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Abstract
We present Grapple, a new and powerful framework for explicit-state model checking on GPUs. Grapple is based on swarm
verification (SV), amodel-checking techniquewherein a collection or swarmof small, memory- and time-bounded verification
tests (VTs) are run in parallel to perform state-space exploration. SV achieves high state-space coverage via diversification of
the search strategies used by constituent VTs. Grapple represents a swarm implementation for the GPU. In particular, it runs
a parallel swarm of internally parallel VTs, which are implemented in a manner that specifically targets the GPU architecture
and the SIMD parallelism its computing cores offer. Grapple also makes effective use of the GPU shared memory, eliminating
costly inter-block communication overhead. We conducted a comprehensive performance analysis of Grapple focused on
various design parameters, including the size of the visited-state queue structure, implementation of guard statements, and
nondeterministic exploration order. Tests are run with multiple hardware configurations, including on the Amazon cloud. Our
results show that Grapple performs favorably compared to the SPIN swarm and a prior non-swarm GPU implementation.
Although a recently debuted FPGA swarm is faster, the deployment process to the FPGA is much more complex than
Grapple’s.

Keywords GPU · Model checking · Swarm verification · Grapple

1 Introduction

Modern computing exists in a space that is increasingly
parallel, distributed, and heterogeneous. High-performance
co-processors such as GPUs (Graphics Processing Units) are
utilized in many super-computing applications due to their
high computational throughput, energy efficiency, and low
cost [20]. GPGPU (General-Purpose Computing on a GPU)
is achieved through the use of GPU programming languages
such as the Open Computing Language (OpenCL) [33] and
the Compute Unified Device Architecture (CUDA) [1].

In 2014, we adapted the multicore SPIN model checking
(MC) algorithm of [22] to the GPU [7]. While our approach
achieved speedups up to 7.26× over traditional SPIN, and
1.26× over multicore SPIN, it was severely limited by the
memory footprint of the GPU, and by an explicit limit on the
state-vector size set by the hash function [34].
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The introduction of SwarmVerification (SV) in [25] repre-
sented an entirely new approach to parallelMC. In SV, a large
number of MC instances are executed in parallel, each with
a restricted memory footprint and a different search path.
Each instance is called a verification test (VT), because it
does not seek to cover the full state space as a model checker
would. Through the use of diversification techniques, VTs
are largely independent of one other in terms of the portions
of the model’s state space they cover. By executing a suf-
ficiently large number of VTs, one is therefore statistically
guaranteed to achieve nearly complete, if not complete cov-
erage of the entire state space.

In this paper, we present Grapple, bringing the light-
weight yet powerful nature of SV to the massively parallel
GPU architecture. While other swarm implementations run
internally sequential VTs in parallel, Grapple VTs are inter-
nally parallel and evolved from our previous GPU-basedMC
design [7]. Each VT runs on a single block of the GPU, with
a bitstate hash table in shared memory, compacting per-state
storage by a factor of 64 compared to the cuckoo tables used
in [7]. These tables use the hash function of [27], eliminat-
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ing the hard 64-bit state vector limit of our previous model
checker design.

Grapple VTs run in parallel on all available GPU stream-
ingmultiprocessors (SMs), andmake efficient use of theGPU
scheduler to quickly replace jobs the instant an SM becomes
available. AsVTs are independent of each other and each one
is tightly bound to a single chip on hardware, there is no need
for inter-block communication or additional synchronization
primitives.

To assess Grapple’s performance, we used a benchmark
specifically designed for SV-basedmodel checkers [12,25]: a
model that can randomly generate more than 4billion states.
Exploration progress in the benchmark is captured by the
visitation of 100 randomly distributed states, or waypoints,
with 100waypoints approaching complete state-space explo-
ration. Our experiments, which we ran on multiple hardware
configurations, including the Amazon cloud [2], evaluate the
impact of variations in queue size, guard-statement imple-
mentation, and nondeterministic exploration order.

We also compared Grapple’s performance with the FPGA
swarm implementation of [12], the CPU swarm of [25], and
the original (non-swarm) GPU implementation of [7]. Grap-
ple easily outperforms theGPU implementation and the CPU
swarm, and reaches all waypoints in a number ofVTs compa-
rable to that required by the FPGA implementation. While it
cannot compete in raw speed with the hardware-level FPGA
implementation, it offers much easier deployment, with VTs
that complete in under a second.

We additionally evaluated Grapple using multiple config-
urations of the Dining Philosophers problem, a small model
with a known state-space size and deadlock violation. Results
are also included for the BEEM [4] benchmark models con-
sidered in [7].

In summary, our main contributions are as follows. (i) We
introduce Grapple, a GPU-based swarm verification model
checkerwith internally parallel verification tasks. (ii)Weana-
lyze structural elements of VTs (e.g., search strategy, queue
size, guard logic, number of threads per VT) to determine
how they impact the rate of exploration. (iii) We compare
Grapple’s performance to previous SV implementations on
the CPU [25] and FPGA [12], as well as to our non-swarm
GPU-based model checker [7].

The rest of the paper is organized as follows. Section 2
provides background on GPU hardware, the CUDA pro-
gramming model, the SPIN model checker, and swarm
verification. Section 3 presents our Grapple model checker.
Section 4 presents our various experimental results. Section 5
considers related work. Section 6 interprets our findings and
offers directions for future work.

This paper is an extended version of [13], with additional
experiments and analysis, as well as the introduction of a
new search strategy: Parallel Deep Search (PDS), a search
method specifically designed for swarm environments. Our

new array of experiments serves to: 1) illustrate the frequency
of specific waypoint occurrence within a Grapple swarm;
2) showcase additional Dining Philosopher results, including
process-PDS, and add two additional BEEMmodels: Ander-
son and Peterson; 3) add structure-oriented results, including
two-phase swarms, depth-limited PDS, and scatter PDS; and
4) present Grapple swarms composed of VTs with multiple
diversification techniques, including on the cloud.Webelieve
that these additions represent at least 30% in new material
compared to the conference version [13].

2 Background

Tomotivate our design decisions forGrapple, we first explain
the intricacies of GPU hardware and the associated CUDA
programming model, and provide an overview of the SPIN
model checker [32], onwhichGrapple is based. Further infor-
mationon theGPUhardware andCUDAsoftware is available
in the CUDA C Programming Guide [9].

2.1 GPU hardwaremodel

The GPU is a high-performance co-processor designed
to efficiently render 3D graphics in real time. GPUs are
well-suited for linear algebra, matrix arithmetic, and other
computations frequently used in graphical applications. As
illustrated in Fig. 1, the GPU architecture consists of a scal-
able array of N multithreaded streaming multiprocessors
(SMs), each of which is made up of M stream processor (SP)
cores. Each core is equipped with a fully pipelined integer-
arithmetic logic unit (ALU) and a floating-point unit (FPU)
that execute one integer or floating-point instruction per clock
cycle. Each SM controls a warp of 32 threads, executing the
same instructions in lock-step for all threads.

The GPU features a number of memory types, differing
in access speed, capacity, and read/write availability. Global
memory is large (order of gigabytes), available device-wide,
but relatively slow. Constant memory is a cached, read-only
memory intended for storing constant values that are not
updated during execution. Finally, each SM has a shared
memory region (16 − 48KB). In practice, accessing shared
memory can be up to 100 times faster than using globalmem-
ory for the same transaction.

Devices connect to the host machine using the the
PCIe bus. Communication between the host and device are
extremely costly compared to on-board memory accesses,
including those that use global memory.

2.2 CUDA programmingmodel

CUDA is the proprietary NVIDIA programming model for
general-purpose computing on theirGPUarchitecture.While
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Fig. 1 GPU hardware model. SP = Stream processor

the alternative model, OpenCL, is universally compatible
with all GPU architectures, the high-performance of CUDA
has led to wide adoption. We decided to write Grapple in
CUDAfor this reason, but anOpenCL implementationwould
be very similar.

The CUDA parallel computing model uses tens of thou-
sands of lightweight threads assembled into one- to three-
dimensional thread blocks. A thread executes a function
called a kernel, which contains the computations to be run
in parallel. Each thread uses different parameters. Threads
located in the same thread block can work together in sev-
eral ways. They can insert a synchronization point into the
kernel, which requires all threads in the block to reach that
point before execution can continue. They can also share
data during execution. In contrast, threads located in dif-
ferent thread blocks cannot communicate in such ways and
essentially operate independently.

Shared-memory transactions are typically parallel to some
number n distinct banks, but if two or more address requests
fall in the samebank, the collision causes a serialization of the
access. It is therefore important to understand addressing pat-
terns when utilizing shared memory. Register management
is also critically important. Use of registers is partitioned
among all threads and, as such, using a large number of reg-
isters within a CUDA kernel will limit the number of threads
that can run concurrently. Double and long long variables,
use of shared memory, and unoptimized block/warp geome-
try all lead to increased register use. If available registers are
exhausted, the contents will spill over into local memory—a

special type of device memory with the same high-latency
and low-bandwidth as global memory.

The SIMD nature of warps on SPs has a great impact
on code structure for the GPU. As warps act in lock-step,
any branching logic encountered by a warp must have all
branches explored by all threads. The data created during
the additional branch exploration is simply discarded. This
phenomenon is referred to as branch divergence and is warp-
local; other warps continue to perform independently of the
divergent warp. This can lead to scheduling conflicts where
non-branching warps must wait for the divergent warps to
complete. It is also generally a performance loss within a
warp, especially for cases where one or more branches is
long but uncommonly taken.

Finally, kernels can be launched in parallel on a single
device, as long as that device has the capacity to do so.
Streams are command sequences that execute in order inter-
nally, but can be concurrent with each other. The number
of concurrent streams is device dependent, and additional
streams will queue until the device has availability. Streams
are unnecessary to run parallel commands on multiple
devices, and are not needed for pipelining data transfers
with kernel execution. Two commands frommultiple streams
cannot run concurrently if the host specifiesmemorymanipu-
lation or kernel launches on stream 0 (default) between them.
Synchronization, where necessary, can be invoked within a
stream or across streams with provided CUDA sync state-
ments.

2.3 SPINmodel checker

SPIN [32] is a widely used model checker designed to ver-
ify multi-threaded software. SPIN has an ever-growing list
of features and options, including optimization techniques,
property specification types, and hardware support. State
spaces can be pruned using partial order reduction, speed
can be increased by changing search strategies or disabling
certain checks, andmemory footprint can be reduced through
bitstate hashing. SPIN can handle safety and liveness prop-
erties, any LTL specification, Büchi automata, never claims,
and invariant assertions. Multicore support was added in
2007 [21], improved in 2012 [22], and extended to liveness
properties in 2015 [17].

A central feature of the 2012 algorithm is the structure
holding the frontier of newly discovered states. In order to
assign these states to N worker threads, SPIN uses two sets of
N×N queues. By splitting each frontier queue into an N×N
structure all threads can communicate without the need for
mutex locks. Of these two queue sets, one (output) fills with a
new frontier as the other (input) empties the current frontier.
When the input queue is empty, all threads synchronize and
the two swap labels. This process continues until both the
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Fig. 2 Pruning states via hash collision. iHash collision {B,C}on trace
ABEF J DI . ii Hash collision {E, F} on trace ABECGHK LDI

input and output are empty or a violation is found. We adopt
this structure for Grapple.

2.4 Swarm verification

Recently, support for large-scale parallel model checking on
CPU-based systems was added to SPIN in the form of swarm
verification (SV) [23–25]. SV is a technique wherein a large
number of small verification tasks (VTs) are run in parallel
on many independent processors, including multiple CPUs,
multicore CPUs, and distributed systems [23]. The term ver-
ification test is used in place of model checker or verifier
because these tests are not guaranteed to complete. Instead,
each test is given a set amount of time andmemory to explore
whatever portion of the state space it can. VTs can be as small
as a number of KBs.

Each VT is independent, and the state space it covers is
differentiated through the use of various diversification tech-
niques. These techniques include reversing search direction
or search order, randomizing nondeterministic choice order
of transitions, and other perturbations of the original search
algorithm. VTs do not share resources nor need to live on the
same physical machine. Given enough parallel hardware, all
VTs can run concurrently. When these resources have more
limited availability, VTs will be scheduled like any other
batch of independent programs.

The most potent diversification technique is the use of sta-
tistically independent hash functions.With up to 108 suitable
unique 32-bit hash polynomials, in addition to other search
diversificationmethods, the potential number of distinct con-
current searches is easily in the billions [23]. Hash functions
reduce the state space graph via collisions; as each hash table
is much smaller than the total number of states, collisions are
frequent. If we treat each collision as valid (consider them
the same state, even if that is not the case), the state space
will be quickly, and naturally pruned.

Figure 2 depicts state-space pruning via collision. In both
searches, a left-favoring Depth-First Search strategy is used,
but their hash tables use different hash polynomials to store
states. In the left graph, nodes B andC have the same hashed
value, so C appears to be the same state and will not be

expanded. In the right graph, E and F have the same value,
preventing the expansion of F . Pruning nearly guarantees
that an individual VT will not reach the entire state space,
but this is not a problem. With a sufficient number of diverse
VTs, the swarm as a whole will achieve full coverage.

3 Swarm verification via the Grapple model
checker

The Grapple model checker brings the power of GPU
computing to the model-checking problem via swarm verifi-
cation. For simplicity of presentation, we discuss Grapple’s
design in terms of a Waypoints (WPs) benchmark specif-
ically designed for SV-based model checkers [12,25]. The
WP benchmark involves a model that can randomly generate
more than 4billion states. Said model is comprised of 8 pro-
cesses each in control of 4bits. At successor generation, the
current process will nondeterministically set one of its bits to
1. Exploration progress in the benchmark is captured by the
visitation of 100 randomly distributed states, or waypoints,
with 100waypoints suggesting a nearly complete state-space
exploration. This style of presentation does not in any way
imply that Grapple is limited to this one benchmark; it is
still a general-purpose model checker. Indeed, in Sect. 4, we
present results for additional models, taken from the BEEM
database [4].

Grapple is currently restricted to the verification of safe-
ty and reachability properties. This is also the case for [12],
whereas the swarm-based model checker of [25] has the full
expressiveness of SPIN (LTL, never claims, process invari-
ants, and Büchi automata).

Although traditionally each VT is a small, sequential ver-
sion of SPIN, this is not the case for Grapple VTs, which
run on the GPU. As discussed in Sect. 2.1, the GPU has a
SIMD/SIMT programming model: a single instruction or set
of instructions is given to a group of threads operating on dif-
ferent data. Warps of 32 threads execute in lock-step, and all
branches in logic must be fully explored by the entire warp.
Mimicking SPIN by running a completely sequential VT on
an entire warp would waste massive amounts of resources.
Instead, we use a modified version of the 2014 GPU MC
algorithm [7] to run a single, internally parallel VT per warp.
VTs execute independently in parallel outside of the warp,
but internally (i.e., within a given VT), all data structures are
shared among the threads and there is a single state space to
explore.

While the queue structure and general search algorithm
remain the same as the 2014 MC, as Fig. 3 illustrates, there
are a number of alterations made to the GPU VT to take
advantage of the new swarm environment. First and fore-
most, the hash table is a bitstate implementation moved to
sharedmemory. This hash table is only shared among threads
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Fig. 3 Original GPU model checker versus Grapple verification task

within a VT and not between VTs. Factors typically consid-
ered weaknesses of a shared-memory approach are the hash
table’s locality to an SM and its small size (48KB maxi-
mum).With each SIMD-parallel VT limited to a single warp,
all threads within the VT are guaranteed to be on the same
SP within the same SM, and therefore all have access to this
structure.

The 48KB limit is not an issue for VTs utilizing bitstate
hashing, as such a table can hold nearly 400,000 entries. This
is on the low end of the scale for a VT compared to those in
other SV implementations [23,25], but VTs of this size were
shown to work well in a recent FPGA implementation [12].

Also as in the FPGA implementation, cuckoo hashing [34]
has been replaced with an ABmix function based on the Bob
Jenkins Linear Feedback Shift Register (LFSR) [27]. For this
purpose, two random integers, A and B, are generated on the
host machine for each VT and included as parameters in the
VT’s kernel launch. This change in hash function ismotivated
by the desire to better align with the FPGA implementation,
as well as the elimination of the multiple-function schema
used in the cuckoo algorithm.

For Grapple, the primary requirements for a hashing algo-
rithm are speed and simplicity. Unlike in most other systems,
there is noneed for the function tominimize collisions, as col-
lisions help diversify VT searches. The random integers are
reusedon theGPU in some search strategies as quick random-
digit generators, as on-device random generation tends to be
convoluted and this method is more efficient and suffices for
our purposes.

Since each VT is relegated to a single warp, the fast-
barrier synchronization [42] used in the previous GPU MC
implementation has also been removed. Instead, the on-board
CUDA __syncthreads() function is used at the required syn-
chronization points.

Grapple, like the FPGA swarm [12], runs multiple VTs
within a single program, with additional copies of that pro-
gram launched by script if necessary. In contrast, the SPIN

swarm [25] is coordinated by a script that simply launches
every VT as an independent thread. A Grapple program run-
ning on theGPU initiatesmultipleVTs, each aCUDAkernel,
and utilizes streams to run these kernels in parallel whenever
possible.

The number of VTs that a core program can launch is
dependent upon the hardware of the device(s) available, the
memory footprint of each VT, and how initialization and
memory transfers are handled. In the current design, all vari-
ables and structures are initialized, transferred to the GPU
before kernel launch, transferred back to the host after kernel
completion, and then freed in a single batch. Theoretically,
more VTs could be launched within a program and addi-
tional efficiency squeezed out if the transfers were pipelined
with some VT execution, but the current arrangement also
has benefits.

Since the primary diversification techniques in Grapple
are alterations in hash polynomial, search structure, and non-
determinism order, most of the host-level set-up is common
across VTs. Overall, these common elements reduce the cost
of this process to be nearly negligible when compared to time
spent on the device. In this case, pipelining would increase
overall complexity of the core code with minimal benefit.
On the theme of common initialization, structures are placed
in constant memory whenever possible so all VTs gain fast
read-only access.

Figure 4 illustrates the control flow of Grapple. Upon
start-up, a swarm script launches a CUDA program on all
available hardware devices (GPUs). When there is only a
single device, these K programs must sequentialize, with
one program launching after the execution of the previous
program and its sort instance (the Linux sort utility is used to
count WPs) has terminated. Internally, each CUDA program
initializes a number ofVTs, in this case 250, sharing common
data wherever possible to minimize overhead. Examples of
this include setting up the initial state and sendingWP identi-
fiers to GPU constant memory. This initialization/pre-launch
procedure runs on the CPU (host).

Each VT is assigned to a single stream, and as many
of them as possible will be launched in parallel to the N
streaming multiprocessors (SMs) available on the device.
The number of VTs maintained by a given GPU program,
in this case 250, is a function of the global memory foot-
print of the VTs’ data structures. While the hash tables are
assigned to the 48KB of on-chip shared memory, frontier
queues and other support structures must still hold the full-
length global state vectors and combine to reach the upper
limits of the GPU global memory. Despite sitting on global
memory, these structures are still access-limited to a single
VT, maintaining VT independence.

Once launched, a VT executes its complete search until its
frontier queues are empty, and there are no more states to be
explored.This exhaustionprocess is drivenby the limited size
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Fig. 4 Control flow for Grapple
with 250*K VTs

of the hash table, and the collision-based pruning mentioned
described back in Sect. 2.4.

To achievemaximal utilization of SMs and thereforemax-
imal parallelism at the SM-level, VTs are assigned to SMs
using pipelining: as soon as a VT completes its execution on
a SM, the GPU scheduler replaces it with a new VT, until
all VTs within the CUDA program have been executed on
some SM. At this point, the host collects the discoveredWPs
from all 250VTs and appends this information to a single
output file. All data structures on both the GPU and CPU
are released, and the program terminates. The output file is
read by a sort utility, and current progress reported by the
swarm script. The next GPU program is launched, and the
process continues until all GPU programs in the swarm are
exhausted.

Note that for a single GPU system, a swarm of size 50,000
VTs requires 200 sequentially launched CUDA programs.
One of the benefits of Grapple, and SV in general, is that if
additional GPUs are available, even on different machines
in different locations, these 200 CUDA programs can run
in parallel with each other without additional modification.
These otherGPUsmaybe heterogeneous,withmorememory
or more SMs allowing for more VTs per program or more
concurrent execution of VTs, respectively.

Due to the abridgednature ofVTsearches,minute changes
in control flow can have a major impact on the set of visited
states for each VT. As hash collisions are resolved by drop-
ping the newentry, evendifferences in the order of constituent
operations change the results. To better understand a VT’s
behavior, we offer in Algorithm 1 a comprehensive break-

down of a VT’s main control loop. Furthermore, in Sect. 4,
we conduct a series of tests that illuminate the effects of
making even minor changes to the code.

Algorithm 1 includes somewhat technical implementation
details, but we feel they are necessary for a complete under-
standing of Grapple. Here state is the current state, table is a
hash table of 8-bit integers, and a and b are random values
used for hashing. Grapple uses a single bit of information
to represent each visited state, but the minimal addressable
space is a byte, so we need to store and retrieve states with
bit manipulation. Hashed state vectors are divided into selec-
tion, an integer location in table, and sel, a bit selectionwithin
an 8-bit integer. When the current contents of the table are
queried, visited_state is returned as an 8-bit integer and sel
determines the desired bit.

The nondeterministic choice (NDC) has a variety of
different implementation options. Traditionally, all nonde-
terministic options would be accessed in order as in standard
BFS (parallel BFS in this case) behavior. With minor modifi-
cation, all nondeterministic options can be visited in random
order. To minimize the amount of branching logic, all NDC
order possibilities are enumerated in constant memory, and
the selection of order is completely random for each step in
the loop.

The NDC loop can be removed through the use of a new
search strategy: Parallel Deep Search (PDS). Each Grapple
VT with PDS randomly selects one option per nondetermin-
istic choice, discarding all other paths. PDS is a heuristic
designed to reach deeper states than parallel BFS on the full,
nondeterministic model. Since discarded branches cannot be
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Algorithm 1 State-Space Exploration Loop
executed by each VT thread

Each thread i of a VT’s N parallel threads:

while output queues [i][0] · · · [i][N − 1] are non-empty do
for input queues [0][i] · · · [N − 1][i] do

while input queue [ j][i] is non-empty do
for all processes in the model do

for all nondeterministic choices NDC
within a process do

successor = successor_generation(process,
NDC, state);
selection = (mix(a, b, state));
hashed_value = (selection/8) % table_size;
sel = selection%8;
visited_state = table[hashed_value];
table[hashed_value] |= (1«sel);
if (visited_state &(1 «sel)) == 0 then

Report state back to CPU for check
against 100 WPs

Pick random thread i ′ ∈ N to
output to

if [i][i ′] has slots then
Insert the new state into queue [i][i ′]

end if //implicit else drop the state
end if

end for//close for (NDC)
end for//close for (process)

end while
end for
__syncthreads();
Check output queues for emptiness

end while

explored, there is nowhere for the search to go but deeper.
While each VTwith PDS cannot explore the discarded paths,
the combined swarm still achieves highly effective state-
space coverage. PDS can only be used in SV environments
like Grapple.

As described in Sect. 2.3, Grapple VTs use a set of NxN
queue structures to allow lock-free communication between
threads. Each thread has a set of N input queues and N output
queues, with I slots in each queue. We call an NxNxI set
of queues a queue structure. In Sect. 4, we consider a queue
structure in Grapple to be the same as a queue in SPIN and
FPGA VTs. For this to hold, I will often be as small as four
or five slots.

In Grapple, the input and output queue structures are sets
of pointers to a single array in GPU global memory. To avoid
illegal memory access, a VT must first check that there are
slots available when attempting to insert a new state. In Algo-
rithm 1, this check happens after a state is marked visited. If
there are no queue slots available, the state is dropped and its
successors potentially lost. If instead the queue check hap-
pens before the state is marked visited, the same state (or
a state with the same hash value) can be visited later. This
second style of check is used in FPGA and Grapple VTs.

The logic employed with this check also plays a factor in
Grapple’s performance. If the check prevents writing outside
the bounds of the underlying array structure, hence referred
to as the old guard, it will still allow threads to write to unin-
tended targets. A stricter boundary check, the new guard,
enforces the local limitation of I . Both guards will result in
state drops when the queue is full, but with the new guard
keeping the newer state in the resulting collision, and the old
guard favoring the opposite. In practice (see Sect. 4), VTs
with the old guard have better performance.

All discussion of dropped states to this point has been
about random drops or partial-match drops (hash collisions).
It is also possible to do complete explicit-state drops for spe-
cific state-vector matches. The default behavior of the FPGA
swarm is to considerWPs to be violations.When one of these
states is encountered, it is reported and dropped without gen-
erating successors.While for othermodels, this behaviormay
lead to unreachable portions of the state space, this is not the
case for the WP model. Our Grapple tests include variants
with and without this WP dropping.

4 Experimental results

In this section, we present experimental results for Grapple.
The first set of experiments use the WP benchmark to test
variants of the Grapple VT design, and allow us to compare
performance with the SPIN [25] and FPGA [12] swarms, as
well as with our non-swarm GPU implementation [7]. All of
these tests use the same 100WPs, selected from a random
distribution over the 32-bit integer space.

The GPU used in these experiments is an Nvidia Geforce
660Ti GPU with 2GB GPU global memory, and 7SMs.
This is an older, inexpensive GPU model, but one that still
allows us to demonstrate Grapple’s performance benefits.
SPIN experiments run Swarm 3.2 with SPIN 6.4.7, using an
Intel dual-socket server that has two Xeon E5-2670v3 CPUs
(24 cores total) running at 2.3GHz and Hyper-Threading
enabled (48 hardware threads total), with 128GB of RAM.
FPGA experiments are done with cycle-accurate SystemC
simulations using Xilinx Vivado HLS 2017.4, targeting a
Xilinx Virtex-7 XC7V690T FFG1761-3 FPGA.

The test environments for the SPIN and FPGA exper-
iments are the same as in [12]. Additionally, we include
experiments using theDining Philosopher’s problem in order
to demonstrate Grapple’s ability to discover a known dead-
lock violation. Grapple results for the other BEEM models
considered in [7] are also included. These results prompted
an additional set of tests focused on model structure. Finally,
we show Grapple’s potential in a high-performance environ-
ment by running WP benchmark tests on Amazon’s EC2
GPU cloud platform [2].
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Fig. 5 Grapple VT versus FPGA VT

4.1 WP benchmark

FPGA experiments use internally sequential VTs with 48KB
of storage each. The FPGA runs in batches of 44 concurrent
VTs, starting a new batch when the previous one finishes.
Unlike the general-purpose VT designs of the GPU and CPU
swarms, which can be applied to any Promela model, the
FPGA swarm is currently limited (hardwired) to the 32-bit
random number generator. Fortunately, there are still some
variants of this WP benchmark to test against.

Figure 5 shows combined results of two FPGA swarm
variants and three Grapple variants running the WP bench-
mark. In the standard configuration, WPs are recorded upon
discovery, considered a violation, and the state is dropped.
Non-WP states first check the queue, and are marked vis-
ited and propagate if there are slots available or drop and
remain unvisited if the queue is full. This allows the state (or
a colliding state) to potentially be visited later by the same
VT. In later Grapple tests, we refer to this control flow as
“FPGA-style”, as it matches the behavior of VTs in [12].

Half-warp (16 threads per VT) Grapple leads the FPGA
in number of WPs from the very beginning (in terms of
number of VTs), and reaches the 100th WP in 34,500 VTs,
over 28,000 fewer VTs than its FPGA counterpart. The full-
warp (32 threads per VT) Grapple implementation, however,
is outpaced by the FPGA. The FPGA completes the WP
benchmark in 30,947 fewer VTs. While these three versions
share the same control flow and queue structure size (4,096
entries), the half-warp Grapple implementation has much
better performance when using the WP/VT metric. In terms
of raw speed, however, the half-warp version is slower, with
VTs lasting 650ms compared to the full-warp’s average of
451ms. Both Grapple versions cannot match the hardware-
level speed of the FPGA implementation, but Grapple offers
fast VTs with a much easier deployment process than the
FPGA swarm.

There is an alternate control flow wherein the 100WPs
are reported but otherwise treated like any other state. In

Fig. 6 Impact of frontier size on Grapple search

this case, all 100 are discovered by the FPGA in 46,515VTs
or roughly 74.4% the number of VTs as the previous ver-
sion. Full-warp Grapple also sees improvement, completing
in 77,750VTs. This is not significant enough to catch up
with the FPGA or half-warp Grapple. The no-drop version
of half-warp Grapple is the one instance where performance
dips, becoming the slowest group throughout the search. This
may indicate that whatever gave the FPGA-style half-warp
version of Grapple such a large performance advantage is
something unique to the interaction between the problem
topography and its search strategy, instead of a property of
half-warp Grapple more generally.

On FPGA hardware, the swarms from Fig. 5 complete
in an extremely fast 12.5 s for the original and 9.3 s for no-
drop, with individual VTs lasting only ∼0.2ms. The speed
of the FPGA implementation is due to it being akin to cre-
ating hardware specifically designed to perform the model
checking task. Since the“hardwar” is specifically tailored to
the implementation, an absolute minimum number of clock
cycles are used. These swarms, however, were run on a cycle-
accurate FPGA simulator, where one second of simulated
time takes approximately one hour of wall-clock time. The
simulation allows for more useful data collection without
harming FPGA performance, and is cheaper and faster than
deploying to a physical FPGA.

While speed can vary quite a bit between VT configura-
tions, the execution time of each CUDA program with the
same configuration is relatively stable. Throughout testing,
running an initial batch of three programs (750VTs) would
give a good linear approximation for a batch of hundreds of
programs. For our test machine, a batch of 100,000VTs (400
CUDA programs) would complete in 3∼5 hours, depending
on VT configuration. This can be sped up considerably by
usingmore advanced hardware, as will be shown in Sect. 4.4.

Figure 6 shows the impact of the queue structure size on
Grapple’s performance. This test was inspired by theWP/VT
difference between earlier half-warp vs full-warp tests. For
the same size queue structure (N×N×I), a Grapple half-warp
VT has more slots per thread (a smaller N value means a
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Fig. 7 Impact of guard logic change on Grapple search

larger I value). Since the number of slots can impact state-
drops (see Sect. 3), we ran a series of tests expanding the
queue structure size (and thus the I value) for full-warpGrap-
ple. When I = 16 or I = 8 (16,384 or 8192 total queue
structure size), by 25,000VTs we determined that these ver-
sions would not outperform the I = 4 control and terminated
the swarms. I = 6 performs just slightly worse than the con-
trol. Grapple achieved peak performance with I = 5 (5120
queue structure size), reaching 100WPs in 62,000VTs. This
is better than the 93,500VTs of the control, but still worse
than the 34,500 of half-warp Grapple. Since half-warp Grap-
ple uses a queue structure of 4096 elements (I = 16 with
N = 16), but outperforms all full-warp versions in WP/VT,
the difference in performance requires further study. It is
likely due to a low-level bottleneck, such as register access
patterns or to differences in exploration order arising from
the fewer random thread options.

We also tested the impact of altering the guard logic for
full-warp Grapple’s queue structure, as explained in Sect. 3.
Both versions use a queue structure with 4096 entries, and
otherwise identical control flow. Figure 7 shows the old guard
logic maintaining a WP lead throughout the lifetime of the
swarm, reaching the 100th WP in 93,500VTs. The newguard
logic takes an additional 90,000VTs to find all 100WPs,with
∼47% of the search spent looking for the final WP.

In Sect. 3, we introduced the new search strategy Paral-
lel Deep Search (PDS), which we designed to reach deeper
states than parallel BFS on nondeterministic models. Fig-
ure 8 compares Grapple’s performance (in terms of number
of VTs versus number of waypoints found) using PDS and
using Grapple’s default behavior (parallel BFS with random
ND order). The VTs employing PDS have worse WP/VT
performance, reaching only 79 WPs in 125,000VTs. Since
PDS’s performance is greatly impacted by state-space topog-
raphy, it is possible that this particular model may not be
suited for exploration via PDS.

Another option is to run PDS on a portion of Grapple
VTs, instead of the full swarm. Our data indicates that certain
search strategies reach particularWPsmore often than others.

Fig. 8 Grapple VT with and without PDS

Fig. 9 Percentage of Grapple VTs that find each WP

These ideas and others for PDS are explored later in this
section.

Figure 9 shows how often particularWPswere discovered
for several search strategies. The number of occurrences are
presented as a percent of the total number of GrappleVTs run
with that configuration. While most WPs appear in less than
0.2% of VT searches, some are found much more frequently,
leading to peaks in the figure. While WPs are randomly dis-
tributed across the 32-bit integer space, each VT begins its
search at the same initial state of 0. It should come as no sur-
prise that even with diversification techniques, some states
are accessed more often than others.

The more interesting case is when a search strategy has a
significantly higher rate of discovery for a particularWP than
its peers. “Full-Warp FPGA style” and “Full-Warp NoDrop”
both have greater occurrences of WP21 (177,865,216) and
WP80 (1,161,888,038). “Half-Warp FPGA Style” more fre-
quently discovers WP70 (4250701303) and WP88 (3,304,
030,197). Finally, “Full-Warp PDS” findsWP34 (3,392,086,
205)more often than other configurations. This chart is useful
for constructing Grapple swarms out of multiple VT varia-
tions, as it is frequently the case that a large portion of the
search time is spent attempting to find one final WP.

The WP percentage statistics are applied to the frontier-
size variations given in Fig. 10. The peaks in this figure
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Fig. 10 Percentage of Grapple VTs that find each WP for different
queue structure sizes

(particularly WP21 and 80) are common across all five vari-
ants. This is not surprising as these tests all use the same
search strategy, just with different queue sizes. A point of
interest in this figure is that WP 21 has an occurrence rate
of 9.176% for the 16K variant, compared to a maximum of
∼1.5% in Fig. 9. It should be noted that the 16K and 8K
variants both use data from truncated swarms (25,000VTs
each), but this rate is still very high.

These WP statistics motivate additional experiments on
mixed-strategy swarms. Figure 11 presents results for three
such swarms, each with a slightly different configuration.
All three use eight search strategies, including: half- and
full-warp “FPGA-style”, and half- and full-warp “no-drop”.
The remaining four strategy-slots feature either full-warp 5K
and full-warp 6K frontier-size variations, half- and full-warp
PDS, or half- and full-warp process randomization.

The best-performing configuration so far has included the
frontier variants and process randomization, but not PDS.
Breaking down results by technique, the half-warp FPGA-
style and full-warp 5k/6k frontier versions find the greatest
number of WPs. Interestingly, the “no-drop” variants visit
fewer WPs. This would seem to contradict our earlier exper-
iments, but that is not the case. In those same experiments,
the “no-drop” WP count would normally start behind that of
their FPGA-style counterparts, but would surpass them later
on. It was often the case, as might be expected, that the total
search timewould be dominated by the last severalWPs. The
“no-drop” versions tended to experience the most success in
this dominating period.

Since in the mixed environment the performance of a sin-
gle technique is less important than the spread of the search,
we analyzed combinations of techniques aimed at eliminat-
ing redundancies. This analysis led to the top-performing
frontier/process randomization combination.Analysis of that
configuration suggests that not including the “no-drop” tech-
nique would be favorable in the mixed environment. Since
each technique does not reach the final dominating period on

Fig. 11 Three Grapple swarmswithmultiple diversification techniques

its own, the benefit of the “no-drop” variant never achieves
fruition. It would be more prudent to replace those strategy-
slots with either additional copies of the top-performers, or
to introduce additional techniques with further perturbations
in the exploration order.

Unlike in Grapple and the FPGA tests, where the hash
table size is always 48KB per VT, SPIN swarm experiments
run on a variety of different hash table sizes. While a 48KB
hash table would be ideal for comparison purposes, a SPIN
swarm requires hash tables to be multiples of 32. With the
table size set to 32KB, SPIN ran for over a week without dis-
covering all 100WPs, after which we terminated the search.
The next step up, with 64KB-hash-table VTs, managed to
find 90WPs in 263,220s (just over three days). As in [12],
the optimal configuration for the SPIN swarm seems to be a
256MB table per VT. This version uncovers all 100WPs in
10,890s, ∼ 3.4× as long as half-warp Grapple or ∼ 1.8× as
long as full-warp Grapple.

The optimal setting for SPIN VTs requires over 5000×
the amount of memory per VT as Grapple and the FPGA.
A larger memory footprint for each VT lets a VT cover a
greater portion of the state-space, but at the cost of a longer
execution time per VT. The SPIN results suggest that either
the overhead for creatingmany small SPINVTs hinders their
effectiveness, or that SPIN’s implementation of diversifica-
tion techniques favor larger VTs.While SPIN could runmore
concurrent VTs if more machines were available, thereby
improving performance, this is also true for the Grapple and
FPGA versions.

Non-swarm GPU tests were difficult for the WP model.
Our original implementation in [7] required four full explicit-
state cuckoohash tables to contain every possible state vector.
Although theWPbenchmark uses randomly generated 32-bit
states, the states are still wrapped in a 64-bit unsigned long
long integer. Following the originalMCdesign, the total hash
storage alone would be 128GB, much larger than the 2GB
of global memory on this GPU. Converting this checker to
bitstate hashing allows us to cut the hash storage to a more-
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reasonable 500MB. This, however, does not account for the
other support structures that still use full 64-bit state vectors.

The simplest solution is to run a version that is 250×
the size of a single Grapple VT, since we know that 250
Grapple VTs can be allocated in one CUDA program with-
out exhausting memory. A table this size can hold just over
98million states, a fraction of the state-space generated by
the WP benchmark. Our non-swarm checker explores this
space in 352s, reaching 10WPs. As a standalone program,
the GPUMC clearly cannot compete with the full state-space
exploration of a Grapple swarm.

4.2 BEEMmodels

Table 1 contains results for Dining Philosophers, where each
philosopher picks up the left stick, then the right, releases
the left and then the right. There is a violating state (dead-
lock) when all philosophers pick up their respective left stick
concurrently. The minimum number of VTs tested is 7, since
less than 7 would take the same amount of time to run on
this GPU. For versions with more processes, we use sets of
451VTs (an arbitrary large number that fits within the GPU
memory footprint), but for DP10 and DP11, we determined
thatmore precisionwould be better than just saying× ≤ 451.

The number of VTs needed to fully explore the state
space increases dramatically when the number of processes
is increased to 12. This is as expected, as DP11 has 177,146
states to fit into 392,800 slots per VT (∼45% occupancy),

while DP12 has 531,440 states to fit into the same number of
slots (∼135% occupancy). Beyond 12, we prematurely ter-
minate the search due to the low rate of new state discovery.

The final column of Table 1 shows the percentage of the
state space covered in the first 451VTs. Due to search over-
lap, the number of unique states visited grows logarithmically
with the number of VTs. The effect is more pronounced in a
deterministic model like Dining Philosophers, since the only
source of diversification in Grapple for such models is the
difference in hash polynomial among VTs.

An important factor in model checking is the discov-
ery and recording of paths to a violation. To maintain such
debugging information, a Grapple VT requires one small
modification. When a newly generated state s′ is added to
a counting table to be sent back to the host, the parent state s
is added to a second table at the same address. If a violation
is found for a state in the counting table, the parent is taken
from the second table and used to recover its address in the
counting table. This process repeats for the parent of s and
its ancestors until reaching the initial state.

In Table 2, we introduce a diversification technique for
deterministic models: process randomization. This works
similarly to nondeterministic choice (NDC) randomization,
with a random process order selected from a table in con-
stant memory. In fact, we utilize the exact same table as for
NDCs, combining multiple selections to cover larger num-
bers of processes. The first clear difference between Tables 1
and 2 is that the latter has a much lower percentage of VTs

Table 1 Dining philosophers model in Grapple

Number of
processes

% of VTs finding
violation

Average VT
execution time

State space size # of VTs to
explore

% of state space
covered by first
451VTs

10 67.72 195ms 59,048 100% in 7 100

11 46.65 366ms 177,146 100% in 14 100

12 25.55 677ms 531,440 100% in 3157 99.99

13 13.75 832ms 1,594,322 99.21% in 24,805 98.65

14 11.18 882ms 4,782,968 97.76% in 13,530 92.72

15 11.35 902ms 14,348,906 93.19% in 50,061 76.56

Table 2 Dining philosophers model with random process order

Number of
processes

% of VTs finding
violation

Average VT
execution time

State space size # of VTs to
explore

% of state space
covered by first
451VTs

10 4.60 180ms 59,048 100% in 42 100

11 5.11 297ms 177,146 100% in 91 100

12 12.89 715ms 531,440 100% in 5863 99.99

13 1.17 810ms 1,594,322 99.13% in 13,530 97.77

14 0.92 928ms 4,782,968 98.47% in 13,530 96.84

15 1.56 966ms 14,348,906 92.52% in 13,530 78.8
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Table 3 Dining philosophers model with process-PDS

Number of
processes

% of VTs finding
violation

Average VT
execution time

State space size # of VTs to
explore

% of state space
covered by first
451VTs

10 54.86 556ms 59,048 100% in 6765 99.97

11 39.00 895ms 177,146 99.99% in 13,530 99.93

12 20.20 1623ms 531,440 99.93% in 13,530 99.44

13 11.75 2034ms 1,594,322 98.71% in 13,530 95.16

14 5.73 2276ms 4,782,968 96.27% in 13,530 82.77

15 4.99 2399ms 14,348,906 88.77% in 13,530 64.62

discovering violations. While this may seem detrimental, as
finding violations is a goal in model checking, it is actually
a positive indicator of a spread-out state space.

Ideally, a swarm without overlap would visit all sta-
tes, including violating states, exactly once. Looking at the
last two columns of both tables, the models with random-
ized process order tend to have higher coverage in the first
451VTs, and maintain this higher coverage with fewer VTs
(not shown). While the state-space spread is still not ideal,
with only 92.52% coverage for DP15 using 13,530VTs, it
takes only about one fourth the number of VTs to be half a
percentage point behind the non-random version. Minimiza-
tion of state-space overlap is the key issue when selecting
diversification techniques for a swarm.

Once process randomization was in place, it was not dif-
ficult to modify the search strategy to behave similarly to
PDS. Table 3 contains the results for this modification. Like
process randomization, this process-PDS has a lower per-
centage of VTs discovering a violation, but the reduction is
not as dramatic. It does not, however, have the same coverage
benefits of process randomization, exhibiting less coverage
than the default case. The average VT execution time is also
much higher than in either of the previous cases.

This phenomenon is easy to account for: the process-PDS
version of Grapple is reaching deeper states as a DFS would,
but unlike DFS it does not explore the “non-first” paths. This
can be useful for finding deep violations, but it is not par-
ticularly suited for complete exploration. It is likely that a
depth-limited version of process-PDS could reach deep states
without incurring a penalty in execution time. We plan to
pursue this direction as part of future work. For now, process-
PDS can be used in conjunction with other, more exhaustive
VT configurations.

As Grapple builds upon the foundations of [7], the mod-
els used in that work can be used as is with Grapple. For
models with state spaces smaller than the hash table size,
full coverage is achieved by the first batch of VTs. These
include Anderson 2 and 4, and Peterson 1–3. When the
state space grows even slightly larger than the table capac-
ity, coverage growth slows dramatically. Anderson 3, with

a state space of approximately 52.5 million states, reaches
just over 3.4 million (6.52%) in the first 451 VTs. Even after
nearly 30,000VTs, only ∼ 21% of the state space is cov-
ered. The Peterson 4 model, at an even smaller∼ 1.1 million
states, achieves approximately 59.55% coverage in the first
451VTs, and ∼ 75.85% after 6765 VTs.

The important factor here is that the full state space of
Peterson 4 is less than 3× the size of a VT hash table. While
one might suspect an issue with Grapple’s scalablity, that
is not the problem here. The first 451VTs of Anderson 3
reach more unique states than the full space of Peterson 4.
Furthermore, Grapple had no issue reaching the over 4billion
states in theWP benchmark.We believe there is a fundamen-
tal structural difference between the WP benchmark and the
BEEM models, and explore this conjecture in the following
subsection.

4.3 Structure-oriented results

Our results from Sect. 4.2 on the BEEM models suggest a
fundamental structural difference in theWPmodel compared
to the BEEMmodels, resulting in very different Grapple per-
formance. Another contributing factor may be the extremely
small hash tables used in Grapple VTs, compared to e.g., the
larger structures favored by SPIN’s swarm.

One structural distinction is that the WP model has a high
degree of connectivity. That is, not only does each state have a
large number of outward edges (children), theminimumedge
distance between any two states in the model is relatively
small, and the number of paths between any two states is
very high.

Models that are either generally linear or have “bottleneck
structures” may be less suited for our initial set of swarm
strategies. We consider a state space to be generally linear if
the average number of edges per state is close to two (one
inward and one outward edge). A state space is said to have a
bottleneck structure if there is any single state or small group
of states, other than the initial state, that the model checker
must pass through to reach a large percentage of said state
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Fig. 12 Two-phase Grapple search for Anderson 3

space. Models with either of these issues is considered to
have “low connectivity”.

We designed Grapple tests to benchmark performance on
models with low connectivity. Since connectivity, as we have
defined it, can impact a VT’s performance in terms of reacha-
bility of portions of the state space, VTs for models with low
connectivity may fill their hash tables before passing through
bottlenecks or reaching states further from the root.

One possible solution we have explored is to change a
VT’s starting state. In a two-phase swarm, a number of VTs
first explore the state space as normal and send their complete
hash table contents to the host. The contents of these hash
tables (representing the set of states visited by “phase one”
VTs) are then defined as start states for “phase two” VTs,
which otherwise run as normal. As these new initial states
were reachable from the root during phase one, any states
reached during phase two must also be reachable from the
root.

During testing, we use two different selection criteria for
new initial states: hash table order and random selection.
Hash table order refers to the order of states in a master
hash table kept on the host, which combines the tables from
the phase-one VTs. The master table is only used for this
initial state selection and unique state counting, with no other
impact on the normal control flow of VTs. The hash function
is simply the full state vector modulo the table size; so the
order is numerical, as long as the table is larger than the
largest vector.

Initial results given in Figs. 12 and 13 show fastest
exploration with the default initial state, and worst-case per-
formance with random selection, with hash table order in
between. The random selection was not included for the WP
problem, as random selection had worse performance than
table order in the Anderson 3 problem results. While other
selection criteria may offer better results, we have ceased
exploring this direction for the time being.

Another option for this structure-focused exploration is a
modified version of PDS with a set depth limit. The depth
limitation prevents the time per search from ballooning, but

Fig. 13 Two-phase Grapple search for WP Model

does not necessarily decrease overall state-space coverage. In
fact, our results show that the implementation of a depth limit
improves coverage of Grapple swarms with PDS enabled, as
opposed to PDS without such limits. Truncated results for
various models are shown in Tables 4, 5, 6 and 7 and Fig. 14.
The best-performing depth limit varies among models and
configurations, so a great deal of fine-tuning is possible.

The depth limit improved the performance of PDS, but
not to the point where it became competitive with, much less
outperforming, parallel-BFS. With this in mind, we com-
bined the two previous approaches to great success. In what
we call scatter PDS, a given VT will search up to a speci-
fied depth limit using PDS or process-PDS, and then switch
to parallel-BFS to complete the search before returning to
the host. Unlike the two-phase swarm, both phases are self-
contained within a VT.

The term “scatter” is meant to signify the search first
exploring deep into the state space and then spreading out
at the reached depth. In the worst-case scenario, swarms
with scatter PDS are comparable in performance to the con-
trol (parallel-BFS), with certain depth selections for a given
model configuration visibly outperforming said control.

The results displayed in Figs. 15, 16, 17 and 18 compare
control cases with the best depth limit for each model. In
all cases, we used process-PDS for the initial portion of the
search, to simplify the experimental process. We collected
data for each model with multiple depth limits. Since the
performance roughly fell between the two selections already
graphed, such data would only decrease graph legibility.
While performance gain is not large, small gains in efficiency
can have a significant impact at scale.

Figure 16 appears to be linear, but this is not quite the case.
All of the scatter graphs include data up to 3,000VTs for com-
parative purposes, and the searches are all logarithmic. For
the WP model, 3000VTs covers only the fast-growth por-
tion of the logarithmic graph, before the search slows. While
the size of the state space largely dictates the shape of these
graphs, connectivity may also play a role. Given models with
state spaces of equal size, the graph of the low connectivity
model should begin to curve earlier in the exploration pro-
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Table 4 Anderson 3 Model
with depth-limited process-PDS

Number of VTs DL: 25 DL: 50 DL: 100 DL: 150 DL: 200 DL: 400

21 8486 75,422 317,162 919,529 1,232,234 1,219,168

42 8486 76,056 343,691 1,286,814 1,618,478 1,575,375

63 8486 76,373 356,905 1,475,900 1,860,234 1,842,690

Table 5 WP model with
depth-limited PDS

Number of VTs DL: 10 DL: 20 DL: 25 DL: 50 DL: 100 DL: 200

21 1,568,791 3,069,066 3,312,712 3,274,978 3,294,512 3,259,563

42 2,962,603 6,148,748 6,504,026 6,645,742 6,693,707 6,619,897

63 4,167,890 9,027,792 9,599,406 10,112,060 9,925,403 9,987,968

Table 6 WP model with depth-limited process-PDS

Number of VTs DL: 25 DL: 35 DL: 40 DL: 50 DL: 55 DL: 60 DL: 75 DL: 100 No limit

21 5,754,810 5,752,133 6,110,764 6,112,610 5,757,537 5,758,393 5,754,157 5,760,098 5,381,120

42 11,422,827 11,414,222 12,119,298 11,773,368 11,421,705 12,129,924 12,125,604 11,783,131 10,681,600

63 17,028,839 17,722,132 17,717,586 17,373,677 17,726,645 17,726,195 17,721,424 17,035,476 15,905,315

Table 7 Peterson 3 model with
depth-limited PDS

Number of VTs DL: 25 DL: 30 DL: 40 DL: 45 DL: 50 DL: 100

21 65,931 114,363 148,540 152,231 151,705 153,346

42 68,312 118,708 156,753 158,228 159,550 159,119

63 69,129 121,161 159,828 160,725 161,665 161,612

Fig. 14 DP 15 model with depth-limited process-PDS

cess. While the number of yet unreached states is the same,
it is easier to reach any state in a high connectivity model,
extending the fast-growth phase of the logarithmic graph.

4.4 Large-scale results on the cloud

For our large-scale experiments, we used two Amazon EC2
nodes [2], one with four and one with eight Tesla V100
devices. Each device features 16GB of global memory and
80SMs. All devices for each configuration run concurrently
and their reported WPs are collected by a script on the host.

Fig. 15 Scatter Grapple search for Anderson models

As in the previous tests, each VT is independent and features
data structures private to said VT. There is no inter-GPU
communication other than WP counting by the script. Each
CUDA program runs 2000 VTs between reports to the host.

As in Fig. 19, the 4-GPU node reaches all 100WPs in
72,000VTs (18,000per GPU). The 8-GPU node reaches
all 100 in 80,000VTs (10,000per GPU). Even with state-
recording overhead, they complete in 42min and 21min,
respectively. This is faster than our previous results with such
recording disabled. Turning off state-recording results in a
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Fig. 16 Scatter Grapple search for WP model

Fig. 17 Scatter Grapple search for Peterson models

Fig. 18 Scatter Grapple search for DP models

Fig. 19 Grapple with 16 threads/VT on amazon EC2

reduction of average VT time from 1.02250s to 203.51ms.
This is a significant reduction of 80.1%.

Fig. 20 Grapple with diverse swarm on Amazon EC2

Figure 20 shows a variant of the previous test, but with
diverse swarms. The configurations are derived from the
best-performing options in our previous diversity test: alter-
ing queue size and adding process randomization. Both the
4-GPU and 8-GPU variations required more VTs than in
their non-diverse counterparts. With that said, the diverse 8-
GPUconfiguration reached 91WPs in its first batch of 16,000
VTs. The original configuration (16 threads/VTwith no-drop
behavior) reachedonly 75WPs in its first batch. This suggests
that swarmdiversity can help hasten exploration, but our con-
figuration needs more tuning to achieve the best results.

5 Related work

In [21], SPIN was extended to support dual-core processors,
using nested DFS to check safety and liveness properties.
Thisworkwas extended tomulticore systems for safety prop-
erties in [22] and liveness properties in [17]. Despite the
earlier debut of a distributed model checker [6], the dual-
core version of SPIN was the first parallel MC to reach wide
adoption.

Other work sought to avoid the naturally sequential
depth-first post-order found in dual-core SPIN’s nested
DFS algorithm by leveraging the parallelism in breadth-first
reachability analysis on both distributed [36] and multi-
core systems [5]. This was mainly accomplished using two
algorithms: One Way Catch Them Young (OWCTY) and
Maximal Accepting Predecessors (MAP). Both algorithms
perform parallel reachability analysis, but differ in the way
they detect cycles in the state-space graph.

Early GPU-based MC efforts focused on a priori graph
exploration, as opposed to generating new states on-the-
fly [3,14,19,26,30]. The first on-the-fly GPU-based approach
used theGPU to generate new states with enabled transitions,
and the CPU for duplicate detection [15]. This is not unlike
waypoint counting in Grapple, but their system makes less
efficient use of the GPU hardware and is not based on SV.
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GPUexplore [39] was introduced in 2014 along with
our own GPU-based model checker [7]. While we tried
to redesign SPIN to take advantage of the GPU architec-
ture, GPUexplore worked on Labeled Transition Systems
(LTSs) and followed a symbolic approach. Grapple uses VTs
based on our 2014 design, so it is still very different than
GPUexplore. A GPU-based on-the-fly reachability checking
system for LTSs that achieved 50−−100× performance over
sequential search was presented in [41].

In [37], GPUs were used for strong and branching bisimi-
larity checking. A GPU-based method for liveness checking
for finite-state concurrent system appeared in [38]. Three
partial-order reduction algorithms were implemented on the
GPU in [31], bringing GPUexplore closer to parity with
existing CPU-based checkers. A second version of GPU-
explore was released that same year, with improvements
made to lock-less hashing and thread synchronization [40].
Unlike [38], this version does not include support for liveness
properties.

Scalability tests for GPUexplore were carried out in [8],
achieving 5.5million states/second on a 61.9million state
model. Additionally, they used GPUexplore to pit the 2015
Maxwell Architecture Nvidia Titan X GPU against the 2016
Pascal Titan X GPU, averaging a 1.73× improvement on the
new device. A more in-depth comparison between cuckoo
hashing and the GPUexplore table was carried out in [10],
concluding that cuckoo hashing is 3× faster for random data
and up to 9× faster for non-random data.

A GPU-based parameter-synthesis tool for stochastic sys-
tems was presented in [11]. Utilizing a single GPU, it
achieves up to31× the performanceof sequential approaches.
A multi-core version of the LTSMIN model checker [29]
outperformed the 2005 multi-core SPIN and the 2008 multi-
core DiVinE model checkers. In [16], a new multi-core DFS
algorithm called CNDFS with better performance than the
OWCTY algorithm was presented. This technique uses a
swarm approach with state coloring to perform cycle detec-
tion concurrently with state-space exploration. LTSMIN saw
further improvements in 2015, including support for new
modeling languages [28].

In [18,35], anFPGAwas used to accelerate the exploration
of a relatively small 10,000-state model, achieving a 50×
speed-up compared to its software equivalent. The FPGA
swarm of [12], to which this work is compared, achieved
a 900× improvement over a SPIN swarm for a model of a
much more substantial size (4B+ states). While this scale of
improvement is unlikely for a single GPU device, the process
of deployment to the FPGA ismuchmore complex compared
to the GPU. Additionally, their FPGA swarm was designed
specifically for the 32-bit WPmodel, while Grapple can han-
dle arbitrary Promela models.

6 Conclusions

We have presented Grapple, a new framework for highly
efficient, explicit-state model checking on the GPU. Grap-
ple is based on swarm verification (SV), and its features
include: a parallel swarm of internally parallel verification
tasks (VTs); GPU-optimized implementations of hash func-
tions and bitstate representation of visited states; optimal
use of GPU shared memory, thereby eliminating inter-block
communication/synchronization overhead; and a new search
strategy called Parallel Deep Search, designed to reach
deeper states in a VT’s exploration graph. Our experimen-
tal results show that Grapple outperforms multicore SV [23]
and GPU non-SV [7] approaches, and that it uses a number
of VTs similar to that required by an FPGA swarm [12].

Future work includes adding support for larger state vec-
tors, allowing us to test Grapple with larger-scale model
instances from the BEEM database [4]. We will also expand
upon the promising results of “scatter” PDS, and investi-
gate other model-structure-focused techniques for Grapple.
Finally, we will increase the scope of our comparative tests
to other non-SV parallel model checkers such as GPUex-
plore [40].
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