
A Scheduling Approach to Incremental
Maintenance of Datalog Programs

Shikha Singh∗, Sergey Madaminov†, Michael A. Bender†, Michael Ferdman†,
Ryan Johnson¶, Benjamin Moseley‡, Hung Ngo‖, Dung Nguyen§,

Soeren Olesen§, Kurt Stirewalt‖, and Geoffrey Washburn§.
∗Williams College, Williamstown, MA 01267 USA shikha@cs.williams.edu

†Stony Brook University, Stony Brook, NY 11794-2424 USA

{smadaminov, bender, mferdman}@cs.stonybrook.edu
‡Carnegie Mellon University, Pittsburgh, PA 15213 USA moseleyb@andrew.cmu.edu

§Infor, Inc. {dung.nguyen, soeren.olesen, geoffrey.washburn}@infor.com
¶Amazon, Inc., frj@amazon.com

‖Relational AI {hung.ngo, kurt.stirewalt}@relational.ai

Abstract—In this paper, we study the problem of in-
cremental maintenance of Datalog programs and model it
as a scheduling problem on DAGs. We design provably
good time- and memory-efficient scheduling algorithms for
(re)executing a Datalog program where some (but not
necessarily all) of the inputs have changed. We prove
that our schedulers, called LevelBased and LevelBased
with lookahead, have asymptotically improved running
time and space efficiency when compared with benchmark
algorithms used in production at LogicBlox.

The main result of the paper is a hybrid scheduler,
which combines LevelBased with the production LogicBlox
scheduler (or any other heuristic scheduler). The hybrid
scheduler achieves strong worst-case guarantees and ro-
bustness without losing out on the best-case behavior of
the production LogicBlox scheduler. Our experiments show
that the hybrid scheduler results in similar or improved
total execution times compared to LogicBlox scheduler,
while consistently reducing the scheduling overhead—by
as much as 50% on some datasets. This hybrid scheme re-
quires little to no overhead but provides predictability and
reliability, which are crucial in a commercial application
such as LogicBlox.

Index Terms—Datalog programs, incremental mainte-
nance, DAG scheduling, parallel task scheduling, databases,
incremental computing, LogicBlox.

I. INTRODUCTION

One of the universal problems in computer science

is how to update a computation efficiently when the

input changes in some way. Specifically, the challenge

is to determine how to avoid redoing those parts of the

computation that have not been affected by the modified

input. This problem, often referred to as incremental
computing, has been studied in various guises in the

field of programming languages [12], [16], [24], [32],

[35], systems [9], [10], algorithms [13], [15], [17], [26],

[29], and databases [5], [8], [22], [33].

In this paper, we study an instance of incremen-

tal computing in databases, specifically, in the con-

text of Datalog programs. Datalog [23] is a widely-

used declarative programming language based on logic

programming. It allows for expressing recursive de-

pendencies, and it streamlines the implementations of

complex queries [21]. Datalog is implemented in modern

databases systems such as Semmle [1], Soufflé [2], and

LogicBlox [20]. In this paper, we focus on LogicBlox,

a commercial Datalog implementation, which uses in-

cremental computation to support a suite of data mining

and machine learning tools for retail.

Efficient incremental computing can improve the per-

formance of user queries substantially in these database

systems. Queries in Datalog-based system are answered

by checking them against the stored dataset of all facts

that can be derived from the Datalog rules. When the

base data is updated or the rule definitions change, these

derived facts need to be updated as well to answer

the queries consistently. Provably-efficient guarantees for

incremental computing have crucial commercial value

for LogicBlox as its customer base relies on the ability

to issue updates to the database with the expectation that

its queries can still be answered quickly [7].

The algorithmic challenge involved in incrementally

maintaining Datalog programs arises from the dynamic

nature of their execution—Datalog programs contain

recursive declarations of rules and changing a few base

predicates has a cascading effect down the dataflow

graph. Moreover, it is unclear what parts of the graph

are affected since changes to the inputs to the rules may

or may not affect their output. The output of these rules

in turn determine the input to other rules, and so on.

Thus, to maintain these programs incrementally, we

need to determine: (a) what parts of the dataflow graph

have been affected, and (b) in what order should the

affected rules be updated to avoid repeated computation.

The materialization of the recursive rules of a Data-

864

2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPS47924.2020.00093

log program is represented as a directed acyclic graph

(DAG).

The nodes of the DAG are tasks that may need to be

executed, and the edges encode dependencies between

tasks. Changes to the program dirty/activate the source

nodes (tasks with no input from other tasks). The source

nodes are then rerun and each output that changes

activates those children that depend on it, and so on,

recursively. An activated node should only be rerun once

all its inputs are up-to-date, because we do not want

to run a node more than once (to avoid unnecessary

computation).

The size of these DAGs can be enormous and so

avoiding recomputation can significantly conserve re-

sources. For example, Figure 1 shows a DAG used in

production that is so large that if it were printed at a

resolution of 300 DPI would be a mile long.

To address the problem of incrementally maintaining

these DAGs the engineers at LogicBlox have designed

a scheduler that determines which tasks from the under-

lying DAG need to be rerun after an update. While the

scheduler does well on most workloads, it does not have

strong worst-case guarantees. In particular, there exist

pathological DAGs based on real traces, on which the

LogicBlox scheduler takes too long—making scheduling

the bottleneck cost, restricting performance.

Inspired by the practical concerns faced by LogicBlox,

in this paper we give a theoretical framework to study the

incremental maintenance problems of Datalog programs.

Furthermore, we design a scheduler that has provable

guarantees on its memory and running time.

Before we describe our main contributions, we explain

the difference between scheduling DAGs resulting out of

Datalog programs and standard DAG scheduling.

Datalog DAG scheduling versus traditional DAG
scheduling. A key feature of the problem is the non-

local precedence relationships between tasks, which dy-

namically change over time. In the Datalog scheduling

problem, the readiness of a task cannot be determined

locally. Rather, it requires computing ancestor relation-

ships that dynamically change over time. Due to the size

of the DAGs, computing these relationships in a way that

is memory and time efficient is a central algorithmic

challenge. In contrast, in most precedence-constrained

scheduling problems the scheduler can easily determine

the nodes that are ready to be executed.

This algorithmic issue that arises in the model of

incremental maintenance of Datalog programs presents a

new scheduling challenge distinct from most precedence

constrained models (e.g., parallel job scheduling [18],

[19], [27], job-shop scheduling [6], [30], assembly line

scheduling [25], [34]), etc. See [28] for reference.

Results. In this paper, we give time- and memory-

efficient scheduling algorithms in support of incremental

maintenance of Datalog programs.

We start by formalizing a theoretical model for the

problem of maintaining Datalog programs. We then

design a provably good scheduler, the LevelBased sched-

uler, to (re)execute a Datalog program where some (but

not necessarily all) of the inputs have changed. We prove

that the LevelBased scheduler has asymptotically better

worst-case memory efficiency and running time over the

LogicBlox scheduler.

We test the empirical performance of the two sched-

ulers on workloads seen in production at LogicBlox. We

show that the LogicBlox scheduler does have good typ-

ical performance but it suffers on worst-case instances.

In contrast, the LevelBased scheduler outperforms the

LogicBlox scheduler on worst-case instances, and its

typical performance is reasonable, though dominated by

the LogicBlox scheduler.

As our main result, we present a hybrid schedul-

ing scheme that achieves the best of both worlds. In

particular, in Section V, we prove that the LevelBased

scheduler can be effectively combined with any existing

heuristic like the LogicBlox scheduler, to achieve strong

worst-case guarantees, while retaining their best-case

performance on typical workloads.

The experiments back up the theoretical result and

show that the hybrid scheduler results in similar or im-

proved total execution times compared with LogicBlox

scheduler, while consistently reducing the scheduling

overhead—by as much as 50% on some datasets. We

emphasize that the hybrid scheme requires little to no

overhead (the LevelBased scheduler is lightweight) but

provides predictability and reliability, which are crucial

in a commercial application such as LogicBlox.

II. FORMALIZATION OF INCREMENTAL

MAINTENANCE OF DATALOG PROGRAMS

In this section we formalize the model of incremental

maintenance of Datalog Programs and introduce termi-

nology and notation used in the rest of the paper.

A. Datalog Programs and the Activate Graph

A Datalog program can be expressed as a directed-

acyclic-graph (DAG) G = (V,E) of precedence-

constrained vertices (predicate nodes). A vertex in V is

a subcomputation that (1) evaluates the predicate based

on input to the subcomputation and (2) returns an output

that is used by predicates later in the DAG. Each edge

(u, v) ∈ E corresponds to output from u’s computation

being input to v’s computation. Thus, the incoming and

outgoing edges determine the flow of data through the

graph and explain why there are precedence constraints.

To simplify exposition, we V and E to denote |V | and

|E| in the asymptotic notation.

865

Figure 1: An example of a computational DAG representing dataset #1 in Table I. The DAG consists of 64,910

vertices (predicate nodes) and 101,327 edges (dependencies). There are 20,134 nodes that correspond to tasks that

can be activated and the remaining nodes are predicate nodes used to collect inputs and outputs for the nodes. The

scheduling starts with updates to five initial tasks, and these changes cascade and result in the activation of 532

descendants, out of 1680 total descendants. Notice that most of the descendants do not need to be recomputed. The

challenge is determining which do and their dependency relationship.

Vertices in V with indegree 0 are called source nodes.

These nodes represent the data of the database. Over time

the database’s data is updated, which means the outputs

of the source nodes change. These changes can propagate

through some (but often not all) nodes of the graph. That

is, just because an input to a predicate changes, does not

mean that the predicate’s output changes.

A node u is said to be activated if the input to u
changes. The active graph H = (W,F), where W ⊆ V
is set of the activated nodes and F ⊆ E is the set of all

the edges (u, v) such that u sends new output to v.

The active graph H comprises those nodes that need

to be recomputed and is dynamically revealed over time

as the nodes are executed and their outputs are updated.

Notice that H is not the induced subgraph G[W]. For

example, consider active nodes u and v such that (u, v)
is an edge in G. It is not necessary that (u, v) is an edge

in H , as the output from u to v may not change.

What makes this optimization problem so unusual is

that the precedence relationship between nodes in H can

be radically different from their relationship in G. In

particular, activated nodes u and v may be independent

in H but there may be a path from u to v in G.

When a node u is first activated, it may not be ready

to run. The constraint is that repeated executions of u are

disallowed: we cannot kick off an execution of u until

we know that it won’t need to be reexecuted, that is,

until the changes to all of u’s inputs are revealed. Thus,

the node u is ready to run only when all of its activated

ancestors have been executed.

B. Formal Results: Guarantees for the Scheduler

In this paper, we design a scheduling algorithm that

determines: (a) which predicate nodes need to be recom-

puted as a result of changes to the source nodes, and (b)

how to assign these nodes to processors.

To formally define the guarantees we establish more

terminology. Given a DAG, a path between two distinct

nodes is a sequence of edges connecting them. Given

a DAG, each node has a level, which is the maximum

length (number of nodes minus one) of any path from

any source node to that node. Source nodes are defined

to have level 0. Throughout the paper, we will use level

to refer to the original graph G.

Our scheduler is efficient: the running time of the

scheduler is independent of the number of edges in G—

it only depends on the number of active nodes n = |W |
(not the total number of nodes |V —) and the number
of levels L in the original DAG G. In particular, the

rescheduling cost is O(n+ L).
The resulting schedule is also efficient. Let w be the

total work of all the activated nodes and P be the

number of cores available.

For the case of unit-length or fully parallelizable jobs,

the makespan of the resulting schedule is O(w/P +L).
In the common case when the computation is work
dominated, that is, when w/P ≥ L, the makespan of

our schedule is a 2-approximation. This is the case that

we want to optimize for in multithreaded programs.

For arbitrary jobs, the makespan of our schedule is

O(w/P+C), where C is the critical path of the DAG G.

Again, the resulting schedule is efficient in the common

case when the computation is work-dominated.

Moreover, our scheduler can be used in conjunction

with the LogicBlox scheduler, to get the best of both

worlds. The LogicBlox scheduler has no performance

guarantees because it explicitly checks for all precedence

constraints during runtime. It is feasible to interleave

866

steps of our scheduler and theirs. This hybrid scheduler

inherits both our performance guarantees and the good

cases for the LogicBlox scheduler. That is, the cases

where their scheduler does well, it still does. For the

cases where it does badly, our scheduler dominates and

comes to the rescue. Thus, adding our new scheduler

only results in performance improvements.

The scheduler is also memory efficient. The scheduler

does not require a sophisticated data structure. Rather,

the scheduler only needs to store one number for each

node in G, the node’s level in the original DAG.

C. Comparison to Baseline Solutions

In this section, we discuss the state-of-the-art solu-

tions, related work and natural strategies for solving the

incremental maintenance problem studied in this paper.

LogicBlox scheduler. The current approach used in Log-

icBlox is to precompute and store all ancestors of nodes

in the underlying DAG. These ancestor relationships are

heuristically maintained using a data structure called an

interval list [4], [31]. The interval list is, usually but not

always, compact way of encoding ancestor relationships

using intervals, generated based on DFS traversals of the

DAG. In the worst case, storing all ancestor relationships

using interval lists takes O(V 2) space, but the average

case seen in practice is often much better.

The LogicBlox scheduler can be computationally and

memory intensive. To see why, consider the following

actions performed by the scheduler. When the queue of

tasks that are ready to run is empty, the scheduler must

locate more ready work (tasks with no active ancestors).

To do so, the scheduler scans the queue of active tasks.

For each one, it checks the interval-list data structure to

see if the task is ready to run. If so, it is added to the

queue of ready work.

Let’s analyze the worst case. First, the space required

to store ancestor relations can be large—quadratic in the

number of nodes, V 2, in the original DAG. Second, the

worst-case running time of the scheduler is cubic in the

number of active nodes, i.e., O(n3). This is because in

order to check whether a task is ready to run, it may

need to check whether any of the O(n) active nodes are

its ancestors. An interval-list query is constant time in

the best case and O(n) time in the worst case. We may

need to perform ancestor queries O(n) times to find a

node that is ready to run, i.e., without active ancestors.

Brute-force signal propagation. Next, we describe an-

other natural baseline scheduler, which is asymptotically

slower because its running time depends on the size of

the original DAG (i.e., V and E) rather than just the

active nodes (i.e. n). The scheduler starts by reexecuting

the source nodes. Depending on their output, it propa-

gates appropriate signals (such as “no change to output,”

or “this is the new output”) to all their children. Only

when a node receives a signal from all its parents, is it

marked ready to run or inactive. After a task is rerun or

marked as inactive it sends a message to all its children.

The running time of this scheduler is O(V + E)
since the signals get propagated through the entire DAG.

Thus, the number of messages is large, regardless of the

number of active nodes. Moreover, under this schedule

tasks that are ready to run may have to wait a long time

before the scheduler discovers that they can be safely

scheduled, because a node has to wait for all ancestors

to send a signal rather than just the active ancestors.

Our approach compared to baseline solutions. On

the one hand, the Logicblox scheduler does a lot of

potentially unnecessary precomputations which allows

it to make faster scheduling decisions during run time

(decisions that only depend on the set of active nodes

and thus have guarantees independent of the underlying

DAG). On the other hand, brute-force signal propagation

does no precomputation at all but spends a lot of time

making scheduling decisions during run time by sending

potentially unnecessary messages throughout the DAG.

In this paper, we present a level-based scheduler which

strikes a balance between the two extremes. In particular,

we do some precomputation (O(V +E) time and O(V)
space) to determine the levels of the tasks. During

runtime, the scheduler uses the levels of the tasks to

figure out when an active tasks is ready to run. Unlike

signal propagation, the running time of our scheduler

does not depend on the size of the original DAG.

III. LEVEL SCHEDULING ALGORITHM

In this section, we describe our LevelBased scheduling

algorithm and establish its performance guarantees.

The crux of the algorithm is determining which tasks

are ready to run, from among all the tasks that are

currently active. A ready-to-run task is an active task

all of whose ancestors were already activated and re-

computed or will never be activated. Once the algorithm

has identified ready-to-run tasks, it still needs to assign

the tasks to processors, and this is done greedily.

LevelBased scheduling algorithm. Before the algorithm

runs, there is a precomputation step: we precompute

levels for each node of G, where the level of a node u
is the maximum number of edges along any path from

any source node to u.

At time t during the execution, let � be the lowest level

among nodes in the active set. Then any task at level �
is ready to run. The scheduler picks these ready-to-run

tasks in a greedy level-based manner as follows:

• When a processor is idle, it removes and processes

any task from level �.

867

• If all processors are idle and level � is empty, then

� is incremented.

The LevelBased algorithm identifies tasks that are

ready to be scheduled. The criteria for identifying a

ready tasks is that all tasks with lower levels have

been completed. The method is oblivious to how those

tasks were completed and, therefore, LevelBased can be

run along side any scheduling algorithm, as explained

in Section V.

Extending the algorithm. The fundamental limitation

of LevelBased scheduling approach is that it does not

proceed further down the levels until it finishes pro-

cessing all the tasks on a current level. However, this

limitation is not an issue when tasks exhibit internal

parallelism, as is the case in practical workloads, such

as those seen at LogicBlox. Yet, to address that problem

we introduce a look-ahead heuristic, LevelBased with

LookAhead (LBL), that searches for more tasks to

process on next level and simulations show that it yields

good performance gains in case of tasks without internal

parallelism.

While current industrial solutions demonstrate good

performance, the amount of data is growing at a fast

pace, making databases larger. In the next section,

we prove that LevelBased maintains good theoretical-

performance and scalability guarantees as opposed to

the LogicBlox scheduler. Moreover in Section V, we

advocate that the LevelBased scheduling approach is

orthogonal to the existing heuristics—it can be used in

coordination with them to provide space and makespan

guarantees on worst-case instances, without losing out

on the performance on the typical case.

IV. LEVELBASED ANALYSIS

This section gives an analysis of LevelBased scheduler

on different workloads. We prove different guarantees of

the scheduler based on the size and parallelizability of

the tasks in the input DAG.

The following lemma shows how ready-to-run tasks

can be identified based on their levels and will be used

throughout the analysis.

Lemma 1. Fix a time and consider the set of ready-
to-run tasks (which includes tasks that are currently
running). Suppose that the lowest level among these
tasks is �. Then any other active task with level � is
ready to run.

Proof. Consider an active task x at level �. Suppose x
cannot be added to the ready-to-run set. This means that

there is some node y that has been activated such that

level(y) < level(x), y has not been run, but is ready-to-

run. This contradicts the definition of x.

Theorem 2. On any arbitrary workload, the LevelBased
scheduler has the following guarantees.

• The total precomputation time and space is O(V +
E) and O(V) respectively.

• The running time and space of the scheduler is
O(n+ L) and O(n) respectively.

Proof. The precomputation time of the LevelBased

scheduler is the time required to compute the levels of all

the nodes in the DAG. The levels can be computed using

depth-first search in O(V +E) time. The precomputation

space is the space required for each node to store its

level, i.e., O(V). Given a sequence of active and ready-

to-run tasks and their levels, the scheduler does the

following at each level (a) finds the lowest level of

ready-to-run tasks, and (b) marks active tasks ready-

to-run based on their level. This proceeds for at most∑
�∈L |{v | v is an active node at level �}| = O(n+L)

steps, as each node has a unique level. As each step costs

O(1), the scheduler runs in O(n + L) time. Marking

active tasks ready-to-run requires O(n) space.

Unit-length tasks. We first analyze the case when all

tasks have unit size.

Lemma 3. When tasks have unit-length, the makespan
guaranteed by the LevelBased is at most w/P + L.

Proof. At any time step t, the LevelBased scheduler is

in one of the following two cases: (a) all P processors

are busy executing tasks, or (b) some processor is idle.

Case (a) can happen at most w/P times before all the

work is done.

Case (b) can happen L times (recall that the tasks are

unit length). This is because, by Lemma 1, all tasks at

the lowest level � among ready-to-run tasks can be safely

executed. Thus, if a processor is idle, all work at level

� must be done, which is when � increments, and � can

increment at most L times.

Thus, the makespan is at most w/P + L.

Fully parallelizable tasks. In this section, we bound

the performance of the LevelBased scheduling algorithm

when tasks can have arbitrary sizes, but are guaranteed

to be fully parallelizable. To do so, the analysis of the

unit-time tasks is generalized.

The specific model used to model such tasks is

the Directed-Acyclic-Graph (DAG) model of computa-

tion [11]. In this model, each task u is a parallel program

modeled by a DAG Du. Each DAG Du has a set of

subtasks Vu that are unit time pieces of work to be

scheduled. The edges represent precedence constraints.

A task can be scheduled when all of its predecessors

have been completed.

868

First, we prove the performance of our scheduler when

the DAGs of each task are fully parallelizable. That is,

there are no precedence constraints and any number of

tasks in Du can be scheduled simultaneously. Later, we

prove gaurantees on arbitrary DAGs.

Definition 4. We define different types of span:

• level span L: the maximum number of levels in G.
• task span ST : the span inside of a task (which

depends on how parallelizable that task is).
• realized span S: the optimal execution time of H

on an infinite number of processors.

The next lemma gives the guarantees of the level

scheduling algorithm for the case of arbitrary-length

fully-parallelizable tasks.

Lemma 5. Suppose that all tasks have arbitrary length
and are fully parallelizable. Then, the LevelBased sched-
uler guarantees makespan at most w/P + L.

Proof. The proof is similar to that of Lemma 3. At any

time step t, we are in one of the following two cases: (a)

all P processors are busy executing tasks, or (b) some

processor is idle. Case (a) can happen at most w/P times

before all the work is done.

Suppose we are in case (b) at any time t, that is,

at time t some processors are idle waiting for a task

on level � to finish. Then, because the jobs are fully

parallelizable, we are guaranteed to move on level �+1
at time step t + 1. This can happen at most L times.

Thus, the makespan is at most w/P + L.

Arbitrary-length jobs. We now consider the case where

tasks have arbitrary length that are not necessarily

parallelizable. As before, we assume that each task is

represented as a DAG. Now the DAGs for the tasks can

be arbitrary; we define their level span as follows.

Definition 6. Span at level i, denoted Si, is the maximum
task span among all tasks at level i, where 1 ≤ i ≤ L.

Lemma 7. Suppose all the tasks have arbitrary length
and parallelism, then the LevelBased scheduler guaran-
tees makespan at most (w/P +

∑L
i=1 Si).

Proof. The proof is similar to that of Lemma 3 and

Lemma 5. At any time step t, we are in one of the

following two cases: (a) all P processors are busy

executing tasks, or (b) some processor is idle. Case (a)

can happen at most w/P times before all the work is

done. Suppose we are in case (b) at any time t, that is,

at time t some processors are idle waiting for a task on

level � to finish. Then in Si time steps, we are guaranteed

to move on level �+1. This can happen at most L times.

Thus, the makespan is at most (w/P +
∑L

i=1 Si).

Remark 8. Lemma 7 implies that the LevelBased sched-
uler performs well on arbitrary tasks that is achieves
a makepsan of O(w/P), as long as the first term
dominates, that is, P ≤ w/(

∑L
i=1 Si).

Tight examples. We show that the analysis of the

makespan produced by our algorithm is tight in all cases.

For unit-length and fully-parallelizable tasks, it is

well-known that a makespan of (w/P +L) is tight [14]

for list scheduling algorithms. For jobs that are arbitrary

length and not fully parallelizable, we give an example

that match the bounds of the LevelBased algorithm.

Theorem 9. The analysis of the makespan of the Lev-
elBased algorithm is tight. For the case where the jobs
have arbitrary size and parallelism, there is an example
where the makespan is Ω(w/P +

∑L
i=1 Si).

Proof. We show that if the jobs are not fully par-

allelizable and have arbitrary length, the LevelBased

algorithm can have poor behavior in situations like the

one depicted in Figure 2. In the depicted example, let

M = maxv∈V ST
v , where ST

v is the task span of a task

v. We will show that the algorithm’s makespan can be as

poor as Θ(ML), while the optimal solution’s makespan

is bounded by Θ(M+L). The example assumes M ≤ P ,

the number of processors.

In the example there are two types of tasks. There are

L tasks j1, j2, j3, . . . jL. Each task ji cannot be executed

until task ji−1 is completed and these are unit-length

tasks with no parallelism. Additionally there is a task

ki for i = 2, . . . , L. The task ki cannot be executed

until ji−1 is completed. The task ki has work and span

L− i+1. See Figure 2 for the description of this graph.

An optimal scheduler would execute the jobs in the

order j1, k2, j2, k3, j3, k4 . . . , jL, kL. Each time a task

ki becomes free, a processor begins working on the task

until it completes. Since there are L−1 ≤ P such tasks,

there is always a processor available. The overall running

time is Θ(M + L).

The level-based scheduling algorithm gets stuck at

each level running the long job before processing any

job at the next level. Indeed, it first schedules job j1.

Then in the next step it will schedule j2 and k2 to

completion. Next jobs j3 and k3 to completion and so

forth for each level. The overall running time will be

bounded by Θ(ML).

869

Figure 2: Tight example for the case when jobs are

arbitrary length and not fully parallelizable.

The total work in this example is L+
∑L

i=2 L−i+1 =
Θ(L2) and Si = L − i + 1 for all i ≥ 2. In this case

M = L and the algorithm has makespan
∑L

i=2 L− i+
1 = Θ(L2). On the other hand, the optimal schedule

completes everything at time L.

V. A META SCHEDULING ALGORITHM

In this section we show how the LevelBased schedul-

ing algorithm can be combined with any other algorithm.

In particular, given a scheduling algorithm A we design

a new meta-algorithm A′ that: (1) does not overload

memory (including the memory used in precomputation),

even if A overloads memory, and (2) gives worst-case

bounds on makespan for all instances, even if A does

not. Thus, the point is to remove all of the bad instances

of A in terms of both the makespan and the space

consumption while retaining A’s good behavior.

Theorem 10. Let A be any scheduler whose makespan,
on a given instance, is Ta, and whose total space
consumption is Sa. Let Tb be the makespan of the
LevelBased scheduler on the same instance. Suppose we
are given a budget O(ζ), where ζ = Ω(V) for the total
memory usage. Then, there exists a scheduler A′, where
• A′ uses at most O(ζ) memory.
• The makespan of A′ on the instance is at most
2min{Ta, Tb} if A uses less than ζ space and at
most 2Tb otherwise.

Proof. Algorithm A′ uses P/2 processors to simulate A
and the other P/2 processors to simulate LevelBased.

Both algorithms are run independently of each other,

which means that a task may be executed twice. If the

memory consumption of A reaches ζ/2 at any point, A′

stops running A, and continues with LevelBased, using

all of the processors. Algorithm A′ finishes once either

A or LevelBased finishes.

Algorithm A′ uses at most ζ total memory because

its simulation of A uses at most ζ/2 memory, and its

simulation of LevelBased uses at most O(V) memory.

Since, ζ = Ω(V), the total memory usage is O(ζ). Since

A′ uses half the number of processes, the makespan of

A and LevelBased increases by a factor of 2. Since A′

finishes when either subscheduler finishes, its makespan

is 2min{Ta, Tb}.
Theorem 10 assumes that there is memory budget on

the total memory consumption of the hybrid algorithm

A′. Corollary 11 says that even without a memory bud-

get, we can design a hybrid algorithm A′ that removes

all instances of A that have a bad makespan, without

increasing the memory overhead by more than O(V).

Corollary 11. Let A be any scheduler whose makespan,
on a given instance, is Ta. Let Tb be the makespan of
the LevelBased scheduler on the same instance. Then,
there exists a scheduler A′, where
• The makespan of A′ on the instance is at most
2min{Ta, Tb}.

• A′ uses at most O(V) additional memory over A.

Worst-case guarantees for heuristics. Often in practice,

heuristics are used because they typically result in a

schedule with small makespan. However, these heuristics

often can have large makespan in the worst case. Taking

advantage of the LevelBased algorithm and running it

alongside the heuristic ensures strong worst-case guar-

antees on the makespan without loosing performance on

the typical case.

In Theorem 10, the given heuristic A and LevelBased

algorithm were run independently of each other on half

the processors because it is needed to prove instance-

optimal guarantees of A′.
In practice, both algorithms (heuristic A and Level-

Based) should be run in parallel, as they cooperatively

identify ready-to-run tasks. In particular, the algorithms

share a ready-to-run queue and add tasks to it as soon

as they find more ready work. Thus, on a good instance

for A, the performance of the hybrid algorithm will still

be good. However, on a bad instance for A, where A
may be stuck trying to find ready-to-run tasks, running

LevelBased to identify ready-to-run tasks will ensure

worst-case guarantees on its makespan.

VI. EXPERIMENTAL EVALUATION

In this section, we establish the empirical efficiency

of our schedulers. We show that the hybrid schedul-

ing scheme (which combines the production LogicBlox

scheduler with the LevelBased algorithm) results in sim-

ilar or improved total execution times, while consistently

reducing the scheduling overhead, by as much as 50%

on some datasets.

In fact, in the process of implementing and evaluating

the hybrid scheduler, we even managed to design a syn-

thetic instance, on which the hybrid scheduler was per-

forming 100x faster than the LogicBlox scheduler. This

led the authors at LogicBlox to investigate inefficiencies

870

in their scheduler. They found that on this dataset,

their scheduler was performing unnecessary work to find

ready-to-run tasks. They were able to modify it and have

it match the hybrid performance on the dataset (thus,

improving a fundamental issue with their scheduler).

The bottom line is that LevelBased can be used not

only to improve the scheduling performance, but also to

identify scheduling anomalies and inefficiencies in any

other scheduler for Datalog programs.

A. Experimental setup.

Datasets. We perform our empirical evaluation on job

traces supplied by LogicBlox presented in Table I. The

traces contain information about the structure of the

scheduling DAG, supplemented by information about

each task, such as the task processing time. All job

traces except #11 are real proprietary datasets seen at

production at LogicBlox. (Jobtrace #11 is a synthetic

example generated by us to be released publicly.)

Simulator. To evaluate the performance of the Level-

Based scheduler, we implemented a C++ scheduling sim-

ulator using the Boost Graph Library] [3]. The simulator

reconstructs the DAG from a job trace, attaching meta-

information, such as its processing time, to each task.

The simulator then runs the scheduler simulation on the

reconstructed DAG and outputs the makespan.

Implementation. We describe how LevelBased sched-

uler is implemented. During the precomputation phase,

LevelBased computes levels for each node of the com-

putation DAG, as follows. Initially � = 0:

• All nodes with no incoming edges (i.e., indegree zero)

get assigned level �.
• Delete in-degree-zero nodes. Increment � and recurse.

The scheduler maintains the lowest level among nodes

in the active set. It schedules all jobs on that level (in a

greedy manner) before proceeding to the next level.

B. Scheduling Algorithms

Baseline algorithm: LogicBlox. We compare our

scheduling algorithms against the LogicBlox scheduler

used in production by LogicBlox.

Before proceeding to the scheduling, the LogicBlox

scheduler starts with the preprocessing phase. During

that phase, the list of ancestors for each node in the

original graph is computed. These ancestors are stored

in an interval-list data structure. During the scheduling

phase, the interval list is used to resolve which nodes are

safe to run. This is done by iterating over the queue of

the active nodes and checking ancestors from the interval

list. If none of the nodes in the active queue are safe to

run, then the LogicBlox scheduler waits for one of the

currently running jobs to finish.

LevelBased with LookAhead. We also investigate an

optimized version of LevelBased, which we call Level-
Based with LookAhead (LBL). In the LevelBased with

LookAhead algorithm, we run the LevelBased algorithm

and whenever a processor is idle we recursively check for

additional jobs to run by iterating through the activated

nodes. In particular, when a processor is free, we run a

breadth-first search to check if a candidate node from

the next k levels is not a descendant of either running

nodes or nodes that are yet to be run.

The algorithm takes a parameter k specifying the

number of levels to look ahead. The worst-case running

time of the LBL algorithm is O(n2), but it performs

much better when there are a small number of nodes

per level. This is fortuitous because when there are a

large number of nodes per level, then the LevelBased

scheduler performs essentially optimally.

Hybrid Scheduler. This algorithm combines the produc-

tion LogicBlox scheduler with the LevelBased algorithm.

The hybrid algorithm runs both schedulers in parallel,

with a shared ready-to-run queue. Both schedulers in-

dependently identify ready-to-run tasks and add them to

the shared queue.

This ensures that the hybrid scheduler inherits the

good performance of the LogicBlox scheduler on typical

instances, along with the strong worst-case guarantees

of the LevelBased scheduler. In particular, it avoids the

worst-case behavior of the LogicBlox scheduler, e.g. job

trace #6, where the scheduler spends unnecessary time

looking for more ready-work, when a simple LevelBased

approach is sufficient for achieving the same makespan.

C. Empirical Evaluation

Empirical evaluation of LevelBased and LevelBased
with LookAhead. The total makespan (which includes

the scheduling overhead) of the production LogicBlox

scheduler, LevelBased and LevelBased with LookAhead

is presented in Table II. The execution time of LogicBlox

scheduler was reported by LogicBlox engineers. All of

the traces were simulated to run with eight processors.

All three scheduler incur negligible scheduling overhead

on these workloads (job traces #1-#5).

The performance gains from using the look-ahead

heuristic depend on the depth of the look ahead. The

results in Table II confirm that, if we increase the depth

k of the look-ahead and check 15 or more levels, then the

performance of the algorithms become nearly identical.

Fifteen is a small number of levels as typically workloads

have at least hundreds of levels (see Table I)

Empirical evaluation of the Hybrid scheduler. In

Table III, we compare the total makespan and scheduling

overhead of the LogicBlox, LevelBased and Hybrid

871

Table I: Details of workload traces from LogicBlox.

Job traces #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

No. nodes 64910 64903 29185 64507 1719 379500 35283 35283 65541 65541 465127

No. edges 101327 101319 41506 100779 2430 557702 50511 50511 102219 102219 465158

No. initial tasks 5 16 76 26 6 125544 76 9 10 16 131104

No. active jobs 532 1936 560 1342 296 126979 645 177 111 1936 132162

No. levels 171 171 149 171 39 11 198 198 171 171 5

Table II: The total makespan of the LBLscheduler when the parameter k is varied as compared to the LogicBlox

scheduler. All schedulers incur negligible scheduling overhead on these job traces.

Job trace LogicBlox scheduler LevelBased LBL(k = 5) LBL(k = 10) LBL(k = 15) LBL(k = 20)

Job trace #1 26.5 s 57.74 s 36.72 s 33.09 s 31.25 s 30.99 s

Job trace #2 9736 s 20,979.3 s 11,906.9 s 9,846.16 s 9,866.64 s 9,860.42 s

Job trace #3 187 s 448.40 s 299.34 s 285.91 s 230.22 s 229.34 s

Job trace #4 303 s 866.66 s 576.49 s 490.15 s 444.67 s 426.22 s

Job trace #5 23 s 29.32 s 24.52 s 24.52 s 24.52 s 24.52 s

Table III: This table shows the makespan and scheduling overhead (in this order) for the LogicBlox, LevelBased

and Hybrid schedulers. The LogicBlox and Hybrid numbers are from production, as reported by the authors at

LogicBlox, while the LevelBased number are from our simulation.

Job trace LogicBlox Scheduler LevelBased Hybrid Scheduler

Job trace #6 (33.24 s, 21.69 s) (0.49 s, 0.027 s) (21.93 s, 10.89 s)

Job trace #7 (155.77 s, 0.109 s) (348.35 s, 0.038 ms) (187.08 s, 0.077 s)

Job trace #8 (28.69 s, 0.022 s) (28.29 s, 0.009 ms) (25.52 s, 0.020 s)

Job trace #9 (0.048 s, 0.0107 s) (0.037 s, 0.013 ms) (0.041 s, 0.009 s)

Job trace #10 (9,893.29 s, 0.327 s) (20,897.9 s, 0.159 ms) (10,123.74 s, 0.289 s)

Job trace #11 (688.38 s, 21.03 s) (694.24 s, 0.042 s) (630.01 s, 7.47 s)

algorithms. The experiments for the LogicBlox and the

Hybrid schedulers were done in production and the

numbers were reported by the authors at LogicBlox,

while the LevelBased numbers are from simulation. The

makespan of the schedulers is the total time taken to run

all tasks and includes the scheduling overhead, but not

any pre-processing cost.

Our results show that the hybrid algorithm produces

similar or improved makespan compared to the Log-

icBlox scheduler. In particular, (for all except job trace

#7), the makepan of the hybrid scheduler is within 2% of

the LogicBlox scheduler, and is often much better. The

real gains of the hybrid scheduler are in the scheduling

overhead. In particular, the hybrid scheduler improves

the scheduling overhead for all dataset in Table III.

The notable improvements in scheduling overhead are

in job traces #6 and #11, where the execution DAGs

are shallow, i.e., have a small number of levels. In

particular, on job trace #6, the hybrid scheduler reduces

the scheduling overhead of the LogicBlox scheduler by

50%. The speedup of the Hybrid scheduler arises due

to the nature of the DAG and how each algorithm looks

for ready work. The LogicBlox scheduler wastes time by

performing many dependency checks (ancestor queries)

to find the ready-to-run tasks. This results in worst-case

performance to find active work. On the other hand,

the Hybrid algorithm interleaves these checks with the

LevelBased algorithm, which identifies the ready-to-run

tasks in minimal time and is able to keep the processors

saturated. Thus, the hybrid scheduler achieves strong

worst-case guarantees and robustness without losing out

on the best-case behavior of the LogicBlox scheduler.

VII. CONCLUSIONS

We study the incremental maintenance of Datalog pro-

grams and model it as a scheduling problem on DAGs.

Datalog DAGs presents new challenges, not addressed in

prior DAG scheduling literature, because the readiness of

tasks cannot be determined locally, and instead depends

on the dynamic execution of tasks at runtime. This aspect

of Datalog programs makes the problem algorithmically

interesting and practically challenging.
We give a provably time- and memory-efficient Lev-

elBased scheduler for Datalog programs, and show that

it provides asymptotically better guarantees than the

benchmark algorithm used in production by LogicBlox.

Our experiments show that our scheduler significantly

outperforms the industry-grade LogicBlox scheduler on

a dataset faced by LogicBlox at production.

872

Through our hybrid scheduler, we advocate the use of

our scheduler alongside or heuristic, to provide strong

worst-case guarantees and robustness without losing out

on the best-case behavior of the heuristic.

ACKNOWLEDGMENT

We would like to thank Todd J. Green for his

contributions and helpful discussions during the early

stages of this project. This research was supported in

part by NSF grants CRII-1947789, CCF-1725543, CCF-

1452904, CSR-1763680, CCF-1716252, CCF-1617618,

CNS-1938709, CCF-1830711, CCF-1733873, CCF-

1733873, CCF-1845146, and by Sandia National Lab-

oratories. B. Moseley was also supported in part by a

Google Research Award, a Bosch junior faculty chair

and an Infor faculty award.

REFERENCES

[1] Semmle Inc. https://semmle.com/. Accessed: December 20, 2018.
[2] Soufflé: Logic defined static analysis. http://souffle-lang.github.

io. Accessed: December 20, 2018.
[3] The Boost Graph Library: User Guide and Reference Manual.

Addison-Wesley, 2002.
[4] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient man-

agement of transitive relationships in large data and knowledge
bases. In Proceedings of the 1989 ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 253–262,
1989.

[5] M. Alvarez-Picallo, A. Eyers-Taylor, M. P. Jones, and C.-H. L.
Ong. Fixing incremental computation: Derivatives of fixpoints,
and the recursive semantics of datalog. In Programming Lan-
guages and Systems (ESOP), pages 525–552, 2019.

[6] D. Applegate and W. Cook. A computational study of the
job-shop scheduling problem. ORSA Journal on Computing,
3(2):149–156, 1991.

[7] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu,
E. Pasalic, T. L. Veldhuizen, and G. Washburn. Design and
implementation of the LogicBlox system. In Proceedings of the
2015 ACM SIGMOD International Conference on Management
of Data (SIGMOD), pages 1371–1382, 2015.

[8] L. Baekgaard and L. Mark. Incremental computation of nested
relational query expressions. ACM Transactions on Database
Systems (TODS), 20(2):111–148, June 1995.

[9] P. Bhatotia, R. Rodrigues, and A. Verma. Shredder: GPU-
accelerated incremental storage and computation. In Proceedings
of the 10th USENIX Conference on File and Storage Technologies
(FAST), 2012.

[10] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin.
Incoop: MapReduce for incremental computations. In Proceed-
ings of the 2nd ACM Symposium on Cloud Computing (SOCC),
2011.

[11] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. Journal of the ACM (JACM),
46(5):720–748, Sept. 1999.

[12] M. Carlsson. Monads for incremental computing. In Proceedings
of the seventh ACM SIGPLAN International Conference on
Functional Programming (ICFP), pages 26–35, 2002.

[13] Y.-J. Chiang and R. Tamassia. Dynamic algorithms in compu-
tational geometry. Proceedings of the IEEE, 80(9):1412–1434,
Sept. 1992.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 2009.

[15] C. Demetrescu, D. Eppstein, Z. Galil, and G. F. Italiano. Algo-
rithms and Theory of Computation Handbook, chapter Dynamic
Graph Algorithms. Chapman & Hall/CRC, 2010.

[16] C. Demetrescu, I. Finocchi, and A. Ribichini. Reactive imper-
ative programming with dataflow constraints. In Proceedings
of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA),
pages 407–426, 2011.

[17] W. Fan, C. Hu, and C. Tian. Incremental graph computations:
doable and undoable. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data (SIGMOD), pages
155–169, 2017.

[18] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik,
and P. Wong. Theory and practice in parallel job scheduling. In
Workshop on Job Scheduling Strategies for Parallel Processing
(JSSPP), pages 1–34, 1997.

[19] E. Frachtenberg, D. G. Feitelson, J. Fernandez, and F. Petrini.
Parallel job scheduling under dynamic workloads. In Workshop
on Job Scheduling Strategies for Parallel Processing (JSSPP),
pages 208–227, 2003.

[20] T. J. Green, M. Aref, and G. Karvounarakis. LogicBlox, platform
and language: a tutorial. In Datalog in Academia and Industry,
pages 1–8. 2012.

[21] T. J. Green, S. S. Huang, B. T. Loo, and W. Zhou. Datalog
and recursive query processing. Foundations and Trends in
Databases, 5(2):105–195, 2013.

[22] T. Griffin and L. Libkin. Incremental maintenance of views
with duplicates. In Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data (SIGMOD),
number 2, pages 328–339, 1995.

[23] M. Gyssens and L. V. S. Lakshmanan. A foundation for multi-
dimensional databases. In Proceedings of the 23rd International
Conference on Very Large Data Bases (VLDB), pages 106–115,
1997.

[24] M. A. Hammer, K. Y. Phang, M. Hicks, and J. S. Foster. Adapton:
composable, demand-driven incremental computation. In Pro-
ceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 156–166,
2014.

[25] M. T. Kaufman. An almost-optimal algorithm for the assembly
line scheduling problem. IEEE Transactions on Computers, C-
23(11):1169–1174, Nov. 1974.

[26] V. King. Fully dynamic algorithms for maintaining all-pairs
shortest paths and transitive closure in digraphs. In Proceedings
of the 40th Annual Symposium on Foundations of Computer
Science (FOCS), pages 81–89, 1999.

[27] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon.
Parallel data processing with MapReduce: a survey. ACM
SIGMOD Record, 40(4):11–20, Jan. 2012.

[28] J. Leung, L. Kelly, and J. H. Anderson. Handbook of Scheduling:
Algorithms, Models, and Performance Analysis. CRC Press, Inc.,
2004.

[29] Y. A. Liu. Incremental Computation: A Semantics-based System-
atic Transformational Approach. PhD thesis, Cornell University,
Jan. 1996.

[30] A. S. Manne. On the job-shop scheduling problem. Operations
Research, 8(2):219–223, 1960.

[31] E. Nuutila. Efficient transitive closure computation in large
digraphs. Acta Polytechnica Scandinavica: Mathematics and
Computing in Engineering, 74:1–124, July 1995.

[32] W. Pugh and T. Teitelbaum. Incremental computation via
function caching. In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL), pages 315–328, 1989.

[33] X. Qian and G. Wiederhold. Incremental recomputation of active
relational expressions. IEEE Transactions on Knowledge and
Data Engineering, 3(3):337–341, Sept. 1991.

[34] İ. Sabuncuoğlu, Y. Gocgun, and E. Erel. Backtracking and
exchange of information: methods to enhance a beam search
algorithm for assembly line scheduling. European Journal of
Operational Research, 186(3):915–930, May 2008.

[35] D. Saha and C. R. Ramakrishnan. Incremental evaluation of
tabled prolog: beyond pure logic programs. In Proceedings of the
8th International Symposium on Practical Aspects of Declarative
Languages (PADL), pages 215–229, 2006.

873

