
 

STONY BROOK UNIVERSITY 

 

CEAS Technical Report 839 

 

 

A VM-HDL Co-Simulation Framework 

for Systems with PCIe-Connected FPGAs 

 

 

Shenghsun Cho, Mrunal Patel, Basavaraj Kaladagi, 

Han Chen, Tapti Palit, Michael Ferdman, and Peter Milder 

 

 

 

August 16, 2017 



A VM-HDL Co-Simulation Framework
for Systems with PCIe-Connected FPGAs

Shenghsun Cho∗, Mrunal Patel∗, Basavaraj Kaladagi∗,
Han Chen†, Tapti Palit∗, Michael Ferdman∗, Peter Milder†

∗Department of Computer Science
†Department of Electrical and Computer Engineering

Stony Brook University
Stony Brook, NY 11794

Abstract—PCIe-connected FPGAs are gaining popularity as an
accelerator technology in data centers. However, it is challenging
to jointly develop and debug host software and FPGA hardware.
Changes to the hardware design require a time-consuming FPGA
synthesis process, and modification to the software, especially
the operating system and device drivers, can frequently cause
the system to hang, without providing enough information for
debugging. The combination of these problems results in long
debug iterations and a slow development process. To overcome
these problems, we designed a VM-HDL co-simulation frame-
work, which is capable of running the same software, operating
system, and hardware designs as the target physical system, while
providing full visibility and significantly shorter debug iterations.

I. INTRODUCTION

FPGAs are gaining popularity as an accelerator technology
to offload complex computation and data flows. The combina-
tion of programmability, high degree of parallelism, and low
power consumption make FPGAs suitable for environments
with rapidly changing workloads and strict power consumption
limits, such as data centers. To put FPGAs into existing
systems, PCIe has become the most common connection
choice, due to its wide availability in server systems. Today,
the majority of FPGAs in data centers are communicating with
the host system through PCIe [1], [2].

Unfortunately, developing applications for FPGAs requires
the time-consuming FPGA compilation processes, including
synthesis, place, and route. Moreover, it is challenging to
develop and debug the host software and the FPGA hardware
designs at the same time. The hardware designs running on the
FPGAs provide little to no visibility, and even small changes
to the hardware may need hours to go through the FPGA
compilation process. The development process becomes even
more difficult when taking operating systems into account.
Changes to the operating system kernel, the loadable kernel
modules, and the application software and hardware can fre-
quently hang the system without providing enough information
for debug, forcing a tedious reboot process. The combination
of these problems results in long debug iterations and a slow
development process.

The traditional way to test and debug hardware designs
without running them on real FPGAs is by writing testbenches
for simulation. The main drawback of this approach is that
the hardware cannot be tested together with the software
and operating system. While some vendors provide hardware-
software co-simulation environments, they still lack the ability
to cover the development of operating system and device driver
code. There are also frameworks that connect an instruction-set
simulator to an HDL simulator to perform full-system simu-
lation. However, these frameworks target system-on-chips—
typically, ASICs with ARM cores—and thus cannot simulate
the PCIe-connected FPGAs used in data center servers.

We observe that, although there is no readily available
environment for full-system simulation of servers with PCIe-
connected FPGAs, we can extend existing tools to build a
co-simulation framework for debugging such systems. Virtual
machines (VMs) are widely used to run services in data
centers. The capability of emulating a full system, including
CPUs, disks, memory, and peripherals such as PCIe devices,
makes VMs a natural fit to emulate the server system in a
development environment. On the other hand, FPGA vendors
are providing sophisticated software for developers to generate
FPGA platforms with PCIe interfaces for real hardware and for
HDL simulators with testbenches. The key missing component
is a link between a VM’s virtual PCIe device and the PCIe
block in an FPGA HDL simulation platform.

In this work, we developed a co-simulation framework
using communication channels between a VM and an HDL
simulator. On the VM side, we created a PCIe FPGA pseudo
device to represent the FPGA board. The operating system and
software running inside the VM see the same PCIe device
as if they were running in a real system with an FPGA
board plugged in. On the HDL side, we developed a PCIe
simulation bridge to talk to the VM. The PCIe simulation
bridge is pin-compatible with the PCIe block used in the
physical FPGA hardware. The rest of the FPGA platform sees
the same interface toward PCIe and requires no modification.
To the FPGA development tools, the PCIe simulation bridge
appears as a regular hardware block and has no impact

1



Fig. 1. The VM-HDL co-simulation framework

on the simulation flow. Notably, we linked the VM’s PCIe
FPGA pseudo device and the PCIe simulation bridge together
using a high-level queue library that provides reliable message
passing, which has an additional useful benefit: either side of
the simulation can be independently restarted without affecting
the other side.

To demonstrate and evaluate our VM-HDL co-simulation
framework, we built a sorting offload design. Our experiments
with this design indicate that the co-simulation framework
significantly reduces the debug iteration time. Moreover, our
framework provides invaluable visibility into both the hard-
ware design and the operating system, making it easier and
faster to identify problems while developing and debugging.

II. THE VM-HDL CO-SIMULATION FRAMEWORK

The key component in our co-simulation framework is the
link between the virtual machine monitor (VMM) and the
HDL simulator. The most important requirement for this link
is to expose exactly the same interface and functionality as
its counterpart in the real system, to allow a smooth transition
between the development and debugging of the system in the
co-simulation framework and its deployment on real hardware.
All parts of the system, including the FPGA platform, the
operating system driver, and the software, must be able to
run in simulation and on the target hardware without any
modifications. Another requirement is that the cut-off point of
the link and the rest of the system should be generic and well-
defined, to reduce the effort of developing and using the link.
With these considerations in mind, we developed a VM-HDL
link with three parts: a PCIe FPGA pseudo device, a PCIe
simulation bridge, and message passing channels between
them. The architecture of the co-simulation framework is
shown in Figure 1.

We created a PCIe FPGA pseudo device in the VMM to
represent the PCIe FPGA board. The structure of the VMM’s
emulated PCIe devices is generic and well defined, enabling

us to create the PCIe FPGA pseudo device by modifying
an existing device and customizing it with the target FPGA
board’s PCIe characteristics, such as the number and size
of the Base Address Register (BAR) regions and Message
Signaled Interrupt (MSI) capabilities. The benefit of using a
PCIe pseudo device is that it interacts with the guest operating
system through Memory-Mapped Input-Output (MMIO), thus
allowing us to avoid the low-level PCIe protocol details.
MMIO read and write requests to the BAR regions are handled
using callback functions and translated into messages that are
sent to the HDL simulator. The PCIe FPGA pseudo device
also configures the VMM to listen to memory accesses and
interrupts from the HDL side by registering the file descriptors
of the communication channels with the VMM’s main loop,
enabling the VMM subsystem to respond to the memory read,
write, and interrupt requests from the HDL simulator.

On the HDL side, we developed a PCIe simulation bridge
to replace the hardware PCIe bridge in the FPGA platform.
To avoid implementing the low-level PCIe protocol, we rely
on an industry-standard on-chip bus protocol, the Advanced
eXtensible Interface (AXI). AXI serves as the bridge’s in-
terface to the rest of the FPGA platform. A slave interface
monitors the AXI bus signals for memory access requests
to the simulation bridge, which triggers the corresponding
functions, implemented using SystemVerilog DPI, to send
these requests to the VMM. The simulation bridge also listens
to requests and reads responses from the VMM, calling the
corresponding HDL tasks to either send MMIO read and
write requests to the FPGA platform through the AXI master
interface, or to send back read responses to the FPGA platform
through the AXI slave interface. An interrupt pin on the
simulation bridge’s interface allows the FPGA platform to also
send requests that generate MSI interrupts in the VM.

The VMM’s PCIe FPGA pseudo device and the PCIe simu-
lation bridge communicate through two pairs of unidirectional
channels, one for HDL to VMM accesses and the other for

2



TABLE I
SETUP FOR CO-SIMULATION AND PHYSICAL SYSTEM

Target FPGA Board NetFPGA SUME (xc7vx690tffg1761-3)
Co-Sim Host Hardware Xeon E5-2620 v4 with 64GB DDR4
Co-Sim Host OS Ubuntu 14.04 with Kernel 3.13.0 and KVM
VMM QEMU 2.7.50
FPGA Tool Xilinx Vivado 2016.2
HDL Simulator Synopsys VCS J-2014.12-SP3-8
Message Passing Library ZeroMQ 4.2.1
FPGA Compilation Host Xeon E5-2620 v3 with 64GB DDR4
Physical System Hardware Xeon E5-2620 v3 with 64GB DDR4
Physical System OS Ubuntu 14.04 with Kernel 3.16.7

VMM to HDL accesses. We use a high-level queue library
that provides reliable message passing. In each of the channel
pairs, one channel is used to send requests and the other is used
to receive responses. Using multiple unidirectional channels
provides the necessary independence between the VM and
the HDL simulator to allow rebooting/restarting either side
without affecting the other. The channels carry messages that
contain the request and response information such as address,
length, and data. The structure of the messages can be easily
extended to carry additional customized information.

By using the co-simulation framework, the guest operating
system inside the VM interacts with the HDL simulator as it
would with a physical PCIe FPGA, and the FPGA platform
interacts with the VM as it would with a physical host system.
The software, operating system, device driver, and FPGA
platform remain unmodified between the co-simulation and
real hardware environments, eliminating the porting effort
from one to the other. In terms of debugging, in addition to
debugging software by running GDB in the guest OS, our co-
simulation framework allows developers to connect GDB to
the VMM’s debugging interface to debug the operating sys-
tem and device driver code, enabling advanced functionality
such as single-stepping kernel instructions, including inside
interrupt handlers, and monitoring or even modifying register
and memory contents. On the FPGA side, unlike in a logic
analyzer-like environment that limits the number of probed
signals and requires re-synthesis to insert additional probes,
developers can record signals of the entire FPGA platform
during the entire simulation and even force signal values,
providing full visibility for debugging and analysis.

III. IMPLEMENTATION AND EVALUATION

To demonstrate our VM-HDL co-simulation framework,
we developed an FPGA-based sorting offload platform. The
sorting unit we used in the platform is automatically generated
by the Spiral Sorting Network IP Generator [3]. The sorting
unit takes a stream of input data and produces the output result
stream after a fixed number of cycles. The sorting unit is fully
pipelined and able to consume back-to-back input streams.

We build the FPGA platform using Xilinx Vivado 2016.2,
targeting the NetFPGA SUME PCIe board. The sorting unit in

TABLE II
RUN TIME COMPARISON

Physical System (sec.) Co-Simulation (sec.)

Compilation - 167
Synthesis 1617 -
Place and Route 2672 -
Reboot 120 -
Execution 0.000032 6.02

Total ≈4409 ≈173

our accelerator uses 128-bit wide stream interfaces for input
and output and can sort 1024 32-bit signed integers in 1256
cycles. A Xilinx DMA is used to fetch input data from the
host memory through PCIe, stream data through the sorting
unit, and write the results back to the host memory. For co-
simulation, we replace the Xilinx PCIe-AXI bridge with our
PCIe simulation bridge. We use QEMU with KVM support as
the VMM and use ZeroMQ [4] as the queue library to link
the VM and the HDL simulator together. While performing
co-simulation, we record waveforms in the FSDB format for
the entire FPGA platform. For comparison, we run the design
on the physical FPGA platform, using the Xilinx PCIe-AXI
bridge. The FPGA LUT utilization after place and route is
11%, and the BRAM utilization is 19%.

The setup of the hardware and software for co-simulation
and physical system are shown in Table I.

IV. RESULTS

A. Debug Iteration Time

The primary advantage of our co-simulation framework is
the improvement in the debug iteration time, the time needed
to make a change to the software or hardware description and
observe its results. For physical systems, this is particularly
noticeable when the system “hangs” due to a bug and requires
a tedious reboot or when changes to the FPGA platform hard-
ware require the time-consuming FPGA compilation process.
Even worse, the physical system does not provide sufficient
visibility into the hardware or software when an error occurs,
requiring developers to go through many debug iterations to
find and fix each bug. To contrast the two debug approaches,
Table II shows the breakdown of the debug iteration time
on a physical system and on our co-simulation framework.
Compared to a physical system, which requires the FPGA
compilation process, the co-simulation framework is 25x faster
in our test case. Changes in the FPGA platform can run in the
HDL simulator with full visibility in just a few minutes.

B. Application Execution Time

Although the debug iteration time is drastically reduced, the
simulation platform runs slower than the physical system, as
shown in Table II. This is expected because the co-simulation
framework performs cycle-accurate HDL simulation and, on
every cycle, the simulator performs additional work to poll the

3



TABLE III
COMPARISON BETWEEN ACTUAL TIME AND SIMULATED TIME

Actual Time (µs) Simulated Time (µs)

Host to Device Read RTT 0.85 72,400
Application Execution Time 32 6,023,300

communication channels to see if there is any request from the
VM. The results suggest that developers should avoid long test
cases while debugging using the co-simulation platform, which
is true for any HDL simulation environment. However, with
relatively small test cases, the execution time is acceptable for
interactive debugging and iteration, and the time savings from
shorter debug iterations and greater visibility into the design
easily mitigate the longer application execution times.

C. Simulated Time

Our co-simulation framework targets functional level cor-
rectness. Although the HDL simulator is cycle-accurate, the
PCIe simulation bridge and the QEMU VM are not, which
causes the co-simulated time to differ from the real system run
time. Table III presents a comparison between simulated time
in the co-simulation framework and actual time of running the
design on the physical system. Although the gap is significant
and precludes performance evaluation using the co-simulation
framework, the difference is acceptable for the purpose of
debugging system correctness.

V. RELATED WORK

Among prior work, the vpcie project [5] is the most similar
to our co-simulation framework. Vpcie links QEMU with a
VHDL simulator and is capable of full-system simulation.
However, a key difference from our system is that vpcie links
QEMU and HDL at a lower level. On the QEMU side, vpcie
forwards low-level PCIe messages that require extra software
to process, whereas our platform forwards high-level memory
access and interrupt requests directly. Similarly, on the HDL
side, vpcie exposes a non-standard interface with the PCIe
BAR information to the FPGA platform, whereas our system
uses an industry standard memory-mapped interface, reducing
the complexity and improving the adaptability of our co-
simulation framework.

FPGA companies and FPGA cloud vendors provide co-
simulation software-HDL environments for their products
and services, such as Intel OpenCL for FPGA [6], Xilinx
SDAccel [7], and Amazon F1 [8]. Unlike our co-simulation
framework that enables the development and debugging of the
operating system and device drivers, the environments these
vendors provide are limited to executing application software.

Several works use QEMU as an instruction-set simulator
and connect it to virtual platforms built in SystemC for full-
system co-simulation [9], [10], [11], [12]. Some of these plat-
forms have the ability to run HDL simulations, making them

similar to our work. However, these virtual platforms generally
focus on ARM-based SoC ASICs using early-stage high-level
hardware models rather than providing an environment to
seamlessly move between production hardware and simulation.
In contrast to these virtual platforms, the HDL part of our co-
simulation framework is the final design that can run on the
FPGA of the target system, which can be brought back into co-
simulation at any time for further development and debugging.

VI. CONCLUSIONS

In this work, we described a VM-HDL co-simulation frame-
work for software-hardware co-design on systems with PCIe-
connected FPGA boards. Our framework enables developers to
have the same software, operating system, and FPGA platform
running in the co-simulation environment as in the physical
system, while providing much greater visibility into both the
software and the hardware, and drastically reducing the debug
iteration time.

ACKNOWLEDGEMENTS

This material is based on work supported by the Semi-
conductor Research Corporation (SRC) and the National Sci-
ence Foundation under Grant No. 1405641.

REFERENCES

[1] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Hasel-
man, S. Hauck, S. Heil, A. Hormati, J. Y. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A
reconfigurable fabric for accelerating large-scale datacenter services,” in
2014 ACM/IEEE 41st International Symposium on Computer Architec-
ture (ISCA), Jun. 2014, pp. 13–24.

[2] “Amazon EC2 F1 FPGA instances,” https://aws.amazon.com/ec2/
instance-types/f1.

[3] M. Zuluaga, P. A. Milder, and M. Püschel, “Streaming sorting networks,”
ACM Transactions on Design Automation of Electronic Systems, vol. 21,
no. 4, p. 55, 2016.

[4] “ZeroMQ,” http://zeromq.org.
[5] “vpcie: virtual PCIE devices,” https://github.com/texane/vpcie.
[6] “Intel OpenCL for FPGA,” https://www.altera.com/products/

design-software/embedded-software-developers/opencl/overview.html.
[7] “Xilinx SDAccel Development Environment,” https://www.xilinx.com/

products/design-tools/software-zone/sdaccel.html.
[8] “Amazon EC2 F1 FPGA Simulation Environment,” https://github.com/

aws/aws-fpga/blob/master/hdk/docs/RTL Simulating CL Designs.md.
[9] T.-C. Yeh and M.-C. Chiang, “On the interfacing between QEMU

and SystemC for virtual platform construction: Using DMA as a
case,” Journal of Systems Architecture, vol. 58, no. 3, pp. 99 – 111,
2012. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1383762112000045

[10] S. T. Shen, S. Y. Lee, and C. H. Chen, “Full system simulation with
QEMU: An approach to multi-view 3d GPU design,” in Proceedings
of 2010 IEEE International Symposium on Circuits and Systems, May
2010, pp. 3877–3880.

[11] J. W. Lin, C. C. Wang, C. Y. Chang, C. H. Chen, K. J. Lee, Y. H. Chu,
J. C. Yeh, and Y. C. Hsiao, “Full system simulation and verification
framework,” in 2009 Fifth International Conference on Information
Assurance and Security, vol. 1, Aug 2009, pp. 165–168.

[12] M. Monton, A. Portero, M. Moreno, B. Martinez, and J. Carrabina,
“Mixed SW/SystemC SoC emulation framework,” in 2007 IEEE Inter-
national Symposium on Industrial Electronics, June 2007, pp. 2338–
2341.

4


