COM PAS JIT Kernels: An lIdea Whose Time Has (Just) Come

Varun Agrawal, Amit Arya, Michael Ferdman, Donald E. Porter

Computer Architecture Stony Brook

Research Problem

Idea: JIT Kernel

University

Challenges

<P S‘a{\c Op (05‘45'09\ \\“ \k
= [|® oW ™ -
< ® K ((\e\
= K e {\O“
= x\C S\©O (o\@
C— S’Qa "(a
- ° e\
> .~ B\
-» q(\a«\\c’
o ¥
- D
Flexibility

»OS Kernels can be more flexible and perform better

»Poor performance

* Optimized for wrong machine

o Stock-compiled for Athlon-64, run on Core-17

» Optimized for expected code path and configuration

* Tons of conditional and dynamically-dead code
= “Expensive” features not in stock build
» Poor flexibility
= Hard to patch without rebooting
= Hard to debug
» Hard to change configuration and hardware

= Typically just resort to recompile and reboot

Opportunity

> JIT techniques developed for user software

= Mature for high-level languages (e.g., Java, .Net)
* Emerging for C/C++

\ * Enable dynamic runtime optimization /

» Ship intermediate representation (IR) of kernel
" IR includes all architectures, devices, and options

= JIT compile to specific deployment at boot

Boot

Kernel IR

Load JIT COMPiIer, JIT Compiler

Kernel IR, assembly.so

JIT
Compile

Kernel IR

Kernel JIT Compiler

e JIT Heap
User modifies kernel:

sysctl, debug prints,
kernel config

KERNEL
Kernel IR

reJIT

JIT Compiler

JIT Heap

» Performance improvement

» Code optimized for actual hardware

= Dead code eliminated

» Conditional code (sysctl) optimized

* Profile-guided optimization can run in 1dle loop
» Flexibility improvement
= OS live patching without reboot
"= Deploy one IR everywhere
o Tailor to HW, kernel config

k * Debugging: Dynamically instrument live code

4

» Native ASM routines must be linked with JITed code
»Cooperative resource management

* JIT and kernel share memory, CPU time

» Coordinate recompilation on system changes

" [dle-time instrumentation and re-optimization
» Tracking data structure definition changes at runtime
» Retaining all #ifdef code in the IR
» Limitations of LLVM

Summary & Status

»Kernel JIT will enable. ..
* High performance from tailoring the OS to...
o Hardware, configuration, and workload
» Ease of deployment — build once, run everywhere
= Ease of debugging and security patching
o Dynamic instrumentation and recompilation
» We JIT+boot FreeBSD on bare metal!
= Run LLVM on bare metal
" ASM routines dynamically linked into JIT kernel
» Next Steps
= Explore optimizations

= Re-JIT support

<

\‘ Stony Brook




