped, our

approach is simple yet powerful. It is target-agnostic, straightforward
to implement, can be repeated indefinitely, and thus scales well with
the number of domains. It also confirms that the worries posed by
prior work that utilized a bottom-up approach are indeed realistic. Our
approach re-registered domains that previously served as a torrent
tracker, an API for a computer lab usage statistics service used by
many universities, an API that was a point of contact for a common
Android haptics library, security company DNS sinkhole servers, an
Internet radio and music station, command-and-control centers for mal-
ware and potentially unwanted programs (PUPs), and an email tracker.

Ethics

We have taken a number of precautions in our experiment to ensure
that we minimize the risk of harm to users and systems. We never
advertised the domains that we registered thereby excluding one of
the major ways that users discover websites (e.g., encounter them in a
blog post or in social media). Moreover, we did not serve any content
on them, except for the custom 404 HTTP(S) page that delivers our
bot traps and JavaScript fingerprinting code. Although we stored raw
packet captures, we never engaged with clients to further advance
the communication. Thus, we stored only what the connecting clients
initially sent us, and then indicated that the requested content was
not found or terminated the connection. While it is in principle
possible that our servers received actual user credentials, it is highly
improbable. Our analysis for SSH, FTP, and Telnet traffic resulted
in only one IP address tagged as trust, and it was a false positive
as discussed in Section IV-C. It is also unlikely that we have collected
any user credentials in our HTTP(S) traffic because our 404 page did
not contain any forms that users could accidentally fill, and we did not
serve any 401 Unauthenticated responses that would have challenged
a client to send HTTP Basic Auth credentials. Any cached HTTP
responses from the previous owners of the domains will have likely
expired in the over 30-day period between the domain’s expiration
and our re-registration (Section II). By design, we know nothing
about the connecting clients, hence the data that we collected is only
valuable for the aggregate statistics that we presented in the paper.

We have slightly more information about the HTTP(S) clients that
supported JavaScript from the modified FingerprintJS script that was
served to connecting web clients along with the HTML response.
FingerprintJS is a state-of-the-art fingerprinting library that extracts
more than 30 types of attributes from a user’s browser including
information about the detected screen, the number of CPU cores,
renderings of complicated canvas objects, and installed fonts. Our

script collected all the data that is made available by FingerprintJS,
in addition to the client’s geolocation, and stored them in their raw
form, so that we could later perform the analyses and clustering
that was required for the results presented throughout this paper. We
only use the collected fingerprints as an indication that a real browser
visited our website with a fully functioning JS engine. Therefore,
in retrospect, we could have collected fewer attributes from the
FingerprintJS library. This observation matches that of the recent
work of Li et al. who observed that the vast majority of bots do not
support JavaScript [33], making JavaScript support a good method
to straightforwardly filter out unsophisticated bots.

We have no ability (or desire) to track users across the web (i.e.,
across different websites), hence our collected fingerprints cannot be
used to harm user privacy through the recreation of their browsing
sessions. Moreover, as Gómez-Boix et al. have shown, the browser
fingerprints extracted from real-life users on popular websites, are
significantly less unique than those collected from volunteers partic-
ipating in privacy studies [75]. This reduced fingerprint uniqueness
coupled with the drift of fingerprints (due to browser updates, new
OS-level drivers for graphics cards, etc.), further reduces the potential
of our now two-year-old fingerprinting data to harm a user’s privacy.

In terms of contacting affected domains, by the time we were
finished with our traffic analysis, all our registered domains had
already expired and were returned to the pool of domains available
for re-registration. Moreover, it is worth noting that the vast majority
of the investigated domains were previously operated either by
malicious actors or by companies that no longer exist, hence we have
no information of whom to contact, if anyone, about the domains
that were no longer under our control.

Limitations

Despite the advantages, there are inherent limitations in our
top-down approach. For one, our method will not find valuable
domains that do not have a large number of DNS resolutions (in
our passive DNS database). A simple example of such domains may
be domains with DNS records that use long time-to-live expiration
values. Although a top-down approach may be able to find more
valuable domains than individual bottom-up approaches, it may cost
more to actually exploit the domains using a top-down approach.
An adversary who uses a bottom-up, targeted approach will already
have a deep understanding of the system and infrastructure of
their target and, consequently, how they can be exploited. With a
top-down approach, an adversary is likely to obtain domain names
associated with a diverse array of services and applications. To exploit
these domains, the adversary will need to analyze and implement
infrastructure specific to each domain. Although we have shown
that it is likely for a third party to successfully identify the type of
service previously offered on an expired domain, it may be nontrivial
to reverse engineer the details necessary for its exploitation.

False Positives

Given the highly-specific nature of our trust filters, particularly for
HTTP(S) traffic, false positives are unlikely. We find domains with
significant trust traffic when filtering for requests to residual paths

(paths that used to exist on the domain on HTTP(S)). Residual paths
require knowledge of the service offered by the domain before it
expired. We consider all the possibilities for false positives from using
residual paths as unlikely for the following reasons. First, indexers
for search engines or archives are likely aware of residual paths, but

are easily identifiable from their User-Agent header and are filtered
out as bot traffic. Second, those who are unfamiliar with the previous
service offered on the domain are unlikely to specifically request (i.e.,
guess) a residual path given that they only include service-relevant
paths and exclude paths common to many domains. Also, because
our containers serve the same content to all requests, no additional
information is gained from multiple attempts. Last, we consider those
who are unfamiliar with the previous service, but gained knowledge
of it from third-party references (e.g., forum posts or search engine
results). We argue that this is a form of residual trust because they,
in effect, discovered a new service from third-party references and
proceeded to visit the domain.

Another filter that could introduce false positives is our use of
fingerprints, but we know from recent work that most bots and
crawlers do not support JavaScript [33]; of those that do, they do
not have full support or are still likely to fall for our bot traps.

A less obvious point that may have introduced more traffic
and false positives does not stem from an analysis technique, but
rather from obtaining a TLS certificate for each domain. Certificate
Transparency (CT) [76] is a key component of the public key
infrastructure ecosystem on the web that introduces publicly auditable
certificate transparency logs. Although we did not explicitly advertise
our domains anywhere, we indirectly advertised that our domains
were issued TLS certificates and may, as a result, have received traffic
from CT log monitors. However, we argue that these clients are still
bots and therefore will most likely exhibit the same types of behavior
that our bot-detection filters target. It is therefore unlikely that requests
from CT monitors were flagged as residual trust-related traffic
because of the nature of our HTTP(S) trust filters. Instead, it is more
likely for these clients to have been flagged as bot or neutral.

Going forward

Our residual trust traffic detection pipeline demonstrated a clear
and pressing potential abuse of residual trust in domains. Although
there were some configurable variables in our experiment and analysis
methodology that could be changed, such as the domain selection
strategy and the specific passive DNS database, it is unlikely to result
in contradictory findings. Attackers abusing residual trust can conduct
a number of different attacks, ranging from stealing PII, infecting de-
vices, reviving botnets, and even bypassing web security mechanisms.
Even though there exist countermeasures for some specific instances
of residual-trust abuse (such as the use of Subresource Integrity, or SRI,
that can protect remote first-party websites against malicious changes
in remote scripts [77]), there currently exist no recommended defense
mechanisms against the overall problem of residual trust abuse.

An ideal defense mechanism would need to systematically define
the integrity of a domain, accounting for features such as ownership
and domain content, and determine whether it has changed or was
compromised, such as the system proposed by Lever et al. [1]. In
this context, we observe that the relatively recent move to anonymize
WHOIS data may have increased the privacy of domain owners, but
it also took away information that could be used to detect when a
domain changed ownership.

Orthogonally to these types of change-detection systems, we argue
that increased monitoring and asset-management capabilities have the
potential to provide early warnings to developers and administrators.
Given the domain-expiration timeline defined by ICANN (Section II),
a domain will stop resolving for at least 30 days before it becomes
publicly available for re-registration. With the right monitoring

infrastructure, this should enable everyone who depends on a domain
to discover the impending drop and make the necessary changes
before the domain changes hands.

In conclusion, in this paper we demonstrated that a top-down, target-
agnostic approach that relies on past resolution data to identify residual-
trust domains has the potential to offer attackers access to millions
of users and thousands of systems, for the cost of a few, well-chosen,
domain registrations. To characterize the potential of this attack, we re-
registered 201 domains, developed traffic analysis pipelines to detect
residual trust traffic, and successfully profiled 128 domains to develop
domain-specific indicators of residual trust derived from the type of
services they previously offered. We reported on the types of traffic
we received and detailed the process of differentiating traffic received
from bots and traffic due to residual trust via a number of filters
based on architectural elements, request characteristics, and external
IP blocklists. Even after our aggressive filtering, we showed how our
pool of domain names attracted requests from over 2.6M IP addresses,
which attempted to connect to torrent trackers, malware C&C servers,
email trackers, college-lab software, and online radio stations. We
hope that this paper rekindles the community’s interest in detecting
and protecting against cases of domain-name-based residual trust.

Acknowledgements: We thank our shepherd Kevin Borgolte and the
anonymous reviewers for their helpful feedback as well as Farsight for
giving us access to their passive DNS APIs. This work was supported
by the Office of Naval Research (ONR) under grant N00014-20-1-
2720, as well as by the National Science Foundation (NSF) under
grants CMMI-1842020, CNS-1813974, and CNS-1941617.

REFERENCES

[1] C. Lever, R. Walls, Y. Nadji, D. Dagon, P. McDaniel, and M. Antonakakis,
“Domain-z: 28 registrations later measuring the exploitation of residual trust
in domains,” in 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
2016, pp. 691–706.

[2] T. Lauinger, A. Chaabane, A. S. Buyukkayhan, K. Onarlioglu, and W. Robertson,
“Game of registrars: An empirical analysis of post-expiration domain name
takeovers,” in 26th {USENIX} Security Symposium ({USENIX} Security 17),
2017, pp. 865–880.

[3] T. Lauinger, A. S. Buyukkayhan, A. Chaabane, W. Robertson, and E. Kirda,
“From deletion to re-registration in zero seconds: Domain registrar behaviour
during the drop,” in Proceedings of the Internet Measurement Conference 2018,
2018, pp. 322–328.

[4] N. Miramirkhani, T. Barron, M. Ferdman, and N. Nikiforakis, “Panning for gold.
com: Understanding the dynamics of domain dropcatching,” in Proceedings
of the 2018 World Wide Web Conference, 2018, pp. 257–266.

[5] C. Lever, P. Kotzias, D. Balzarotti, J. Caballero, and M. Antonakakis, “A lustrum
of malware network communication: Evolution and insights,” in 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, 2017, pp. 788–804.

[6] E. Alowaisheq, P. Wang, S. Alrwais, X. Liao, X. Wang, T. Alowaisheq, X. Mi,
S. Tang, and B. Liu, “Cracking the wall of confinement: Understanding and
analyzing malicious domain.”

[7] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna, “You are what you include: large-scale evaluation
of remote javascript inclusions,” in Proceedings of the 2012 ACM conference
on Computer and communications security, 2012, pp. 736–747.

[8] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and B. Stock, “Complex
security policy? a longitudinal analysis of deployed content security policies,”
in Proceedings of the 27th Network and Distributed System Security Symposium
(NDSS), 2020.

[9] “Domain name industry brief (dnib). https://www.verisign.com/en us/domain-
names/dnib/index.xhtml,” https://www.verisign.com/en US/domain-names/
dnib/index.xhtml.

[10] H. Hu, P. Peng, and G. Wang, “Characterizing pixel tracking through the lens
of disposable email services,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 365–379.

[11] “Expired registration recovery policy. https://www.icann.org/resources/pages/errp-
2013-02-28-en,” https://www.icann.org/resources/pages/errp-2013-02-28-en.

[12] C. Evans, C. Palmer, and R. Sleevi, “Public key pinning extension for http,”
Internet Requests for Comments, RFC Editor, RFC 7469, 04 2015. [Online].
Available: https://tools.ietf.org/html/rfc7469

[13] M. Contributors, “Http public key pinning (hpkp),” https://developer.mozilla.org/
en-US/docs/Web/HTTP/Public Key Pinning.

[14] C. Palmer, “Intent to deprecate and remove: Public key pinning,”
https://groups.google.com/a/chromium.org/g/blink-dev/c/he9tr7p3rZ8/m/
eNMwKPmUBAAJ?pli=1.

[15] F. Weimer, “Passive dns replication,” in FIRST conference on computer security
incident, vol. 98, 2005.

[16] “Passive dns historical internet database: Farsight dnsdb,”
https://www.farsightsecurity.com/solutions/dnsdb/.

[17] P. Agten, W. Joosen, F. Piessens, and N. Nikiforakis, “Seven months’ worth
of mistakes: A longitudinal study of typosquatting abuse,” in Proceedings of
the 22nd Network and Distributed System Security Symposium (NDSS 2015).
Internet Society, 2015.

[18] P. Kintis, N. Miramirkhani, C. Lever, Y. Chen, R. Romero-Gómez, N. Pitropakis,
N. Nikiforakis, and M. Antonakakis, “Hiding in plain sight: A longitudinal study
of combosquatting abuse,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 569–586.

[19] N. Nikiforakis, M. Balduzzi, L. Desmet, F. Piessens, and W. Joosen,
“Soundsquatting: Uncovering the use of homophones in domain squatting,” in
International Conference on Information Security. Springer, 2014, pp. 291–308.

[20] N. Nikiforakis, S. Van Acker, W. Meert, L. Desmet, F. Piessens, and W. Joosen,
“Bitsquatting: Exploiting bit-flips for fun, or profit?” in Proceedings of the 22nd
international conference on World Wide Web, 2013, pp. 989–998.

[21] Y.-M. Wang, D. Beck, J. Wang, C. Verbowski, and B. Daniels, “Strider
typo-patrol: Discovery and analysis of systematic typo-squatting.” SRUTI, vol. 6,
no. 31-36, pp. 2–2, 2006.

[22] “Domainmonster,” https://www.domainmonster.com/contact/.
[23] “Dynadot,” https://www.dynadot.com/.
[24] “Namejet,” https://www.namejet.com/default.aspx.
[25] “Pool,” https://www.pool.com/.
[26] “Snapnames,” https://www.snapnames.com.
[27] “Let’s encrypt,” https://letsencrypt.org/.
[28] “Cowrie, a medium to high interaction ssh honeypot.

https://github.com/lanjelot/twisted-honeypots,” https://github.com/lanjelot/
twisted-honeypots.

[29] “Twisted honeypots. https://github.com/lanjelot/twisted-honeypots,”
https://github.com/lanjelot/twisted-honeypots.

[30] “Elasticsearch. https://www.elastic.co/,” https://www.elastic.co/.
[31] “Fingerprintjs.” https://github.com/fingerprintjs/fingerprintjs.
[32] K. Park, V. S. Pai, K.-W. Lee, and S. B. Calo, “Securing web service by

automatic robot detection.” in USENIX Annual Technical Conference, General
Track, 2006, pp. 255–260.

[33] X. Li, B. A. Azad, A. Rahmati, and N. Nikiforakis, “Good bot, bad bot:
Characterizing automated browsing activity,” in IEEE Symposium on Security
and Privacy, 2021.

[34] “Browser detection using the user agent,” https://developer.mozilla.org/en-US/
docs/Web/HTTP/Browser detection using the user agent#making the
best of user agent sniffing.

[35] “Path traversal,” https://owasp.org/www-community/attacks/Path Traversal.
[36] “Blindelephant web application fingerprinter,” http://

blindelephant.sourceforge.net/.
[37] “Diversified sampler aggregation: Elasticsearch reference [7.12],”

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-
aggregations-bucket-diversified-sampler-aggregation.html.

[38] “Significant text aggregation: Elasticsearch reference [master],”
https://www.elastic.co/guide/en/elasticsearch/reference/master/search-
aggregations-bucket-significanttext-aggregation.html.

[39] “Kali tools wordlists package,” https://tools.kali.org/password-attacks/wordlists,
Feb 2014.

[40] T. Mursch, “Engenius routers found in mirai-like botnet,”
https://badpackets.net/engenius-routers-found-in-mirai-like-botnet/, Mar 2019.

[41] D. Piscitello and G. Aaron, “Icann blogs,” Nov 2017. [Online]. Available:
https://www.icann.org/en/blogs/details/reputation-block-lists-protecting-
users-everywhere-1-11-2017-en

[42] C. Tsaousis, http://iplists.firehol.org/.
[43] “Spamhaus,” https://www.spamhaus.org/faq/section/DNSBLUsage.
[44] “Spam and open-relay blocking system (sorbs),” http://www.sorbs.net/.
[45] “Barracuda reputation block list (brbl),” https://www.barracudacentral.org/rbl.
[46] “Nicecast 1.10.1 manual,” https://my.rockhost.com/dl.php?type=d&id=10.
[47] “Music player daemon 0.22.7 user’s manual,” https://www.musicpd.org/doc/

html/user.html.
[48] “Labstats,” https://labstats.com.
[49] S. Englehardt, J. Han, and A. Narayanan, “I never signed up for this! privacy

implications of email tracking,” Proceedings on Privacy Enhancing Technologies,
vol. 2018, no. 1, pp. 109–126, 2018.

[50] “Android apk: com.movinapp.dict.ensv.free.apk 2.1.1 (english swedish dict.),”
https://aapks.com/apk/english-swedish-dictionary-free/.

[51] “Android apk: com.movinapp.dict.essv.free.apk 3.9.6 (offline spanish swedish
dictionary),” https://aapks.com/apk/spanish-swedish-dict-free/.

[52] “Android apk: com.stevenschoen.emojiswitcher (emoji switcher),”
https://emoji-switcher.en.uptodown.com/android.

[53] “Avantmobile facebook profile,” https://www.facebook.com/avantmobile/.
[54] “Avantmobile instagram profile,” https://www.instagram.com/avantmobile/.
[55] “Maltivese scan of facecommute.com,” https://maltiverse.com/hostname/

facecommute.com.
[56] “Virustotal graph: gb-installer.gbox-data.net,” https://www.virustotal.com/graph/

gb-installer.gbox-data.net.
[57] R. Bolstridge October 31, “Dyn ddos attack: Wide-spread impact across the

financial services industry (part 1),” https://blogs.akamai.com/2016/10/dyn-
ddos-attack-wide-spread-impact-across-the-financial-services-industry-part-
1.html, Oct 2016.

[58] C. Matlack, “French websites knocked offline in cyber-attack on cedexis,”
https://www.bloomberg.com/news/articles/2017-05-10/french-websites-
knocked-offline-in-cyber-attack-on-cedexis, May 2017.

[59] “Arbor networks,” https://www.netscout.com/company.
[60] “Wayback machine: smartereum.com (11/10/2019),” http://web.archive.org/

web/20191110090712/https://smartereum.com/.
[61] “Wayback machine: forklog.media (02/20/2020),” http://web.archive.org/web/

20200220011449/https://forklog.media/.
[62] “Wayback machine: profitgid.ru (08/22/2019),” http://web.archive.org/web/

20190822204341/profitgid.ru.
[63] “Telegram: Leonbets,” https://xn--r1a.website/s/bk leonbets?before=82.
[64] T. Moore and R. Clayton, “The ghosts of banking past: Empirical analysis of

closed bank websites,” in International Conference on Financial Cryptography
and Data Security. Springer, 2014, pp. 33–48.

[65] D. Gruss, M. Schwarz, M. Wübbeling, S. Guggi, T. Malderle, S. More, and
M. Lipp, “Use-after-freemail: Generalizing the use-after-free problem and
applying it to email services,” in Proceedings of the 2018 on Asia Conference
on Computer and Communications Security, 2018, pp. 297–311.

[66] E. Pariwono, D. Chiba, M. Akiyama, and T. Mori, “Don’t throw me away:
Threats caused by the abandoned internet resources used by android apps,” in

Proceedings of the 2018 on Asia Conference on Computer and Communications
Security, 2018, pp. 147–158.

[67] K. Borgolte, T. Fiebig, S. Hao, C. Kruegel, and G. Vigna, “Cloud Strife:
Mitigating the Security Risks of Domain-Validated Certificates,” in Proceedings
of the 25th Network and Distributed System Security Symposium (NDSS).

[68] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists: learning to
detect malicious web sites from suspicious urls,” in Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining,
2009, pp. 1245–1254.

[69] D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler: a fast filter for
the large-scale detection of malicious web pages,” in Proceedings of the 20th
international conference on World wide web, 2011, pp. 197–206.

[70] K. Sato, K. Ishibashi, T. Toyono, H. Hasegawa, and H. Yoshino, “Extending
black domain name list by using co-occurrence relation between dns queries,”
IEICE transactions on communications, vol. 95, no. 3, pp. 794–802, 2012.

[71] A. Ramachandran, N. Feamster, and D. Dagon, “Revealing botnet membership
using {DNSBL} counter-intelligence,” in 2nd Workshop on Steps to Reducing
Unwanted Traffic on the Internet ({SRUTI} 06), 2006.

[72] M. Felegyhazi, C. Kreibich, and V. Paxson, “On the potential of proactive
domain blacklisting.” LEET, vol. 10, pp. 6–6, 2010.

[73] S. Hao, M. Thomas, V. Paxson, N. Feamster, C. Kreibich, C. Grier, and S. Hollen-
beck, “Understanding the domain registration behavior of spammers,” in Proceed-
ings of the 2013 conference on Internet measurement conference, 2013, pp. 63–76.

[74] J. Spooren, T. Vissers, P. Janssen, W. Joosen, and L. Desmet, “Premadoma: An
operational solution for dns registries to prevent malicious domain registrations,”
in Proceedings of the 35th Annual Computer Security Applications Conference,
2019, pp. 557–567.

[75] A. Gómez-Boix, P. Laperdrix, and B. Baudry, “Hiding in the crowd: an analysis
of the effectiveness of browser fingerprinting at large scale,” in Proceedings
of the 2018 World Wide web Wonference, 2018, pp. 309–318.

[76] B. Laurie, A. Langley, and E. Kasper, “Certificate transparency,” Internet
Requests for Comments, RFC Editor, RFC 6962, 06 2013. [Online]. Available:
https://tools.ietf.org/html/rfc6962

[77] “Subresource integrity,” https://www.w3.org/TR/SRI/, Jun 2016.

