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Abstract
A heap overflow vulnerability occurs when a program written
in an unmanaged language such as C or C++ accesses a memory
location beyond an object allocation boundary. Malicious
users may exploit this vulnerability to corrupt an adjacent
object in memory, creating an entry point for a security attack.
Despite decades of research, unfortunately, it still remains
challenging to detect heap overflow vulnerabilities in real-
world programs at a low cost.

We present TAILCHECK, a new lightweight heap overflow
detection scheme that leverages page protection and pointer
tagging. When an object is created, TAILCHECK allocates an
additional page-protected shadow object, called a TailObject,
placing the distance from the object to its TailObject as a
tag stored in the unused high-order bits of the object pointer.
For every access to the original object, TAILCHECK performs
an additional memory access to the TailObject, whose ad-
dress is computed using the tag. Heap overflows are detected
as page faults when an access occurs beyond the TailOb-
ject. We evaluated TAILCHECK with four server applications
(apache, nginx, memcached, redis) and the SPEC CPU2017
and SPEC CPU2006 benchmarks, successfully finding heap
overflows in SPEC CPU2017 gcc. TAILCHECK experiences
4% and 3% run-time overhead for the average and tail (99%)
latencies for server applications; and only 33% and 29% run-
time overhead for SPEC CPU2017 and SPEC CPU2006, re-
spectively, less than the state-of-the-art solution.

1 Introduction

A heap overflow [47,48] is an anomaly that occurs when a pro-
gram attempts to access a memory location beyond the bounds
of its allocated memory. This type of vulnerability is com-
monly found in programs written in unmanaged languages
such as C and C++, as these languages allow programmers to
directly manipulate pointers without providing compile-time
(e.g., as in Rust) or run-time protection (e.g., as in Java or
Go). A malicious user may exploit a heap overflow vulnera-
bility in a C or C++ program to perform a variety of security

attacks [57, 58], including corrupting code pointers to divert
control flow or leaking sensitive information.

Today, many critical software systems—such as server
applications and operating systems—are developed in un-
safe languages. Programming errors in these systems can
therefore lead to heap overflow exploitation. For example,
a vulnerability in the nginx web server (CVE-2014-0133)
allowed attackers to send a specially-crafted request that
caused a heap overflow, allowing them to execute arbitrary
code on the server. The mysql database code had a vulner-
ability (CVE-2021-2429) which allowed attackers to send
a specially-crafted request that caused a heap overflow, po-
tentially gaining access to the data or taking control of the
database. A heap overflow in the PHP programming language
related to encryption (CVE-2022-37454) could be used to
remotely execute arbitrary code on a web server. The preva-
lence of heap overflow vulnerabilities in deployed software
systems highlights the need for effective run-time techniques
to protect production systems against exploitation, even when
running vulnerable software.

Several systems have made significant strides toward run-
time mitigation of heap overflows. AddressSanitizer [54],
the state-of-the-practice solution, incurs high run-time over-
head: 80% (geometric mean) slowdown for SPEC CPU2006
applications [45]. Modern operating systems offer heap over-
flow protection by allocating an object at the boundary of a
virtual memory page and adding a protected page (with no
access permission) after it; this feature is available in Linux
as Electric Fence [49] and in Windows as PageHeap [61].
However, allocating just one object per protected page suffers
from extremely large memory overhead, along with high run-
time cost due to frequent TLB misses. Delta Pointers [28],
the state-of-the-art technique, achieves the lowest run-time
overhead (35% for SPEC CPU2006), but requires restricting
the address space of the protected application. Delta Point-
ers reserves the N most significant bits (32, by default) for
pointer tagging and supports only a 48−N bit address space
for 64-bit architectures. This limits Delta Pointers’ applicabil-
ity for modern software: it cannot be used for server software



with many-gigabyte footprints and even fails for the reference
inputs of xz and mcf in the SPEC CPU2017 suite.

In this work, we present TAILCHECK, a new lightweight
heap overflow detection scheme that leverages a cus-
tom memory allocator, OS-based page protection, and
compiler-directed pointer tagging. When an object is created,
TAILCHECK allocates an additional shadow object, called a
TailObject, at the boundary of a page whose subsequent page
is protected by the OS. The TAILCHECK memory allocator
returns a tagged pointer in which the otherwise unused most
significant bits (e.g., 16 bits for a 64-bit architecture with 48-
bit address space) encode the distance from the original object
to its TailObject, keeping the address of the original object un-
modified in the low-order bits as usual. A TAILCHECK com-
piler pass instruments each dereference of a tagged pointer,
using the embedded tag to compute the shadow address within
the corresponding TailObject and inserting an additional mem-
ory access to the shadow address alongside each access to the
original object. In the event of a heap overflow, the shadow
memory accesses reach beyond the bounds of the TailObject,
causing a page fault and triggering the OS to terminate the
program. This prevents the exploitation of heap overflow vul-
nerabilities (both over-writes and over-reads) and ensures the
integrity and confidentiality of the system.

The TAILCHECK tags allow many objects to share space
used by the TailObjects and the OS-protected pages, limiting
the memory overhead of the technique and eliminating the per-
formance overheads of frequent system calls to protect pages
during memory allocation. To further reduce run-time over-
head, TAILCHECK performs three compile-time optimiza-
tions to prune the shadow accesses for heap accesses that are
statically proven to be safe.

TAILCHECK makes use of well-known page protection and
pointer tagging techniques, yet it does not share the limita-
tions of prior solutions. TAILCHECK achieves low run-time
overhead by using page protection for heap overflow detec-
tion, but unlike Electric Fence and PageHeap, it allows multi-
ple small objects to be co-located on a virtual memory page.
TAILCHECK uses pointer tagging, but unlike Delta Pointers,
it allows a program to utilize the full address space by only
re-purposing the otherwise unused most significant bits.

We implemented TAILCHECK by extending the mimalloc
allocator [33] and developing LLVM [31] compiler passes for
code instrumentation. We evaluated TAILCHECK with four
server applications (apache, nginx, memached, redis) and
the SPEC CPU2017 and SPEC CPU2006 benchmark suites.
Interestingly, TAILCHECK identified an out-of-bounds read in
SPEC CPU2017 gcc (v4.5.0), a known bug with an available
patch [1], yet the patch is not present in SPEC CPU2017
v1.0.5. For performance, TAILCHECK experiences 4% and
3% run-time overhead for the average and 99% tail latencies
for server applications. TAILCHECK exhibits 33% (geometric
mean) run-time overhead and 3% memory overhead for SPEC
CPU2017. TAILCHECK exhibits 29% (geometric mean) run-

time overhead for SPEC CPU2006, lower than Delta Pointers,
the state-of-the-art compiler-based solution with the lowest
previously-reported run-time overhead (35%).

This paper makes the following contributions:
• To the best of our knowledge, TAILCHECK is the first

lightweight heap overflow detection scheme based on page
protection that does not place one object per page.

• TAILCHECK introduces a new pointer tagging scheme for
heap overflow detection, which encodes distance metadata
only in the otherwise unused pointer bits and thus does not
restrict the application address space.

• An evaluation of TAILCHECK demonstrates that it incurs
low run-time and memory overheads and supports applica-
tions with large many-gigabyte memory requirements.

2 Background & Motivation

This section briefly describes the background on heap over-
flows, discusses the threat model we assume in this work, and
highlights the need for a new solution.

2.1 A Heap Overflow Vulnerability
The lack of run-time and compile-time heap overflow protec-
tion in C and C++ exposes many critical software systems to
security threats. Stack-based buffer overflows have received
significant early attention from both academia and industry.
Mature mitigations using stack canaries [11] and shadow
stacks [60] are readily available: for example, GCC and
Clang have built-in support with the -fstack-protector
and -fsanitize=safe-stack compiler flags. On the con-
trary, standard solutions for heap overflows have not yet been
settled, with solutions offering trade-offs in run-time and
memory overheads, soundness, and completeness (§2.3).

Heap overflows are responsible for many critical real-world
security problems. A heap overflow over-write is particularly
critical as it may allow malicious users to divert the control
flow of a victim program or gain privilege escalation. For
instance, a heap overflow over-write vulnerability is found in
sudo (CVE-2021-3156), a widely-used utility on Unix-like
operating systems, which enables a user to run programs with
the security privileges of another user. This heap overflow
was particularly critical in that an attacker could control not
only the size of the buffer that can be overflowed but also the
size and contents of the overflow. As a result, when exploited,
the vulnerability could allow an unprivileged malicious user
to gain root privileges on a vulnerable host.

A heap overflow over-read can lead to information leakage.
The Heartbleed [19] vulnerability in the popular OpenSSL
cryptographic software library (CVE-2014-0160) is a repre-
sentative example. A missing bounds check in the SSL/TLS
heartbeat extension could be exploited to reveal up to 64KB
of memory, which may include private keys and other secrets.



2.2 Threat Model

In this work, we address the threat of overflows on heap-
allocated objects. We assume an attacker can feed a crafted
malicious input to a victim program to exploit a heap overflow
vulnerability. We mitigate heap overflows (both over-write
and over-read) that occur in application and library code that
can be instrumented with our tool, providing integrity and
confidentiality when the underlying software contains vulner-
able code. We provide no protection for uninstrumented code
such as third-party libraries. We do not consider other mem-
ory safety violations such as use-after-free or uninitialized
read vulnerabilities.

2.3 Motivation: Haven’t we solved it yet?

Given the critical implication for security, many solutions
have been proposed for mitigating heap overflows. We present
several representative works, discussing their limitations and
the lessons that we draw upon when designing TAILCHECK.
A more comprehensive related work discussion follows in §8.

The idea of leveraging a virtual memory protected page to
detect a heap overflow dates back to 1987. Electric Fence [49],
proposed by Perens and now included in Linux, was the first
to place allocated objects immediately before protected pages,
which are configured by the OS to trigger a hardware page
fault when accessed. Reads or writes beyond the allocated
object would land on the protected page, triggering a fault
and allowing the OS to mitigate the heap overflow. Succes-
sors to Electric Fence, including DUMA [5], DYBOC [56],
OSX’s libgmalloc [35], and Windows’ PageHeap [61] follow
a similar design. However, despite its simplicity, the approach
of allocating one heap object per virtual memory page has un-
acceptable memory overhead. Moreover, this approach incurs
large run-time overheads from multiple sources: performing
system calls to protect a page on every heap allocation is
expensive, spreading heap allocations across many pages re-
sults in excessive TLB misses, and placing objects at common
offsets from the end of memory pages increases data cache
contention. For example, Liu et al. [36] reports Electric Fence
incurs a 7x slowdown for the PARSEC benchmarks [7]. As
a result, the idea of using protected pages for run-time heap
overflow mitigation has lost its attraction and is rarely found
outside of debugging environments. Using protected pages
can offer heap overflow protection without explicit metadata
lookups and bounds checks, yet require a new solution that
supports placing multiple objects per virtual memory page
and avoids frequent page protection system calls.

AddressSanitizer (ASan) [54] is an alternative approach
with lower run-time overhead. ASan manages a fine-grained
inaccessible region called a redzone after each allocated ob-
ject by maintaining a disjoint shadow (metadata) memory
space. On each memory access, ASan looks up the metadata
space and checks if the target location falls in a redzone. Other

prior solutions, notably SoftBound [40], keep base and bound
metadata in a shadow memory space. On each memory access,
SoftBound performs a metadata lookup and explicitly checks
that the instrumented access falls within the object bounds.
Although the implementation details differ across these sys-
tems, they all share two downsides. First, the metadata lookup
(comprising additional shift, add, and load instructions) and
bounds check (including comparison and branching instruc-
tions) have significant run-time overhead. Second, the red-
zones and metadata store incur significant space overheads.
For example, for the SPEC CPU2006 benchmarks, Oleksenko
et al. [45] report 1.8x run-time and 4x memory overheads for
ASan, and 2x run-time and 3x memory overheads for Soft-
Bound. Such performance overheads and memory capacity
requirements are unacceptably high for modern large-memory
performance critical applications which would most benefit
from run-time heap overflow protection.

To reduce the metadata overheads and/or to facilitate meta-
data lookup, researchers proposed pointer tagging techniques
that keep metadata in the high-order bits of a pointer itself
(e.g., unused 16 bits in 64-bit architecture). For instance,
Baggy Bounds [2] tags a pointer with the encoded size of
an object. However, Baggy Bounds still requires expensive
array table look-ups and bounds checking on pointer arith-
metic. Taking one step further, Delta Pointers [28] remove
the bounds check (comparison and branching instructions)
by transforming the heap overflow detection problem into an
integer overflow detection problem, managing pointer tags
in a way that would cause out-of-bound pointer arithmetic to
set an overflow bit in the tags, thereby making such pointers
“uncanonical” and causing the MMU to generate a fault on
dereference. Delta Pointers are considered the state-of-the-art
software-only solution based on its low run-time overhead, ex-
hibiting only 35% slowdown for SPEC CPU2006 benchmarks.
However, Delta Pointer tags must include the distance from
the current pointer to the end of an object, requiring signifi-
cantly more than 16 bits for large objects. To work around this
limitation, Delta Pointers shrink the process address space.
By default, Delta Pointers use a 32-32 bit split, supporting
applications with up to 4GB of address space. Delta Pointers
offer a glimpse of a low-overhead solution without metadata
lookups or bounds checks, but are still limited in terms of
practicality due to its address space restrictions.

3 TAILCHECK Design

TAILCHECK extends the memory allocator and compiler to
produce executables that are protected against heap overflow
exploitation at run-time. Whenever a programming error leads
to an access that overruns the end of a heap-allocated object,
TAILCHECK ensures that a hardware page fault is triggered,
causing the operating system to mitigate a potential attack by
trapping the fault. Although this effect can be achieved by
placing each heap object at the end of its own virtual memory
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Figure 2: TAILCHECK adds shadow memory access for the
TailObject. A heap overflow beyond object A is detected as a
page fault on the shadow access beyond its TailObject.

page (followed by a protected page) [49], such an approach
is prohibitively expensive; allocating a virtual memory page
for each heap object results in massive heap capacity bloat,
while performance is severely impacted at the time of alloca-
tion (due to configuring a protected page on each allocation)
and also at the time of use of the allocated object (due to a
significant increase in TLB and cache pressure).

Rather than coupling each heap object with its own pro-
tected page, TAILCHECK reserves one TailObject and a pro-
tected page per memory region managed by the heap allocator.
Figure 1 depicts this arrangement. When the TAILCHECK
memory allocator requests a region of memory from the OS,
it reserves space for the TailObject and configures a protected
page at the end of the region. After this, the allocator places
dynamically allocated heap objects, such as A and B, as usual.

To trigger a page fault on a heap overflow, the TAILCHECK
compiler instruments the application code to perform a
shadow memory access to the TailObject alongside each load
and store operation to the original heap object. Figure 1 shows
that the base address of object A is a known distance p away
from the base address of its TailObject. The base address of
object B is similarly a known distance q from its TailObject.
To compute the address for the shadow memory access, the
compiler simply adds the offset (p or q in this example) to the
address of the original access, as shown in Figure 2. Although
an access beyond object A (e.g., to the address p210) would
erroneously read or write data belonging to object B, the cor-
responding shadow access (e.g., to the address 0210+p) that
TAILCHECK performs before the original object access will
exceed the bounds of the TailObject, attempting to access the
protected page and triggering a page fault.

To store the distances (such as p and q) from the moment
when heap objects are allocated to the time when they are
accessed, TAILCHECK uses tagged pointers. We leverage the
otherwise unused high-order bits of pointers to store the dis-
tances, using the compiler to emit code that masks these high-

order bits before performing an access to the original object
and adds the distance encoded in these bits to compute the
address of the shadow access. Modern x86 and ARM systems
use a 48-bit address space, leaving 16 unused bits in 64-bit
pointers, thereby allowing TAILCHECK to store distances for
allocator regions of up to 64KB. A key advantage of this ap-
proach is that the distances encoded in the tagged pointers are
propagated implicitly, requiring code instrumentation only
at the time of pointer dereference or comparison. Notably,
TAILCHECK still protects large heap objects allocated within
their own allocator regions by using protected pages and set-
ting the distance for shadow accesses to 0, therefore treating
all accesses uniformly, but incurring a small overhead due to
the duplication of memory accesses to the large objects.

We note that reserving space for the TailObjects is neces-
sary because shadow memory accesses for stores write data
into the TailObject space. Although these data are never used,
if the space were not reserved, the application could allo-
cate an unrelated object in the same space (at the end of the
managed region), causing the shadow stores to clobber that
object. An alternative implementation, which uses shadow
loads for the corresponding original object stores, is possible.
At first glance, this arrangement would eliminate the mem-
ory overheads of TAILCHECK. However, this approach can
have significant performance drawbacks because loads are on
the critical path of the processor pipeline and have a higher
execution cost compared to stores.

3.1 TAILCHECK Code Instrumentation

We use the compiler to add TAILCHECK to executables. The
compiler performs three tasks: it replaces memory allocation
calls with the TAILCHECK allocator, adds shadow memory
accesses at pointer dereference sites, and masks pointer tags
when interacting with uninstrumented code (e.g., shared li-
braries). We detail these tasks below.



Allocator Injection. TAILCHECK uses a custom mem-
ory allocator. Unlike regular allocator functions that return
a pointer carrying the address of the allocation in virtual
memory, the TAILCHECK allocator functions return a tagged
pointer. The tag is inserted into the otherwise unused high-
order bits of the returned value, and corresponds to the dis-
tance between the address of the allocated heap object and
the address of its corresponding TailObject.

Replacing the memory allocator provided by the standard
library is traditionally done with the dynamic linker. However,
TAILCHECK needs its custom allocator only for the heap ob-
jects that it protects. To inject its custom allocator during code
instrumentation, the TAILCHECK compiler identifies alloca-
tor calls (e.g., malloc, new, strdup, etc.) and replaces them
with their TAILCHECK allocator equivalents. Any code linked
into the executable, but not instrumented with TAILCHECK,
continues to use the unmodified system allocator.

For each allocator-managed memory region requested from
the OS by the TAILCHECK allocator, we reserve space for the
TailObjects at the end of the region and mprotect the virtual
memory page immediately following the region. TAILCHECK
requires for the TailObject reservation at the end of the man-
aged memory region to be as large as the largest object allo-
cated within that region. In practice, it is common for modern
allocators to separate memory regions by size class, dividing
each region into slots of this size and allocating one object per
slot. With this strategy, the TAILCHECK allocator can simply
reserve the last slot within each managed memory region. No-
tably, the distance encoded in the pointer tags is computed for
the TailObject address equal to address_of_protected_page
minus size_of_allocated_object, which lands in the middle of
the reserved slot whenever the allocated object size is smaller
than the size class, or lands at the start of the reserved slot
when the allocated object size equals the size class.

When the requested allocation size is larger than the
largest allocator size class (e.g., one that requires multi-
ple virtual memory pages), modern allocators switch to a
large-object allocation mode where a separate memory re-
gion is requested from the OS. When handling large-object
requests, the TAILCHECK allocator will mprotect a page
immediately following each allocated large object and com-
pute the returned pointer as address_of_protected_page minus
size_of_allocated_object, effectively falling back to the be-
havior of Electric Fence. For such large-object allocations,
the tag of the returned pointer is set to 0.

We note that, when computing TailObject addresses, we
round up the size_of_allocated_object to honor the original
object’s memory alignment requirements. This is useful for
both correctness and performance, as we want the shadow
access instructions to have the same alignment properties as
their corresponding original object access instructions. As
a result of this rounding, objects whose requested size is
not a multiple of their alignment size will have a small (sev-
eral bytes) region where heap overflows may go undetected

with our TAILCHECK implementation. We discuss the gener-
ally benign nature of such overflows and the ramifications of
adding support for precise overflow detection independent of
alignment constraints in §7.2.

Memory Access Instrumentation. The TAILCHECK com-
piler operates at module granularity, treating all pointers local
to a module as tagged pointers. On every pointer dereference
in the instrumented code, a tagged pointer must be decon-
structed into two parts, the object address (by masking the tag)
and the shadow access address (by adding the tag to the object
address). A compiler pass iterates over the pointer derefer-
ences, inserting compiler IR for tag handling and injecting
the TailObject shadow accesses. Each shadow access (load or
store) is performed first, immediately followed by the original
object access. For both loads and stores, the same store value
and load target registers can be used by the two accesses,
avoiding tying up additional register resources for the shadow
accesses. Compiler optimization passes are performed both
before and after the TAILCHECK instrumentation pass, ensur-
ing that all dereferences eliminated by the optimizer are not
instrumented and that the address calculation code for han-
dling the tagged pointers is optimized. The shadow accesses
are marked as volatile to ensure that they are not moved or
eliminated as dead code.

Pointer arithmetic with integers does not require special
handling for tagged pointers. However, whenever a tagged
pointer is compared (either to another tagged pointer or to
NULL), the TAILCHECK compiler must mask the tag bits prior
to the comparison. Similar to the case of pointer derefer-
ence instrumentation, comparison tag manipulation logic is
inserted as compiler IR, allowing an optimization pass to
minimize the overhead of these operations.

We note that memory access instrumentation does not dif-
ferentiate between objects allocated with the regular and large-
object modes. All pointers within the instrumented code are
treated as tagged pointers. For large-object allocations, the
tags are set to 0 by the memory allocator, resulting in minor
overhead for tag manipulation and harmless shadow accesses
that load or store exactly the same address as the original
access. Uniform handling of tagged pointers simplifies the
implementation, while the overhead of back-to-back instruc-
tions that access the same cache line is minimal in modern
superscalar out-of-order processors.

Linking with Uninstrumented Code. Although it is theo-
retically possible to compile all modules of a program with
TAILCHECK instrumentation, in practice, we must provide
the ability to link against uninstrumented modules, such as
shared libraries. In these situations, pointers passed by instru-
mented code into uninstrumented code (e.g., library function
calls that have pointers in their arguments) must have the
pointer tags removed. Even if all libraries, including the stan-
dard library, are instrumented with TAILCHECK, there are still



situations where pointers are passed as arguments to system
calls, also requiring the stripping of tags.

The TAILCHECK compiler performs a pass over the instru-
mented module to identify all function call sites. Calls to
functions within the same module receive unmodified tagged
pointers as arguments. However, for calls to external func-
tions, compiler IR is inserted to mask the tags of all pointer
arguments. Notably, it is safe to pass function pointers of
instrumented functions to uninstrumented code (e.g., as call-
backs), as any pointer arguments passed by uninstrumented
code into these functions will have tags set to 0 and will
execute correctly, albeit with harmless duplicated memory
accesses as in the case of the large-object allocations.

TAILCHECK keeps pointers without tags in globals be-
cause they may be accessed by uninstrumented libraries. To
this end, TAILCHECK identifies all pointer stores to global
variables in the instrumented code and ensures that the val-
ues written into these variables are masked prior to being
stored. The TAILCHECK compiler uses the LLVM instruc-
tion operand type GlobalVariable to identify globals (after
calling stripPointerCasts on the operand). There is a pos-
sibility that TAILCHECK may store a tagged pointer into a
global if a program uses a local alias to write to that global,
potentially leading uninstrumented code to later dereference
a tagged pointer stored in the global. However, we observe
that accessing a global variable via a local pointer alias is
uncommon in practice: during our evaluation (§6), none of
the tested server, SPEC CPU 2017, or SPEC CPU 2006 appli-
cations shows any unexpected behavior (e.g., segmentation
fault), which would happen if uninstrumented libraries ac-
cessed tagged pointers in globals. Thus TAILCHECK does
not perform additional pointer alias (provenance) analysis.
Furthermore, we treat the environ variable as a special case
where not only the variable itself, but also the nested pointers
within its structure, are written with their tags masked.

Finally, if the standard library is not instrumented with
TAILCHECK, there are two classes of commonly used func-
tions (mem* and str*) that can benefit from special handling,
following the practices of previous works [28, 29, 45]. These
functions are often responsible for heap overflows, making it
practical to insert bounds checks at their call sites when their
function bodies (part of the standard library) are not instru-
mented. For the MemIntrinsics functions (memcpy, memmove,
and memset), we inject a TAILCHECK-like bounds check by
performing a shadow access to the last byte of the arrays
passed as arguments. Notably, we must first check that the size
argument is non-zero, as the function semantics dictate that
no pointer dereferences occur if the size is zero. The common
string manipulation functions (e.g., strstr, strchr, etc.)
return pointers. Although instrumented code handles these
functions correctly (treating them like other 0-tag pointers),
calling these functions effectively removes TAILCHECK pro-
tection from the pointers passed to them. To avoid losing heap
overflow protection after these function calls, TAILCHECK

instruments the call sites of these functions to save the tags of
the pointer arguments before the call and re-applies the tags
on the returned pointers. Similarly, TAILCHECK masks tags
in the return values of those functions that convert a string to
a number (e.g., strtol) when used in arithmetic operations.

Mixing Memory Allocators Having the same allocator
in the application and shared libraries is not a requirement
for TAILCHECK. In our setup, we use LD_LIBRARY_PATH to
ensure that all linked libraries use the TAILCHECK mem-
ory allocator, primarily to maintain performance consistency
across all experiments. However, it is worth noting that li-
braries cannot and should not call free() on objects they
did not allocate themselves [53]. If application code includes
such a construct, it would cause failures in many scenarios
(e.g., where custom allocators are used), including with the
TAILCHECK allocator.

Custom Memory Allocators By default, TAILCHECK pro-
tects heap objects that are allocated and deallocated via stan-
dard interfaces (e.g., malloc, realloc, and free), replaced
by LD_LIBRARY_PATH. Thus, there could be a heap protec-
tion granularity mismatch if an application uses a custom
allocator. For example, for an application-level pool (slab) al-
locator, TAILCHECK may protect a malloc-allocated pool at
a coarse granularity, not at the fine-grained custom allocation
granularity. Our nginx server evaluation (§6) compares two
cases with and without application-level pool allocations (by
disabling a pool allocator using a debugging flag).

3.2 TAILCHECK Optimizations
To reduce the performance overheads of TAILCHECK, we
apply several compiler IR optimizations that reduce the cost
of instrumentation. We detail these optimizations below.

Merging Tag Handling. The tags of TAILCHECK tagged
pointers remain constant throughout the lifetime of the pointer.
When the same pointer is dereferenced multiple times within
a function, potentially with different offsets (for accessing dif-
ferent members of the heap object), the operations to compute
the TailObject pointers are redundant. To reduce the overhead
of this common case, the TAILCHECK compiler instrumenta-
tion pass keeps track of the computed TailObject pointers and
reuses their already computed values.

Hoisting Tag Handling. Heap pointers are frequently deref-
erenced inside loops, accessing different locations within the
same heap object (i.e., if the object is an array). To reduce
the overhead of tag handling, we hoist the computation of
the TailObject pointer outside of the loop, leaving only the
dereference operations inside the loop body. As a result of
this optimization, the TailObject accesses within the loop



body exactly mimic the original object accesses, including
using the same x86 scale-index-base-displacement for the
shadow memory access and pushing all other TAILCHECK
instrumentation overheads outside of the loop body.

Statically Safe Dereferences. TAILCHECK is effective at
preventing heap overflow exploitation with relatively low over-
heads at run-time. However, while many pointer dereferences
must be verified (e.g., using shadow accesses to the TailOb-
jects), some of the checks are unnecessary because static
analysis of the code can guarantee that all accesses remain
within the bounds of a heap object. As such, to further reduce
the overhead of TAILCHECK, we adopt the SafeAllocs [28]
static analysis implementation from the Delta Pointers work.

SafeAllocs identifies all heap allocations with statically
known sizes and uses the compiler metadata to track object
bounds along with the pointer corresponding pointer. When-
ever such pointers are dereferenced in the code, the compiler
checks if the offset of the dereference can be statistically
determined and, if it can be determined and falls within the
object bounds, a run-time check is unnecessary.

When SafeAlloc indicates that all accesses to a heap object
are known to be safe at compile time, TAILCHECK uses the
standard memory allocator for these objects and does not in-
troduce shadow accesses for them. Some heap objects have
both dereference sites that are known to be safe and also
dereference sites that must be checked at run-time. We stati-
cally identify the safe regions at function granularity, avoiding
shadow accesses for objects whose accesses are known to be
safe. This also requires masking the tag bits of these pointers
in the function preambles, as these objects are still allocated
using the TAILCHECK custom allocator and the function call
sites continue to pass arguments as tagged pointers.

4 TAILCHECK Implementation Details

We develop the TAILCHECK prototype by extending the mi-
malloc allocator [33] and developing LLVM [31] compiler
passes for code instrumentation. Tagged pointers are returned
by the TAILCHECK allocator for allocations up to 16KB, with
all larger requests treated as large-object allocations.

The TAILCHECK instrumentation is performed using three
compiler passes. First, a SafeAllocs pass is done to iden-
tify optimization opportunities. Then a Call-Site Instrumenta-
tion pass replaces memory allocation function calls (malloc,
calloc, realloc, strdup, strndup, and free) with the
TAILCHECK custom allocator versions of these functions
and masks pointer arguments at call sites of external func-
tions. The Dereference Instrumentation pass inserts shadow
loads and stores to the TailObjects for all heap objects requir-
ing run-time checks. These passes are performed as part of
the link-time optimization, ensuring that all statically linked
sub-modules are combined together into one module for

TAILCHECK instrumentation before the passes are performed.
Standard LLVM compiler optimization passes are performed
both before and after the TAILCHECK passes.

We take special care to handle function arguments with
the byval attribute. In LLVM, the byval attribute at a call site
means that the pointer must be dereferenced and the resulting
value copied before being passed as an argument. Because
the LLVM byval mechanisms cannot handle tagged pointers,
we mask the tags of all pointers with the byval attribute.

All tagged pointer-based solutions present challenges when
linking to uninstrumented libraries, as tagged pointers must be
masked before being passed to functions in uninstrumented
code. Although pointers to data structures have their tags
masked at the function call sites by the Call-Site Instrumenta-
tion pass, the nested pointers within these data structures are
written as tagged pointers by the TAILCHECK instrumented
code and cannot be directly dereferenced by the uninstru-
mented functions. As in prior work [2, 8, 28], we assume that
we can soundly enumerate all call sites of external uninstru-
mented functions that will operate on nested pointers, and in-
ject the necessary instrumentation code to mask nested tagged
pointers. Notably, most C++ Standard Template Library (STL)
containers do not require masking of nested pointers because
they are implemented in header files and thus come within
our instrumentation scope. For the select cases we encoun-
tered in our benchmark applications that require masking, we
manually add the appropriate instrumentation as discussed
in §5. In §7.3 we discuss how TAILCHECK may take advan-
tage of the ARM top-byte-ignore Memory Tagging Extension
(MTE) [3] and similar features in other ISAs to avoid the need
for explicitly masking pointer tags.

5 Evaluation Methodology

We conduct all experiments on a system with an Intel Xeon
Gold 5218 CPU. To benchmark TAILCHECK, we use four
popular server applications (apache v2.4.54, nginx v1.22.1,
memcached v1.6.17, redis v7.0.6), as well as the C and C++

applications from the SPEC CPU2017 and SPEC CPU2006
benchmark suites. For SPEC CPU2017, we use the speed set
and limit applications to one thread.

Server applications often have a custom pool-based
allocator. To evaluate potential performance differences
between coarse-grained and fine-grained memory alloca-
tions, in addition to the nginx server results, we also
present “nginx (w/o poolalloc),” which is compiled with the
-DNGX_DEBUG_PALLOC=1 flag to disable its custom pool allo-
cator and to use malloc and free directly. apache (v2.4.54)
and memcached (v1.6.17) do not provide similar pool alloca-
tion on/off options, while redis does not use pool allocation.

To quantify the performance of the web servers apache,
nginx, and nginx (w/o poolalloc), we measure request latency
using the hey HTTP load generator [16]. We create two work-
ers to repeatedly request a file 256 times per second. We test



four different file sizes: 32KB, 128KB, 512KB, and 2MB. We
configure apache with two worker threads and nginx with
one worker process. For the key value stores, memcached and
redis, we measure the request latency with four workers,
each requesting 128,000 keys with a 50% get/set ratio. We
use a key size of 16 bytes and four different object sizes:
32B, 128B, 512B, and 2KB. For the SPEC CPU2017 and
SPEC CPU2006 benchmarks, we measure performance with
reference input as wall-clock time of program execution.

For a fair comparison across all systems, we use unmod-
ified mimalloc [33] for all evaluated configurations except
TAILCHECK. For TAILCHECK, we use unmodified mimalloc
for the uninstrumented code and only extend the mimalloc
functionality with wrappers for the allocation functions, re-
taining all of the core functionality of the mimalloc allocator
even when called from the instrumented code. The memory
overheads we report are measured as peak resident set size.

As part of our evaluation, we include a comparison to Delta
Pointers [28] and AddressSanitizer [54]. To ensure fairness,
we reproduce the Delta Pointers results in our test environ-
ment after enabling only the comparable heap overflow pro-
tection features and ensuring that all available optimizations
are applied. To make the results directly comparable, we per-
form this study with the same SPEC CPU2006 benchmark
suite that was used in the original Delta Pointers publication.
AddressSanitizer is compared for the server applications.

TAILCHECK works for all SPEC CPU 2017 benchmarks
using LLVM -O3 with Link Time Optimization (LTO). How-
ever, we use -O2 and LTO in our evaluation to make the results
directly comparable to the prior work [28]. We introduced spe-
cialized handling for the following benchmark applications
to address compatibility issues with uninstrumented libraries:

• In the case of 403.gcc, pointers stored in “long long” vari-
ables are passed to functions invoked through function
pointers. Consequently, an uninstrumented libc function
is called with a long long argument containing a tagged
pointer. This causes a segmentation fault in the uninstru-
mented code, with the faulting address being a tagged
pointer. Debugging this situation is straightforward, as
the stack trace directly points to the problem. To ad-
dress this, we utilized source instrumentation and manual
pointer tag masking in the benchmark sources, similar
to techniques applied in previous works [28, 29, 45].

• 520.omnetpp employs a C++ data structure, evbuf, in-
herited from basic_stringbuf. This object contains
a nested tagged pointer, whose information is lost due
to C++ inheritance, leading to a tagged pointer being
passed to a libstdc++ function. This triggers a segmenta-
tion fault, easily identified by the faulting tagged pointer.
To overcome this, we explicitly marked the evbuf type
to ensure its members are always written as untagged
pointers, thereby maintaining the integrity of the passed
pointer irrespective of inheritance nuances.

Except for the above two cases, TAILCHECK is compat-
ible with many complex real-world applications, including
four servers and all other SPEC CPU 2017 and SPEC CPU
2006 applications. We note that although the two exception
cases were easily identifiable and debuggable because they
triggered a segmentation fault, it is theoretically possible that
a tagged pointer may lead to silent data corruption and exhibit
an observable event far later in time. TAILCHECK provides
limited support for such cases, and fixing them may require
manual code reviews. Indeed, addressing compatibility is-
sues with uninstrumented libraries is a common limitation
of pointer tagging-based solutions [2, 8, 28] with a notable
exception LowFat [30] (see related work discussion in §8.2).

6 Evaluation Results

Below, we first describe the heap overflow vulnerabilities that
were successfully caught by TAILCHECK. We then present
the performance and memory overheads of our technique,
and explain the impact of the optimizations described in §3.2
which mitigate some of the performance impacts. Finally,
we present a comparison with the prior art, demonstrating
comparable and lower overheads compared to Delta Pointers,
without being subject to its address space limitations.

6.1 Heap Overflow Detection
We developed a set of test cases that exhibit various types of
heap overflows to ensure that a segmentation fault is experi-
enced when running such cases when the code is instrumented
with TAILCHECK. The cases were drawn from prior empir-
ical studies [36, 65] that analyzed the types and frequencies
of heap overflows in 85 CVEs. For example, our test suite
includes the following cases:

• Loop accessing heap-allocated arrays, representing
35/85 studied CVE cases (41%).

• memcpy(), memset(), or memmove() into an insuffi-
ciently large buffer; 18/85 cases (21%).

• strncpy(), strncmp(), or sprintf() into an insuffi-
ciently large buffer; 6/85 cases (7%).

• Incorrect pointer arithmetic; 8/85 cases (9%).

• Accessing a derived class member on a base class object

• Attempting to iterate through char* cast to long*

Beyond the artificial test cases that we created,
TAILCHECK also uncovered a heap overflow read in
the SPEC CPU2017 gcc application (v4.5.0. function
vn_nary_may_trap in tree-ssa-sccvn.c:3365). When
instrumented with TAILCHECK, the application triggered
a segmentation fault and produced a core file pointing
to the error. This heap overflow was present in the code
for 16 months before being detected with Valgrind (PR



average 99th% memory
latency latency

apache 4% (3~6%) 3% (1~5%) 26% (15~32%)
nginx 2% (1~3%) 3% (1~5%) 41% (32~45%)

nginx (w/o poolalloc) 4% (3~6%) 3% (0~6%) 49% (44~52%)
memcached 3% (2~3%) 4% (3~5%) 2% (1~3%)

redis 6% (5~7%) 4% (0~18%) 3% (1~5%)

(Mean) 4% 3% 17%

Table 1: TAILCHECK runtime overhead (average latency and
99th% latency) and memory overhead on server applications,
normalized to an uninstrumented base system. The latencies
and memory overhead slightly vary for different file and object
sizes tested. The first percentage is a geometric mean and the
two numbers in parenthesis represent the range. The overall
geometric (Mean) is computed for four servers, excluding
nginx (w/o poolalloc), across all input sizes.
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Figure 3: TAILCHECK run-time overhead on SPEC CPU2017,
normalized to an uninstrumented base system.

tree-optimization/44124 [1]). The bug made it into the SPEC
CPU2017 suite v1.0.51 and, to the best of our knowledge,
TAILCHECK is the first to report it in the literature.

6.2 TAILCHECK Performance

We present the performance overhead of TAILCHECK on
server applications in Table 1, which shows the average and
99th-percentile latencies. Both latencies vary only slightly for
different test input sizes: 32KB, 128KB, 512KB, and 2MB
files for web servers and 32B, 128B, 512B, and 2KB objects
for key-value stores. There were no noticeable differences
for nginx with and without application-level pool allocations.
Redis with 2KB objects shows the highest 99th% latency
overhead of 18%, yet with high variance. All the rest, in-

1The bug patch has been merged to gcc v4.5.1. The ChangeLog of SPEC
CPU2017 does not indicate version update or bug fix.

cluding redis with smaller objects, show minor performance
degradation (≤7%). An individual 99th-percentile latency
result for different file/object sizes can be also found in Fig-
ure 5 (for the comparison with AddressSanitizer [54]). The
geometric mean across the four servers was 4% and 3% for
the average and 99th-percentile latencies, respectively.

The TAILCHECK performance results for SPEC CPU2017
are shown in Figure 3. The geometric mean of the
TAILCHECK performance overhead for SPEC CPU2017 is
33%, among which perlbench shows the highest 1.8x slow-
down. We present a performance comparison study with prior
art in §6.5. Overall, we find that the combination of these
servers and SPEC CPU performance results indicate over-
heads that are likely low enough to warrant production use of
TAILCHECK for run-time heap overflow detection in security-
conscious environments.

6.3 TAILCHECK Memory Usage
In addition to the performance overheads, TAILCHECK in-
creases application memory requirements because it reserves
space for the TailObjects at the end of each allocator managed
region. Table 1 (last column) shows the memory overhead for
the server applications. The relative increase in memory usage
was small for the key-value store applications, while nginx
shows the highest overheads. In TAILCHECK, a protected
page for small objects is a virtual page with no access permis-
sion and thus does not require a physical page. However, for
large objects, TAILCHECK still requires one TailObject and
one protected page. Upon further investigation, we found that
at start-up, nginx allocates a large number of large objects,
incurring a relatively high memory overhead. However, we
also observed that once initialized, its peak RSS does not
change while serving client requests. Nginx (w/o poolalloc)
allocates more (non-pool) large objects, showing a slightly
higher memory overhead than nginx with pool allocations.

Next, we present the memory overheads in Table 2 for
SPEC CPU2007 applications. Because TAILCHECK shares
the space of the TailObjects for small objects within a re-
gion, the capacity overheads is minimal. The most affected
benchmarks (perlbench, gcc, and nab) experience only a
9% increase in the peak RSS. The geometric means were 17%
for the servers and 3% for the SPEC CPU2017 applications.

6.4 Analysis of Optimizations.
To better understand the TAILCHECK performance overheads,
we analyze the benefits of the optimizations described in §3.2.
For this experiment, we used the SPEC CPU2006 benchmark
instead of CPU2017 because when we compare ours with
Delta Pointers in §6.5, we want to compare the impact of the
same static optimization (SafeAlloc) on ours and Delta Point-
ers. However, few benchmark applications in SPEC CPU2017
have memory requirements and cannot be supported by Delta
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Figure 4: Comparison of run-time overheads on SPEC CPU2006, normalized to an uninstrumented base system: (a) TAILCHECK;
(b) TAILCHECK with Opt.; (c) TAILCHECK with Opt. and SafeAlloc; (d) Delta Pointers; and (e) Delta Pointers with SafeAlloc.

application overhead application overhead

deepsjeng 0% nab 9%
gcc 9% omentpp 3%

imagick 0% perlbench 9%
lbm 0% x264 6%
leela -1% xalancbmk 5%
mcf 0% xz 0%

geo-mean 3%

Table 2: TAILCHECK memory overhead (peak RSS) on SPEC
CPU2017, normalized to an uninstrumented base system.

Pointers:e.g., xz and mcf with the reference input. Thus, we
based our analysis on SPEC CPU2006.

The first three bars in Figure 4 present the impact of opti-
mizations. We first disable the merging of tag handling code
when multiple offsets of an object are dereferenced within the
same function. Although not drastic, the geometric mean of
performance across the SPEC CPU2006 suite improves by
11%, with the biggest gains coming from several applications
such as bzip2, h264ref, and sphinx3.

We also examine the benefits of applying SafeAlloc to
avoid TAILCHECK instrumentation for heap objects whose ac-
cesses are known to be within bounds through static code anal-
ysis. Although the gains across all benchmarks are modest,
7% on average, applications such as hmmer and perlbench
exhibit drastic benefits, reducing the run-time overheads by
73% and 24%, respectively. These applications have hot loops
iterating over multiple large arrays, allowing SafeAlloc to find
a significant number of optimization opportunities.

We note that “Hoisting Tag Handling,” as described in 3.2,

reduces address calculation overheads, but may also increase
register pressure. For loops with a small number of pointer
dereferences in the loop body, hoisting the computation of the
tail pointer may add register pressure to the program, leading
to performance degradation. The TAILCHECK compiler per-
forms a simple count of the number of pointer dereferences,
applying hoisting if a loop has two or more dereferences.
In some cases (e.g., xalancbmk), SafeAlloc eliminates some
pointer dereferences, leaving just one dereference in the loop
body, bypassing optimization in those loops.

6.5 Comparison with Delta Pointers

This experiment compares TAILCHECK with Delta Pointers,
the state-of-the-art compiler-based solution that shares many
similarities with TAILCHECK in that both use pointer tagging
and do not perform explicit bound checking. We use mimal-
loc’s unmodified allocator for baseline and Delta Pointers
performance measurements.

Figure 4 shows the performance comparison. First, when
comparing the last two bars, we can find that the SafeAl-
locs optimization gives roughly the same relative benefit for
Delta Pointers (6%) as for TAILCHECK (7%). One thing to
note is that the other two tag merging and hoisting optimiza-
tions (excluding SafeAllocs) in §3.2 are only applicable to
TAILCHECK, but not to Delta Pointers. The reason is that
the two optimizations require the tag of a pointer remain un-
changed once defined (until an object becomes freed), which
is the case for TAILCHECK, but not for Delta Pointers.

Second, when comparing the two fully optimized ver-
sions, the 3rd and 5th bars in Figure 4, TAILCHECK exhibits
lower runtime overhead than Delta Pointers: 29% vs. 35%.
TAILCHECK has lower than or similar runtime overheads than
Delta Pointers for most applications. Two exceptions were



perlbench and xalancbmk. There are two significant differ-
ences in Delta Pointers’ and TAILCHECK code instrumenta-
tion. Delta Pointers instruments pointer arithmetic to update
a pointer tag, while TAILCHECK does not. TAILCHECK adds
additional memory operation on a pointer dereference, while
Delta Pointers does not. When considering the number of
instrumentation as a factor of runtime overhead, TAILCHECK
is likely to perform better than Delta Pointers for those appli-
cations with more pointer arithmetic and less dereferences.

For reference, we note that Oleksenko et al. [45] reported
1.8x, 1.8x, 2x, and >3x runtime overheads for AddressSan-
itizer [54], Intel’s MPX (ICC), SoftBound [40] and SAFE-
Code [15], respectively, for the SPEC CPU2006 applications
(in their experimental settings).

Delta Pointers does not incur additional memory overhead,
as it does not use a custom allocator with guard pages like
TAILCHECK (Table 2). Rather, the major drawback of Delta
Pointers is the need to shrink the process address space (e.g.,
32-bit tag and 32-bit address space).

6.6 Comparison with AddressSanitizer

Our last experiment compares TAILCHECK with Address-
Sanitizer [54] for server applications. AddressSanitizer is the
state-of-the-practice solution that maintains a disjoint meta-
data space to distinguish safe regions and (unsafe) redzones.
Figure 5 shows the 99th-percentile latency across different
file sizes (32KB-2MB) for web servers and object sizes (32B-
2KB) for key-value stores. As discussed in §6.2, TAILCHECK
shows minor (on average 3%) tail latency degradation. The
worst 18% overhead appears only for redis with 2KB ob-
jects. On the other hand, AddressSanitizer incurs higher over-
heads for all cases (on average 16%, up to 51%), reflecting
its expensive metadata lookup and checking costs. Likewise,
AddressSanitizer shows higher average latencies (not shown)
than TAILCHECK: 4% vs. 12% on average; and 7% vs. 56%
in the worst case.

7 Discussion

7.1 False Positives and False Negatives

TAILCHECK does not have false positives, assuming there
are no use-after-free violations. A shadow memory access
computed from a dangling pointer could be wrong if freed
and reallocated objects have a different size. Otherwise, the
tag in a pointer and the actual distance between a (current)
object and its corresponding TailObject always match, and
the size of a TailObject is always larger than or equal to that
of an original object. Thus, any page fault from a protected
page is evidence of a true heap overflow.

We exclude a discussion of potential segmentation faults
from passing tagged pointers to uninstrumented code without

proper masking. The mechanisms for using tagged pointers
in the presence of uninstrumented code are described in §4.

TAILCHECK may have false negatives (miss some heap
overflows). First, TAILCHECK is a dynamic tool. It can de-
tect a heap overflow only along the program paths that are
explored at run-time, given a test input and environment. Sec-
ond, TAILCHECK is an instrumentation-based tool and may
miss a heap overflow in an object that crosses the instru-
mented vs. uninstrumented code boundary, such as calls into
third-party libraries and assembly code.

Consider two cases, one in which a heap object is created
in the instrumented code, but escapes unmasked into uninstru-
mented code where it is accessed, and vise versa. TAILCHECK
cannot detect an overflow in uninstrumented code as there is
no shadow TailObject access. Similarly, if an object allocated
in the uninstrumented code is passed to instrumented code,
TAILCHECK cannot detect an overflow as there is no tag and
no corresponding protected page available for the object.

Finally, TAILCHECK relies on a guard page; thus it may
fail to detect an overflow beyond the 4KB protected page (sim-
ilar to AddressSanitizer’s 128B redzone [54]). However, it is
difficult for a malicious user to exploit this, particularly for
small objects, because both the original (manipulated) access
and the TailCheck (shadow) access must land on legal mem-
ory regions to succeed. The TAILCHECK memory allocator
scatters 64KB allocation regions for small objects in the pro-
cess address space, making the distance between a protected
page of a memory region and other valid memory regions
non-deterministic. Large objects may be easier to exploit as
their original and TailCheck accesses are to the same loca-
tion. We note that this is different from AddressSanitizer’s
traditional redzone approach in which a constant length (e.g.,
128B) redzone is inserted between adjacent valid memory ob-
jects/regions. Prior solutions that use explicit bounds checking
(e.g., MPX [45]) or precisely keep track of pointer arithmetic
(e.g., Delta Pointers [28]) do not have this limitation.

7.2 Benign False Negatives due to Alignment

x86-64 Linux assumes that heap allocators return 16-byte
aligned pointers, allowing the compiler to emit memory in-
structions based on this assumption. As discussed in §3.1,
TAILCHECK enforces the same alignment for TailObjects as
for the original objects, allowing the compiler to use the same
memory instruction for both original and shadow memory ac-
cesses. For objects that are not 16-byte aligned (e.g., 11 byte),
the bound of the corresponding 16-byte aligned TailObject (of
the same 11 byte size) will not be adjacent to the boundary of
a protected page and there will be a gap due to the alignment
requirement (5 bytes in this example). This gap may lead to
a false negative as the shadow access would not lead to a
page fault. Nonetheless, we see this as a “benign” overflow,
as the original object would also have the same gap before its
adjacent object, due to the same alignment requirement.
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Figure 5: Comparison of 99th-percentile latency on server applications across different file/object sizes, normalized to an
uninstrumented base system: (a) TAILCHECK and (b) AddressSanitizer.

If required, TAILCHECK can be extended to put the bound
of a TailObject immediately before the protected page without
a gap. TAILCHECK would create an unaligned TailObject, and
there will not be a false negative due to alignment. However,
in this case, the shadow memory access instrumentation pass
may need to use different instruction opcodes for the shadow
accesses, because the instructions used to access the original
object may not support unaligned addresses. Although such a
change is possible to eliminate these benign false positives, it
is likely to come at a performance cost.

7.3 Potential Hardware Support
TAILCHECK performance could benefit from the following
hardware support. First, TAILCHECK (on x86-64) must cur-
rently mask the tags of pointers before accessing an original
object and before passing pointers to uninstrumented code.
TAILCHECK could take advantage of the top-byte-ignore fea-
ture of ARM’s MTE [3] to avoid masking overhead, similar
to HWAsan [55], a hardware-assisted ASan.

Second, TAILCHECK (on x86-64) relies on load and store
instructions to perform shadow memory accesses for over-
flow detection. It would be sufficient for TAILCHECK shadow
operations to only check for access permission. TAILCHECK
could make use of new pseudo load/store-like instructions
which perform virtual to physical address translation and
check permissions, without performing an actual memory ac-
cess or perturbing the data cache, eliminating cache pollution,
cache coherence traffic, etc. Such shadow accesses would
not modify memory, reducing the TAILCHECK run-time over-
head and reducing the memory overhead because TailObject
space would no longer need to be reserved.

Lastly, one can design a hardware TAILCHECK without
compile-time dereference instrumentation. Given a tagged
pointer, the memory management unit of a processor can
transparently perform a page permission check or a shadow
memory access to the TailObject.

7.4 Extensions to Other Memory Safety

Heap Intra-Object Overflow. TAILCHECK defines a heap
object protection granularity at the time of heap allocation.
Thus, TAILCHECK does not protect a more fine-grained sub-
object from an overflow (e.g., an overflow of an array field
of a struct to another field of the same struct) as in per-object
bound checking solutions [2, 13, 17, 18, 25, 30, 51, 67]. If de-
sired, TAILCHECK’s compiler instrumentation pass could be
extended to “heapify” a subobject, similar to CCured [43].
This is analogous to the additional “bound narrowing” feature
in some per-pointer bound checking solutions [40, 45].

Heap Underflow. Though buffer underflow is less critical
than overflow in terms of security, if desired, the design of
TAILCHECK could be flipped to “HeadCheck.”

Heap Use-After-Free. TAILCHECK does not support any
temporal memory safety, yet it could be combined with exist-
ing use-after-free detection schemes that do not use pointer
tagging: e.g., Oscar [12] or DangZero [20] that rely on page
protection could be a good candidate for integration.

Stack Overflow. TAILCHECK assumes that stack is pro-
tected by other schemes such as stack canaries [11] and
shadow stacks [60]. In the current form, TAILCHECK’s in-
strumentataion pass does not need to distinguish stack and
heap objects as any address-taken stack object would hold a
tag of 0, leading to harmless redundant memory accesses.

If desired, TAILCHECK can be extended to support stack
overflow protection. The simplest solution is to replace stack
allocation with heap allocation, similar to CCured’s “heapi-
fied” stack [43], at some performance cost. Alternatively,
TAILCHECK could be extended to add a protected page to
stack and protect the stack objects similar to heap objects (us-
ing a distance tag, a TailObject, and a shadow memory access),



with the following instrumentation pass changes. The size of
a TailObject (a max of projected objects) can be determined
as the sizes of the stack objects are known. The location of
TailObject (before a protected page) should be kept in a re-
served register or a global variable by instrumenting the entry
function: e.g., main. For each function, any address-taken
stack object (e.g., defined by LLVM’s alloca) should be in-
strumented to tag the distance from the stack object (whose
address is computed from a stack pointer) to the TailObject
(whose address is kept separtely). Then, TAILCHECK can use
the same mechanism for stack objects as heap objects. The
default size of TAILCHECK’s tag is 16 bits, implying that it
can support a stack up to 64KB. If a larger stack is needed, the
address space should be reduced for a wider tag. Selectively
using heapification for a large stack object could be helpful.

8 Related Work

There are hundreds of prior memory safety solutions, with
a little bit of exaggeration. This section does not attempt
to cover them exhaustively. Instead, we focus on discussing
where TAILCHECK sits among these related works.

8.1 Buffer Overflow Detection

The first group maintains “redzone” metadata and checks if
a program accesses the red zone on each memory access.
Purify [22] is the first to use redzone. LBC [21] introduces
a fast path optimization skipping metadata lookup with a
random canary. ASan [54] and Valgrind [44] are popular
redzone-based tools using static instrumentation and dynamic
binary translation, repsectively.

The second group performs explicit “bounds checking.”
Some maintain per-object bound metadata and perform
bounds checking on pointer arithmetic: e.g., J&K [25],
CRED [51], D&A [13], Baggy Bounds [2], PAriCheck [67],
LowFat [17, 30], and EffectiveSan [18]. Others keep track
of per-pointer bound metadata and check bounds on pointer
dereferences: e.g., SoftBound [40], SGXBounds [29], Mid-
Fat [27], MPX [45], CUP [8], and FRAMER [42]. Static
analysis can be used to avoid some bound checks on memory
accesses proven to be safe: e.g., PICO [26]. The pointer-based
approach has another advantage that makes it easy to support
intra-object overflow protection: e.g., an array in a struct.

The third group leverages “page protection”: e.g., Elec-
tric Fence [49], DUMA [5], DYBOC [56], libgmalloc [35],
and PageHeap [61]. They do not maintain redzone/bound
metadata nor perform explicit checking as in the above two
groups. However, as discussed in §2.3, allocating one ob-
ject per page incurs huge memory and run-time overheads.
Prober [37] shows low overhead but it only protects heap
arrays. TAILCHECK proposes a new low-overhead page
protection-based solution for all heap objects.

On the other hand, Delta Pointers [28] check the integer
overflow of a tagged pointer. It does not make use of a redzone,
a bound, or a protected page; and thus does not fall into any
of the above groups.

8.2 Pointer Tagging
Many of the above solutions need to maintain some metadata.
Some use “fat pointers” that stores the metadata (e.g., base and
bound) in separate words alongside the actual pointer value.
Examples include Safe-C [4], Cyclone [24], and CCured [43].
CHERI [62, 63] provide hardware support for fat pointers.

Many recent works leverage “pointer tagging” that embeds
metadata into some bits of a pointer itself, to avoid a code
layout change. For example, Baggy Bounds [2] uses the spare
top bits to store the distance between an out of bound pointer
and its intended referent. Delta Pointers [28] uses a 32-bit tag
to encode the distance from the current pointer to the end of
an object. As discussed in §2.3, one common downside of
pointer tagging is that it may restrict the address space: e.g.,
Delta Pointers only support a 4GB of 32-bit address space.
This may not be a problem for SGXBounds [29], which is
designed for an Intel SGX enclave with already-limited 32-bit
address space, and thus it can use a 32-bit tag to store the
upper bound of the pointer’s referent without any sacrifice.
However, other pointer tagging solutions (including Delta
Pointers) that require more than 16 unused bits in the current
64 bit architecture cannot be used for general (non-SGX) pro-
grams with big memory requirements. TAILCHECK does not
share this limitation. Alternatively, CUP [8] takes an extreme
design that uses the entire pointer width to store tags. Low-fat
pointers [17, 30] store the tag implicitly in the pointer value,
and thus can be safely dereferenced without masking.

Several works proposed hardware support for pointer tag-
ging. In-Fat [64] is a hardware extension of EffectiveSan [18],
which tags the upper bits of a pointer with an index into a
bounds table, performing bounds checking on pointer arith-
metic. HeapCheck [52] stores an index into a per-pointer
bounds table, and checks bounds on pointer dereferences.
PACMem [34] leverages ARMv8 AArch64 Pointer Authenti-
cation (PA) [50], computing cryptographic hashes based on
the value of pointers (and other contexts) for pointer integrity.
PACMem seals object metadata into the high-order bits of
pointers via PA and uses the seal as the index to retrieve it.
The tagged PA codes are propagated by hardware along with
the pointers. No-Fat [23] supports low-fat pointers [17, 30].

8.3 Use-After-Free Detection
Existing use-after-free solutions can be categorized into three
groups based on their detection techniques. Some solutions
such as CETS [41], ViK [10] and xTag [6] tag the allocated
memory and the pointer with a unique identifier (referred to
as lock and key), and check if the tags of pointer and memory



match on dereference. Any mismatch indicates that a pointer
used for deference is a dangling pointer. ARM’s Memory
Tagging Extension (MTE) [3] and SPARCS’s Silicon Secured
Memory (SSM) [46] provide hardware support to assign ran-
dom 4-bit tags to object-pointer pairs to probabilistically find
use-after-free bugs on tag mismatch. HWAsan [55] an ex-
tension of ASan with ARM’s MTE makes use of its top-bit-
ignore feature and avoids masking on memory dereference.

Other solutions such as Undangle [9], FreeSentry [66], Dan-
gNull [32], DangSan [59], BOGO [68] maintain metadata to
find and invalidate dangling pointers on free. Then a use-after-
free is detected as an invalid pointer use: e.g., null pointer
dereference.

Yet others such as D&A [14], Oscar [12], and Dan-
gZero [20] leverage page protection: a page becomes inacces-
sible after a free. Oscar [12] reduces physical memory and
run-time overhead by mapping multiple virtual pages into a
single physical page. DangZero [20] further lowers run-time
overhead by directly accessing the page tables with support
from virtualization extensions and a privileged backend (e.g.,
Kernel Mode Linux). TAILCHECK does not provide use-after-
free detection, but its page-based approach makes it possible
to integrate the above page-based use-after-free solutions to
achieve both spatial and temporal memory safety. We leave
this to future work.

8.4 Uninitialized Memory Read
Uninitialized memory reads can lead to information leak-
age, similar to buffer overflow reads. Purify [22] and Val-
grind [44] detect an uninitialized memory read by maintaining
and checking (initialized vs. uninitialized) state metadata at
a byte or bit granularity, respectively. UniSan [38] uses data-
flow analysis to zero-out variables that might be disclosed
to an attacker. SafeInit [39] modifies the compiler and heap
allocator to ensure that all stack/heap regions be initialized.

9 Conclusions

Heap overflow vulnerabilities leave many software systems
exposed to security attacks and exploitation. This work pre-
sented TAILCHECK, a novel heap overflow mitigation scheme
that leverages a custom memory allocator, OS-based page pro-
tection, and compiler-directed pointer tagging. TAILCHECK
achieves low run-time overhead by detecting heap overflows
using page protection, without maintaining bound metadata
and without performing explicit bounds checks. TAILCHECK
uses pointer tagging and shadow memory accesses to detect
overflows, allowing multiple original objects to share a sin-
gle TailObject, which reduces both performance and memory
overheads compared to the previously explored techniques.
The results of our experimental evaluation demonstrate the
effectiveness and efficiency of TAILCHECK in detecting heap
overflows in C and C++ programs.
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