
Varun Agrawal, Amit Arya, Michael Ferdman, Donald E. Porter

JIT Kernels: An Idea Whose Time Has (Just) Come

OS Kernels can be more flexible and perform better

Poor performance

 Optimized for wrong machine

o Stock-compiled for Athlon-64, run on Core-i7

 Optimized for expected code path and configuration

 Tons of conditional and dynamically-dead code

 “Expensive” features not in stock build

Poor flexibility

 Hard to patch without rebooting

 Hard to debug

 Hard to change configuration and hardware

 Typically just resort to recompile and reboot

Research Problem

SOSP’13 Poster. Copyright © 2013 by COMPAS Lab at Stony Brook University.

All rights reserved.

Opportunity

JIT techniques developed for user software

 Mature for high-level languages (e.g., Java, .Net)

 Emerging for C/C++

 Enable dynamic runtime optimization

Ship intermediate representation (IR) of kernel

 IR includes all architectures, devices, and options

 JIT compile to specific deployment at boot

Performance improvement

 Code optimized for actual hardware

 Dead code eliminated

 Conditional code (sysctl) optimized

 Profile-guided optimization can run in idle loop

Flexibility improvement

 OS live patching without reboot

 Deploy one IR everywhere

o Tailor to HW, kernel config

 Debugging: Dynamically instrument live code

Idea: JIT Kernel

Native ASM routines must be linked with JITed code

Cooperative resource management

 JIT and kernel share memory, CPU time

 Coordinate recompilation on system changes

 Idle-time instrumentation and re-optimization

Tracking data structure definition changes at runtime

Retaining all #ifdef code in the IR

Limitations of LLVM

Challenges

Kernel JIT will enable…

 High performance from tailoring the OS to…

o Hardware, configuration, and workload

 Ease of deployment – build once, run everywhere

 Ease of debugging and security patching

o Dynamic instrumentation and recompilation

We JIT+boot FreeBSD on bare metal!

 Run LLVM on bare metal

 ASM routines dynamically linked into JIT kernel

Next Steps

 Explore optimizations

 Re-JIT support

Summary & Status

P
er

fo
rm

a
n

ce

Flexibility

Boot

Kernel

JIT
Compile

User modifies kernel:
sysctl, debug prints,

kernel config

reJIT

Load JIT Compiler,
Kernel IR, assembly.so

JIT Heap

JIT Compiler

Kernel IR
KERNEL

JIT Heap

JIT Compiler

Kernel IR

JIT Compiler

Kernel IR

