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Abstract

Lack of energy proportionality in server systems results in

significant waste of energy when operating at low utiliza-

tion, a common scenario in today’s data centers. We propose

DIMMer, an approach to eliminate the idle power consump-

tion of unused system components, motivated by two key ob-

servations. First, even in their lowest-power states, the power

consumption of server components remains significant. Sec-

ond, unused components can be powered off entirely with-

out sacrificing server availability. We demonstrate that un-

used memory capacity can be powered off, eliminating the

energy waste of self-refresh for unallocated memory, while

still allowing for all capacity to be available on a moment’s

notice. Similarly, only one CPU socket must remain powered

on, allowing unused CPUs and attached memory to be pow-

ered off entirely. The DIMMer vision can improve energy

proportionality and achieve energy savings. Using a Google

cluster trace as well as in-house experiments, we estimate up

to 50% savings on DRAM and 18.8% on CPU background

energy. At $0.10/kWh, this corresponds to 0.6% of total data

center cost.

Categories and Subject Descriptors K.6.0 [Management

of Computing and Information Systems]: General

General Terms Economics, Management, Measurement

Keywords Cloud Computing, Energy, DRAM

1. Introduction

To handle hundreds of millions of users and their associ-

ated transactions, companies such as Amazon, Facebook,

and Google run immense data centers with until-recently

unimaginable computation and storage capacities. As online

services become pervasive, projections indicate that elec-
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tricity consumed in global data centers worldwide in 2010

was more than 200B KWh, between 1.1% and 1.5% of

worldwide electricity use [28]. Three years ago, Google an-

nounced that their facilities have a continuous electricity us-

age equivalent to powering 200,000 homes [19].

Surprisingly, despite energy being one of the top three

data center operating costs [20], much of the data center en-

ergy is wasted because data centers cannot modulate capac-

ity according to demand. Even when experiencing frequent

periods of complete inactivity (idle periods upwards of one

second [34] during times of low utilization), servers are kept

operating at full capacity. As a result, a report by the New

York Times found energy waste upwards of 90% as the facil-

ities are operated at full capacity regardless of demand [18].

Industry has a number of energy saving principles and

mechanisms, such as consolidation, virtualization (for in-

creased utilization), decommissioning of unused servers,

and energy-efficient hardware [2]. Such mechanisms show

promise and research demonstrates that job consolidation

and server power-off strategies can result in up to 50% en-

ergy savings [44]. Nevertheless, despite their theoretical

promise, these techniques are rarely used due to the need

for fast response times to instantaneous demand and the in-

creased failure rates of mechanical components such as hard

disks and fans due to frequent power cycling [36].

Motivated by the fact that complete server power-off

strategies are not appropriate in many data centers, we pro-

pose an alternative that can modulate energy use based on

capacity demand by powering off independent hardware

components. In this paper, we envision DIMMer, a system

to provide an agile framework for workload-driven scala-

bility and power reduction in data centers. DIMMer would

power off all idle DRAM ranks (physical subdivisions of

memory capacity) in data center servers during low resource

utilization to save DRAM background power. Prior work ei-

ther applies dynamic voltage and frequency scaling (DVFS)

to DRAM [15, 16], or maximizes the time that DRAMs

spend in low-power modes [25, 30, 43] (i.e., self-refresh

mode). We observe that dynamic control of memory capac-

ity presents an opportunity to reduce energy consumption

and promote power proportionality of server systems. While

prior work has reduced the time that DRAMs spend in high-

power modes, we find that dynamically reducing the mem-



ory capacity available to the system can yield greater ben-

efits: energy costs for additional DRAM capacity are paid

only when this capacity is requested by the system. Current

systems waste this energy, because when the DRAM is in

self-refresh mode, the power consumption of a 4GB DIMM

is approximately 1W (20% of the precharge-standby power

[15]). Furthermore, because self-refresh power is propor-

tional to DRAM capacity, the savings of DIMMer are likely

to be higher in future systems. In this paper, we use pub-

licly available traces from a production Google data center

to demonstrate the effectiveness of DIMMer.

A further benefit of DIMMer over switching DRAM to

self-refresh mode [43] is that freeing DIMM contents and

powering them off permits also powering down unused

CPUs to which these DIMMs are attached, whereas using

self-refresh modes and retaining memory contents forces

keeping the CPUs powered up, even if all cores in those

CPUs are unused. However, to power off DRAM ranks,

DIMMer requires disabling DRAM channel interleaving at

boot, migrating memory pages among DRAM ranks, and

reducing the memory available for disk cache, which may

have an impact on system performance. Although DIMMer

requires modification to the OS kernel and hardware con-

figuration, there are no modifications to the applications

[12, 32]. Finally, many of DIMMer’s prerequisites are al-

ready implemented in prior work [12, 27, 32, 43].

Applying DIMMer to Google cluster traces [37] demon-

strates that background DRAM and CPU energy consump-

tion can be reduced by up to 50% and 18.8%, compared to

switching DRAM into self-refresh mode. At $0.10/kWh, this

corresponds to 0.6% of total data center cost.

2. Motivation for Powering off Components

2.1 DRAM Power Consumption

Figure 1 shows the typical power consumption of server

DIMMs under nominal use. Measured DIMMs (Samsung

1600MHz Dual-Rank ECC) were physically isolated in a

dedicated socket – the illustrated data is for one of the 8GB

DIMMs, installed alone at the second CPU of a PowerEdge

M620 server.1 Power consumption was measured with in-

creasing throughput up to 2GB/s, a reasonable upper bound

for modern data center workloads [33]. According to [33],

many workloads, such as web search, memcached, bzip, and

gcc, use at most 2GB/s. We find that simply keeping a

DIMM powered on with near-zero memory traffic has a con-

stant power consumption of 2.3W, which constitutes more

than 50% of each DIMM’s power consumption observed at

peak throughput for cloud workloads.

2.2 CPU Power Consumption

Our experience shows that individual core power consump-

tion varies significantly across different CPUs within the

1 DRAM power was measured with Intelr PCM [5].

Figure 1. 8GB server DIMM power consumption as a func-

tion of throughput. Power at near-zero throughput is more

than half of the power at peak utilization.

same server and is difficult to measure precisely and con-

sistently (it varies with the number of per-node DIMMs,

channels, utilization, etc.). For the purpose of this evalua-

tion, we chose to be conservative and consider power con-

sumption measured across CPUs. The measured power con-

sumptions of our test system while completely idle are as

follows: for 1 CPU (IntelrXeonrCPU E5-2650 2.00GHz)

and 4 DIMMs: 32W; for 2 CPUs and 4 DIMMs: 48W; and

for 2 CPUs and 8 DIMMs: 52W. We find that keeping an idle

CPU powered up only to maintain contents of the 4 DIMMs

attached to it consumes 16W, indicating significant opportu-

nity to save energy by powering down the CPU in addition

to memory at times of low utilization.

3. DIMMer Benefits

In an ideal world, servers can be powered on or off at zero

latency and cost. In that world, one would strive to do ex-

actly that; components would be powered off as soon as a

server’s utilization can be reduced to zero through migrating

applications and consolidation.

The real world however, imposes a set of rigid latency-

related constraints on this vision that cannot be ignored. Mi-

grating jobs and powering servers off and back on are high

latency and high cost operations. Additionally, often (as in

the case of the Google dataset [37] discussed below) individ-

ual servers may participate in distributed services (e.g., file

serving) that preclude powering off machines because they

must be able to serve file contents on a moment’s notice. As

a result, clouds end up operating hundreds of thousands of

servers at full capacity even at periods of low load, in antic-

ipation of spontaneous demand spikes [11].

In this paper, we show that DIMMer, which would dy-

namically provision memory capacity at the granularity of

DRAM ranks, represents an opportunity to reduce energy

consumption of server systems while having little to no im-

pact on performance. To demonstrate that DIMMer is a vi-

able design in practical settings, we analyze the main trade-

offs and show that: (i) idle power consumption of DRAM

ranks is high and warrants full power-off, (ii) existing clouds

feature numerous- and long-enough (per-server, per-rank)

idle periods to justify the DIMMer overheads and latencies,

(iii) the resulting cloud power savings are significant.



(a) Idle server memory, measured at rank granularity (b) Idle CPUs, measured at CPU socket granularity

Figure 2. Total number of idle DRAM ranks and CPUs cluster-wide in each 5-minute time slot.

3.1 Idle Resources in the Cloud

Google Cluster Traces (GCT). We analyzed a Google

cluster usage dataset [37]. The dataset consists of workload

traces for over 12,000 servers collected at 5-minute granu-

larity over the course of more than one month. The traces

include detailed information about the servers and the work-

load jobs and tasks, including CPU, memory, and storage

per task, and machine resource utilization. This dataset has

spawned a number of seminal results [3]. DRAM details and

server counts used in this study are listed in Table 1.

We first compute the number of idle DRAM ranks and

CPU sockets of each server in every 5-minute interval. Based

on this, we derive the total cluster-wide number of idle

memory ranks and CPUs for each 5-minute time slot. Note

that, because OS kernel resource usage and job dependencies

are not available in the traces used, our approximation of

savings is optimistic. Figure 2(a) illustrates the idle DRAM

results. We find that, assuming memory can be consolidated

on a subset of ranks within each server, on average 50%

of the cluster DRAM ranks would be unused and could be

powered off.

Figure 2(b) illustrates the number of CPUs that can be

powered off in each 5-minute time slot. Unlike DRAM ranks

that can be powered off independently, a CPU can be pow-

ered off only when all of its cores and all DRAM ranks at-

tached to its socket are idle. We note that powering off a

CPU may have other system implications, such as render-

ing some PCIe devices unavailable, which may place ad-

ditional constraints on DIMMer. This provides opportunity

for future research, for example, in powering off some of

a system’s NICs for further energy reduction. In the ana-

lyzed trace, on average, 20% of the CPUs can be powered

off across Google’s cluster, while the aggregate CPU utiliza-

tion is 50%. Changes to the cluster resource management

framework can mitigate this inconsistency and maximize the

number CPUs that can be powered off. However, for the re-

mainder of this study, we use the exact data available in GCT,

showing DIMMer’s effectiveness with the existing job place-

ment policies.

Figure 3 shows that, in one month, DIMMer would save

30MWh and 52MWh on DRAM and CPU, respectively.2

The savings achieved by powering off CPUs is actually

greater, but can be achieved only together with powering

2 Using DRAM power estimates from [15].

Normalized Frequency
Capacity Ranks Channels

Memory Capacity in Dataset

0.03 5 - Ignored -

0.06 1 - Ignored -

0.12 54 8G Ignored -

0.25 3990 16G 8 4

0.5 6732 32G 16 4

0.75 1002 48G 24 6

1 799 64G 32 8

Total Machines: 12583

Table 1. The dataset used for our study provides relative

memory capacities normalized to the maximum-capacity

machine present in the cluster. We estimate per-machine

DRAM capacity and number of DIMMs based on the dis-

tribution of the machine counts in the dataset, the approx-

imate date of cluster deployment, and the fact that Google

populated all server DRAM slots at that time [38]. Machines

with unusual memory capacities (likely due to partial mem-

ory failures) were ignored.

off the associated DRAM. Using the cost model from [21],

we estimate the corresponding cost saving over the Total

Cost of Ownership (TCO), including data center construc-

tion, IT equipment, and operating cost at 0.6% (over to-

tal cost), 1.4% (over total power cost) and 3.1% (over to-

tal power cost, excluding power for cooling).3 These energy

savings also translate to a significant reduction in environ-

mental pollution. According to the EPA Emissions & Gen-

eration Resource Integrated Database (eGRID) [1], this cor-

responds to a U.S. annual non-baseload CO2 output emis-

sion reduction of over 51 metric tons of CO2. If the price

of electricity is lower, the savings (in terms of dollars) are

also lower, due to the dominating costs of server hardware

and other data center infrastructure [21]. At $0.05/kWh, the

savings of DIMMer over total data center cost would change

from 0.6% to 0.3%.

3.2 Power-off vs. Self-refresh

Prior work proposed maximizing the time DRAM ranks

spend in low-power self-refresh mode [25, 30, 43]. Al-

though these techniques reduce DRAM power, the back-

ground power consumption of an 8GB DIMM in self-refresh

mode with a typical cloud workload is actually higher than

3 We assume $0.10/kWh, $50M facility cost, and 1.2 PUE for 12,583

servers. Facility and IT capital costs are amortized over 15 and 3 years,

respectively.



Case
Percentage of Time in ACT STBY/PRE STBY CPU

(W)

Self Refresh

(W)

STBY

(W)

Total

(W)Node Rank 0/1 Rank 2/3 Rank 4/5 Rank 6/7

Self-Refresh [43]

(2 idle ranks)

Node 1 100 100 100 100 16 0 21.44
66.00

Node 2 100 100 0 0 16 1.84 10.72

DIMMer

(2 idle ranks)

Node 1 100 100 100 100 16 0 21.44
64.16

Node 2 100 100 0 0 16 0 10.72

Table 2. Sample system with 2 CPU sockets, each having two channels with 8 ranks. In an ideal case, the system would

consume 66W when consolidating hot memory pages on “hot” ranks and switching the “cold” ranks to self-refresh mode

(using [43]’s approach). Using DIMMer, if we instead power off the “self-refresh”ed ranks we can save an additional 3% of

the background power consumption.

Case
Percentage of Time in ACT STBY/PRE STBY CPU

(W)

Self Refresh

(W)

STBY

(W)

Total

(W)Node Rank 0/1 Rank 2/3 Rank 4/5 Rank 6/7

Self-Refresh [43]

(1 idle node)

Node 1 100 100 100 100 16 0 21.44
57.12

Node 2 0 0 0 0 16 3.68 0

DIMMer

(1 idle node)

Node 1 100 100 100 100 16 0 21.44
37.44

Node 2 0 0 0 0 0 0 0

Table 3. The main opportunity arises when powering off all of the ranks – this corresponds to 20% memory nodes in Google

cluster as in Figure 2(b). If all hot memory pages are migrated to the “hot” memory node and the “cold” node’s ranks are placed

in self-refresh mode, 57.12W is consumed. If “cold” ranks are powered off completely, the entire CPU socket can be powered

off, resulting in an additional saving of 35% of the total background power consumption.

Figure 3. Energy saved by powering off the idle DRAM

ranks and CPUs, respectively.

the savings achieved by switching DRAM into self-refresh

mode, as shown in section 2.

Table 2 shows that DIMMer would significantly reduce

power consumption by powering off idle memory and CPUs.

For example, a dual-socket server where each CPU is con-

nected to eight memory ranks (four dual-rank DIMMs)

across two memory channels, will consume 66W with tech-

niques that arrange memory into “cold” and “hot” ranks, sav-

ing energy on “cold” ranks by putting them into self-refresh

mode [43]. Powering off “cold” ranks entirely, DIMMer

would additionally save 5.4% of the DRAM power.

Furthermore, the main opportunity for power savings

arises when all of the ranks attached to a CPU can be pow-

ered off (e.g., as would be the case in the Google cluster,

where DRAM utilization of many servers often falls below

50%). In this case, DIMMer would further reduce back-

ground power consumption by powering off idle memory

ranks and their corresponding CPUs. As shown in Table 3,

this results in an additional 35% reduction in the background

power consumption when compared to the self-refresh ap-

proach. Because hardware manufacturers do not currently

support fully powered-off DRAM, the exact latency of this

operation is unavailable. However, it is expected to be in the

same order of magnitude as powering DRAM ranks on or

off, which is several hundreds of nano seconds [4, 8]. This

latency is imperceptible from the perspective of a sudden

server load spike.

4. Vision for Implementation

This paper presents DIMMer as a vision. However, actual

implementation is not complex. DIMMer requires modifi-

cations to the memory management subsystem of the OS

kernel. Unlike the traditional Linux kernel which maintains

a memory free list for each memory zone (ZONE DMA,

ZONE DMA32 and ZONE NORMAL), DIMMer’s alloca-

tor creates a free list for each DRAM rank. Similar func-

tionality has already been implemented in [12, 27]. The dif-

ference in page allocation between DIMMer and standard

Linux lies in the total number of free lists. Similar to [24], a

page migrator running as a kernel thread would be respon-

sible for on-demand memory page migration, moving cold

pages from “cold” ranks. Unlike prior work [12, 32], no li-

braries or application would need to be modified.

For reliable deployment, DIMMer may also require hard-

ware changes. Flikker [32] has already proposed to re-

duce the memory refresh power consumption by decreasing

DRAM refresh rate. Theoretically, we can remove most self-

refresh power by setting refresh rates to zero. However, to

reduce the total self-refresh power to zero, we hope hardware

manufacturers will expose registers that allow full electrical

power-off for entire DRAM ranks in the next generation



DRAM controllers.4 Support for full electrical power-off of

CPU sockets may also be helpful.

5. DIMMer Costs

5.1 Cost of Page Migration

Before powering off unused ranks, DIMMer would migrate

memory pages (generally of 4KB sizes) for consolidation

onto the active ranks. To estimate the energy cost of page mi-

gration, we measured the energy consumption of migrating

8GB of memory (four DRAM ranks) from one NUMA node

to another. The node-to-node migration is the most expen-

sive migration that would happen in DIMMer. The integrity

check of the migrated pages may need to be performed with

checksum. The live migration of hot pages may also pose

a significant problem when considering the impact in cache

coherency and integrity. These are future works.

The average measured energy cost to migrate a single

page is 102µJ. As Table 4 shows, if DIMMer would migrate

8GB every 30 minutes, the additional monthly energy cost

of page migration for the cluster would be approximately

210KWh, a mere 0.26% of DIMMer’s total savings. We note

that, while the servers in our study have at most 64GB, server

RAM capacities are increasing, which will increase the page

migration costs incurred by DIMMer in future systems.

Migration Frequency Energy(KWh) Percentage over total saving

Every 5-min 1257.6 1.54%

Every 15-min 419.2 0.51%
Every 30-min 209.6 0.26%

Every 1-hour 104.8 0.13%

Table 4. Measured energy consumption of page migra-

tion, expressed as absolute energy and as the percentage of

DIMMer’s energy savings.

We also measured the performance penalty of page mi-

gration. It takes at most 13.5s to migrate 8GB of memory

in our test system. Although the time is not trivial, it is an

upper-bound. Further, it is important to note that this penalty

occurs by design only at low CPU and memory utilization,

when DIMMer is engaged to power off components. This is

exactly the time when unused CPU and memory bandwidth

are available. During high utilization, DIMMer can be de-

signed to simply disable its allocator and migration thread.

Further, based on GCT, 30.2% of used pages are cache

pages and 11.2% are cache pages not mapped into any pro-

cesses. In many workloads [46], very few disk cache pages

are hot; it is only useful for DIMMer to migrate hot cache

pages and anonymous pages. During times of low utiliza-

tion, DIMMer applies a smart page allocation policy that

minimizes the total number of page migrations that will be

needed before ranks can be powered down. To avoid perturb-

ing live services, DIMMer would migrate pages in the back-

ground and at low priority [14]. If a system incurs frequent

4 We suspect the functionality already exists in modern DRAM controllers,

but the control registers to power off ranks are not publicly documented.

state transitions, DIMMer would likely have a negative per-

formance impact. There also exist circumstances and load

conditions that could make VMs performance suffer due to

dynamic memory resizing [10]. According to the study in

[31], the mean execution time of VM-based 1GB memory

addition with coarse-grained hotplug is 0.43s on Dell Pow-

erEdge1950 servers with two Intelr quad-core Xeon E5450

3GHz processors. The mean execution time of 1GB memory

removal is 0.3s in a heavily-loaded VM running TPC-C [6].

If tasks run significantly longer due to DIMMer, the overall

power efficiency may decrease.

5.2 Cost of Reduced Cache Capacity

Modern OSes liberally use large amounts of idle memory

as disk cache, following the mantra “free memory is wasted

memory.” Powering off DRAM reduces the disk cache ca-

pacity and may impact performance and energy by forcing

re-read of disk contents.

Prior work suggests that cache miss rates follow “the 30%

Rule” (i.e., doubling the cache size decreases the miss rate

by 30% on average) [26, 39, 40]. Accordingly, cache benefits

decrease with larger caches. Beyond a certain capacity that

captures an active working set, disk caches do not noticeably

affect system performance.

Experimental evidence with disk caches in cloud work-

loads support this estimate. Zhu et al. indicate that, for a web

server, a large decrease in cache capacity leads to minimal

changes in hit rate [46]. Sacrificing a few percent hit rate,

the cache costs can be reduced by almost 90%. Although one

cannot reliably infer the performance implications of reduc-

ing disk cache for other workloads, these web server results

are promising.

Furthermore, prior work offers mechanisms to mitigate

cache capacity concerns [45]. Cache entries can be dynami-

cally classified as “hot” or “cold”, and kept in separate ranks.

As certain cache pages become hotter, and their “cold” rank

host becomes a candidate to transition to low-power state,

the hot cache pages can be migrated to a “hot” rank.

Finally, note that any and all performance impact of

DIMMer mechanisms can be disabled on demand at high

utilization and only employed when the load (memory and

CPU) warrant their use.

5.3 Cost of Non-Interleaved Address Mapping

Rank-aware memory allocation can be achieved by disabling

both rank and channel interleaving [7], which may degrade

performance for some workloads. Channel interleaving is

used to improve memory bandwidth by interleaving physical

pages across DIMMs on multiple channels. Rank interleav-

ing reduces memory latency by spreading each page across

many ranks, enabling concurrent accesses by letting the con-

troller open a row in one rank, while another rank is being

accessed. However, for cloud workloads, the performance

reduction from disabling interleaving is negligible.



Reduced memory bandwidth may degrade performance

of some workloads. Replacing server memory with lower-

bandwidth mobile DRAM results in between zero and 1.55x

performance degradation of workloads such as SPEC-CPU,

PARSEC, and SPEC-OMP [33]. However, most cloud work-

loads severely underutilize the available memory bandwidth

[17, 33], even during peak times. Ferdman et al. show that

the per-core off-chip bandwidth utilization of map-reduce,

media streaming, web front end, and web search is at most

25% of the available bandwidth. As a result, the peak band-

width reduction associated with disabling channel interleav-

ing is not expected to impact the performance of cloud ap-

plications.

Similar to turning off channel interleaving, turning off

rank interleaving will not incur an obvious performance re-

duction. For the niche of memory intensive workloads that

may get impacted, VipZonE [12] shows that turning off

rank interleaving results in only 1.03% execution time over-

head. While this is the average overhead, it really depends

on the application. A high-performance key-value store, for

example, might care quite a bit about per-lookup (and thus

DRAM) latency. Also, accessing data on a different NUMA

node can have an unacceptable performance impact in some

applications.

Further, DIMMer can be designed to reserve certain

interleaving-enabled DRAM channels (e.g., on CPU socket

0, which will always remain powered on) to service memory-

intensive workloads. Finally, it is also possible to retain the

benefits of channel interleaving by only powering off paral-

lel ranks across channels.

6. Related Work

A number of works address energy proportionality at server

granularity. In [44], Zhang et al. dynamically change the

number of active machines in the cloud to save energy by

finding the best trade-off between the cost of reconfigura-

tion and the amount of energy consumed across the entire

data center. Analyzing GCT shows that this solution could

have saved 18.5% to 50% of the consumed energy. [13, 29]

propose power-proportional provisioning approaches for in-

ternet services. However, these approaches cannot be used

if cloud servers provide background services and cannot

be powered off, providing an opportunity for DIMMer to

achieve energy proportionality without losing availability.

Moreover, instantaneous demand spikes and the increased

failure rates of frequently power-cycled components such

as power supplies, disks, and fans further discourage such

power-off approaches [36].

Servers reduce power consumption during times of low

utilization by putting components into low-power states.

CPU cores and caches use dynamic voltage and frequency

scaling (DVFS) to adaptively tune the CPU frequency to

reduce power consumption [22, 23]. When completely inac-

tive, CPU cores are power gated and memory DIMMs are

placed into self-refresh states. DIMMer will take this con-

cept a step further, completely powering down entire CPUs

when all cores and attached memory are unused.

Similar to the approaches that increase inactivity time on

disks, a number of proposals modify the OS page alloca-

tion policy and DRAM controller logic to maximize the time

DRAM ranks spend in low-power states [9, 30]. Sparsh Mit-

tal has surveyed techniques that efficiently manage DRAM

power consumption [35] (e.g., by reducing the power con-

sumption of memory activation, memory read/write, tran-

sition among power modes, and by the utilization of low-

power self-refresh mode). DIMMer would extend these ap-

proaches to allow powering off unused DRAM ranks.

Noting that data center workloads need high memory ca-

pacity, but under-utilize bandwidth, several proposals im-

prove energy proportionality by reducing memory band-

width. Using power-efficient DRAM reduces server energy

costs [33, 42]. MemScale [16] proposes a scheme to ap-

ply DVFS to the memory controller and dynamic frequency

scaling (DFS) to the memory channels and DRAM devices.

Unlike DIMMer, these approaches assume that all memory

contains useful data, resulting in an energy cost to refresh

the entire memory capacity, even if much of it is unused.

Due to the bursty nature of data center workloads, “Pow-

erNap” proposes introducing low-power idle states into all

server components [34]. When work arrives, servers must

quickly transition to an operational state, perform work, and

return to the low-power idle mode. This work is complimen-

tary to ours, as we propose identifying and powering off en-

tirely unused cores and memory, further increasing the po-

tential energy savings.

7. Conclusions

It is long-recognized that most server hardware exhibits dis-

proportionately high energy consumption when operating at

low utilization [41]. To mitigate this effect, low-power op-

erating modes have been introduced. Moreover, techniques

have been developed to maximize the time spent in low-

power states. DIMMer builds on this work and observes

that dynamic control of memory capacity presents an addi-

tional opportunity to reduce energy consumption of server

systems. Using a Google cluster trace as well as in-house

experiments, we estimate up to 50% savings on DRAM and

18.8% on CPU background energy. At $0.10/kWh, this cor-

responds to 0.6% of total data center cost.
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