
Varun Agrawal, Amit Arya, Michael Ferdman, Donald E. Porter

JIT Kernels: An Idea Whose Time Has (Just) Come

OS Kernels can be more flexible and perform better

Poor performance

 Optimized for wrong machine

o Stock-compiled for Athlon-64, run on Core-i7

 Optimized for expected code path and configuration

 Tons of conditional and dynamically-dead code

 “Expensive” features not in stock build

Poor flexibility

 Hard to patch without rebooting

 Hard to debug

 Hard to change configuration and hardware

 Typically just resort to recompile and reboot

Research Problem

SOSP’13 Poster. Copyright © 2013 by COMPAS Lab at Stony Brook University.

All rights reserved.

Opportunity

JIT techniques developed for user software

 Mature for high-level languages (e.g., Java, .Net)

 Emerging for C/C++

 Enable dynamic runtime optimization

Ship intermediate representation (IR) of kernel

 IR includes all architectures, devices, and options

 JIT compile to specific deployment at boot

Performance improvement

 Code optimized for actual hardware

 Dead code eliminated

 Conditional code (sysctl) optimized

 Profile-guided optimization can run in idle loop

Flexibility improvement

 OS live patching without reboot

 Deploy one IR everywhere

o Tailor to HW, kernel config

 Debugging: Dynamically instrument live code

Idea: JIT Kernel

Native ASM routines must be linked with JITed code

Cooperative resource management

 JIT and kernel share memory, CPU time

 Coordinate recompilation on system changes

 Idle-time instrumentation and re-optimization

Tracking data structure definition changes at runtime

Retaining all #ifdef code in the IR

Limitations of LLVM

Challenges

Kernel JIT will enable…

 High performance from tailoring the OS to…

o Hardware, configuration, and workload

 Ease of deployment – build once, run everywhere

 Ease of debugging and security patching

o Dynamic instrumentation and recompilation

We JIT+boot FreeBSD on bare metal!

 Run LLVM on bare metal

 ASM routines dynamically linked into JIT kernel

Next Steps

 Explore optimizations

 Re-JIT support

Summary & Status

P
er

fo
rm

a
n

ce

Flexibility

Boot

Kernel

JIT
Compile

User modifies kernel:
sysctl, debug prints,

kernel config

reJIT

Load JIT Compiler,
Kernel IR, assembly.so

JIT Heap

JIT Compiler

Kernel IR
KERNEL

JIT Heap

JIT Compiler

Kernel IR

JIT Compiler

Kernel IR

