
Power Efficient Sequential Multiplication Using
Pre-computation

N. Honarmand, M.R.Javaheri, N.Sedaghati-Mokhtari and A. Afzali-Kusha
Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering,

University of Tehran, Tehran, IRAN
nima@cad.ece.ut.ac.ir, {m.javaheri, n.sedaghati}@ece.ut.ac.ir, afzali@ut.ac.ir

Abstract—A pre-computation based technique to lower the
power consumption of sequential multipliers is presented. This
technique also speeds up the multiplication by reducing the
number of clock ticks required to complete a multiplication.
The proposed technique may be applied to different sequential
multiplication schemes. The benchmark data is extracted from
typical DSP applications to show the efficiency of the proposed
technique in the domain of DSP computations in which the low
power computing is of rapidly increasing importance. The
results show an average of 25% reduction in the switching
activity and 30% reduction in the clock tick count, compared
to sequential multipliers without this technique.

I. INTRODUCTION
In recent years, power consumption has become a critical

design concern for many VLSI systems. Especially, it is an
important bottleneck in portable battery-operated
applications where the power consumption may be more
important than speed and area. In CMOS technology, a great
deal of power dissipation is caused by charging and
discharging of the load capacitances. Therefore, it is crucial
to minimize the number of signal transitions in circuits for a
low power design [1].

Because of the frequent use of arithmetic units such as
multipliers and adders and their high power consumption,
many low-power techniques have been proposed to optimize
these functional units in terms of power consumption (see,
e.g., [2-5]). Among other computing systems, DSP
applications make extensive use of multiply and accumulate
computations. Therefore, the design and the implementation
of power-efficient arithmetic units, especially multipliers, is
essential for the design of low-power DSP hardware[6].

Several power reduction techniques, in different levels of
abstraction (from system and architecture levels to logic and
circuit levels), have been proposed in literature. Some of
these approaches, such as asynchronous multiplier
architecture and split registers, use on-demand computation
[2]. High level optimization techniques like optimization of
encoding schemes (e.g., booth encoding) [3], operand

representation optimization [3], structure optimization of
partial product reduction circuit [3], signal gating to
deactivate portions of a full-precision multiplier [3], and the
use of row and column bypassing techniques in parallel array
multiplier [4] have also been proposed. In the circuit level,
less dissipative logics such as CPL-TG for full adder block
[5] is another low power multiplication technique. In DSP
applications like digital filters and FFT blocks, which
involve multiplication by a fixed set of coefficients,
substantial research have been devoted to topics such as
coefficient optimization [6], and applying Partially Guarded
Computation concept to data dominated applications [1].

From one point of view, multipliers can be categorized to
sequential and combinational ones. Sequential multipliers are
attractive for their low area requirements. They, however,
take more time to complete a multiplication operation
compared to combinational ones. In this work, we propose a
pre-computation based technique to lower the power
consumption of sequential multipliers. The paper is
organized as follows: We describe the proposed multiplier
architecture in Section II and the benchmark circuits in
Section III. The results and discussion are presented in
Section IV while the summary and conclusion are given in
Section V.

II. PROPOSED TECHNIQUE
In a sequential multiplier, the multiplication process is

divided into some sequential steps. In each step some partial
products will be generated, added to an accumulated partial
sum and the partial sum will be shifted (towards left or right,
depending on the scheme in use) to align the accumulated
sum with the partial products of next steps [7]. Therefore,
each step of a sequential multiplication consists of three
different operations which are generating partial products,
adding the generated partial products to the accumulated
partial sum, and shifting the partial sum. Fig.1 shows partial
product generation and addition in a sequential multiplier.

2709 ISCAS 20060-7803-9390-2/06/$20.00 ©2006 IEEE

PP1

PP2
PP3
PP4

Figure 1. Row-by-row addition in a sequential multiplier

In what follows, the terms multiplicand and multiplier
refer to the first and second operands of a given
multiplication, respectively. In each multiplication step, one
or more multiples of the multiplicand are generated and
added to the partial sum through a two- or multi-operand
addition operation.

To reduce the power consumption of the multiplier, we
make use of the fact that in each sequential circuit, a great
deal of power consumption is consumed by bi-stable
elements, like flip flops whose dissipated power is
proportional to the clock tick count. Hence, reducing the
clock tick count required for the completion of a
multiplication can lower the power consumption of the flip-
flops and increase the speed of the circuit. This will reduce
the power delay product (PDP) factor of the circuit.

The proposed technique is based on the observation that
in each sequential multiplication scheme many of the
generated partial products are trivial values (i.e., 0) and
adding them to the partial sum will have no effect on the
partial sum. This phenomenon is more common in low radix
multiplier (Radix-2 or Radix-4) than in high radix
multipliers.

Considering these facts, one can lower the power
consumption and increase the speed by eliminating all
multiplication steps associated with the generation and the
accumulation of trivial partial products. Consider a group of
such multiplication steps at the end of the multiplication.
Because all the generated partial products are 0, adding them
to the accumulated partial sum will have no effect on the
accumulated sum. One can skip over all such additions to
save power and time. This is achieved by skipping over the
whole corresponding multiplication step including the shift
operations. At the end of the multiplication process, the
results should be corrected by properly shifting them through
a simple shift operation.

To show the basis of the work, we first introduce the
concept of Most Significant Position (MSP). For an unsigned
binary number, the MSP is the position of the highest 1 bit in
the binary representation of the number, numbering the LSB
with 1. For example, in case of (12)10 = (00001100)2’sC MSP
is 4. For a negative number, the MSP is equal to the MSP of
its absolute value. For example, in case of (-12)10 =
(11110100)2’sC MSP is again 4.

Given the above definition, for a number with an MSP of
m, the absolute value of the number will be less than 2m.
Now suppose that the MSPs of the two multiplication
operands are m1 and m2 and, hence, their absolute values

will be less than 2m1 and 2m2, respectively. As a result, the
product of the multiplication will have an absolute value less
than 2m1+m2. The MSP for the product will be at most m1+m2-
1 and thus having, at most, this number of meaningful bits.
All other higher bits will be predictable to be 0 or 1, based on
the sign of the result. Therefore, one can avoid computing
those higher bits, and let the final correction phase produce
them. As we will see later, this final correction can be just a
simple arithmetic or logical shift in most cases.

Based on the above discussion, in each multiplier
implemented using the proposed technique, there are two
additional phases, besides the normal multiplication steps.
These phases are the pre-computation phase and the final
correction phase.

A. Pre-computation Phase
In order to apply the technique to a sequential

multiplication scheme, an initial pre-computation should be
performed on the operands. This pre-computation determines
the actual number of multiplication steps needed to compute
the final result. If the calculated number is smaller than the
maximum number of steps, it will lead to reduction in the
required multiplication steps.

The pre-computation phase, which basically counts the
number of leading zero/ones in the operands, may be
implemented through a priority encoder circuit [8]. The
nature of the pre-computation phase, though similar for
different multiplication schemes, somewhat depends on the
multiplication scheme in use. One should note that between
the two operands in the multiplication process, to reduce the
required clock count, the multiplier should be selected as the
operand with the lower MSP.

In the multiplier implementations presented in this work,
we have used priority encoder circuits, tailored to the
specific multiplication scheme in use, to do the necessary
pre-computation. Each pre-computation circuit will calculate
the necessary clock count for each multiplication using the
MSPs of the operands.

B. Final Correction Phase
The exact operation of the final correction phase depends

on the effect of the omitted shift operations on the final
result. In many cases, this final correction is just a simple
logical or arithmetic shift (e.g., in case of modified booth
multiplier it is an arithmetic left shift and in case of shift-
and-add multiplier it is a logical left shift).

Our experiments have shown that implementation of shift
and rotate operations through commonly-used barrel shifters
tend to create high switching activities. To remedy this
problem for obtaining the correct result, we have gated the
inputs of the shifters. This allows the inputs of the shifter to
change only after the last multiplication step and finalization
of the intermediate result.

2710

Partial Product
Generator

A B

+
Partial Sum

C
on

tr
ol

le
r

(a)

A B

M
od

ifi
ed

 C
on

tr
ol

le
r

Precomput
ation Precomput

ation

Final Result

Final
Correction

Partial Product
Generator

+
Partial Sum

(b)

Figure 2. (a) General sequential multiplier architecture and (b) Modified
sequential multiplier architecture

III. BENCHMARK CIRCUITS
We have applied the proposed technique to three 16 ×16

sequential multipliers which are signed modified booth
multiplier (MBM), signed modified booth multiplier with
carry save addition (CSA MBM), and unsigned shift and add
multiplier (SHAM).

The general structures of the multiplier with and without
the proposed technique are shown in Fig.2. Table I shows the
calculated number of required multiplication steps for
multipliers with different MSPs.

For the two signed multiplication schemes, the final
correction phase is an arithmetic right-shift operation and for
the unsigned scheme, it is a logical right-shift operation. The
shift count is equal to the number of shifts that had to be
performed during the omitted multiplication steps. It is the
difference between the total required shifts and the number
of shifts preformed during the multiplication steps.

In next section, we will describe the method used to
extract benchmark data and present the experimental results.

TABLE I. REQUIRED CLOCK TICK COUNT FOR DIFFERENT
MULTIPLICATION SCHEMES AND DIFFERENT MSPS

MSP MBM CSA MBM SHAM

0 1 1 0
1 1 1 1
2 1 1 2
3 2 2 3
4 2 2 4
5 3 3 5
6 3 3 6
7 4 4 7
8 4 4 8
9 5 5 9
10 5 5 10
11 6 6 11
12 6 6 12
13 7 7 13
14 7 7 14
15 8 8 15
16 8 8 16

IV. BENCHMARK DATA AND EXPERIMENTAL RESULTS
To assess the efficiency of the proposed technique, we

have extracted benchmark data from two typical DSP
applications. We have implemented two digital filters of
order 4 with the following specifications:

• An elliptic low pass filter with Fs = 11025, Rp = 1.0
db, Rs = 20.0 db, Fc = 2000 Hz.

• An elliptic band pass filter with Fs = 11025, Rp = 1.0
db, Rs = 20.0 db, Fc1 = 2000 Hz, Fc2 = 2500 Hz.

In the specifications above, Fs stands for the sampling
frequency of the input data of the filter, Rp and Rs stand for
attenuation in pass and stop bands respectively, and Fc, Fc1,
and Fc2 are cutoff frequencies of the two filters.

To generate the inputs of the filters, we have selected
“ringin.wav” from the media files of MS Windows™ and
applied the filters to this file and its scaled-up and scaled-
down versions. The maximum amplitude, for the file, its
scaled-up, and its scaled-down versions were 0.7, 1.0, and
0.2, respectively. We have also applied a white noise input
with the amplitude of 1.0 and the power of 1.5 watts.
Therefore, we will have 8 sets of data for each multiplier.

Fig.3 shows the MSP distribution of the benchmark data.
The percent of switching activity and clock tick count
reduction for each circuit are given in Tables II and III,
respectively. In these tables, BP and LP refer to data from
the band pass and low pass filters, respectively. Also, NS,
US and SD refer to the data derived from non-scaled, scaled-
up and scaled-down versions of “ringin.wav”, respectively,
and N refers to the data derived from the application of the
noise input. As can be seen, depending on the MSP
distribution of multiplication operands, the proposed
technique leads to switching activity reductions from 16 to
39 percent and clock tick count reductions from 18 to 40
percent.

2711

Figure 3. MSP distribution of multipliers in benchmark data

The reason we have selected the data extracted from DSP
applications is that in such applications, the multiplication
operands tend to have higher MSPs than common software
applications which run on general purpose CPUs. Based on
the data given in [2], the MSPs of the multiplication
operands of typical benchmark software applications tend to
be much less and, hence, the proposed technique should give
rise to much higher gain in terms of power reduction and
speed improvement.

V. SUMMARY AND CONCLUSION
In this paper, we proposed a pre-computation based

technique for decreasing the power and increasing the
multiplication speed of sequential multipliers. The proposed
technique is based on the fact that all multiplication steps
associated with the generation and the accumulation of trivial
partial products can be eliminated at the end of the
multiplication. This reduces the required clock tick count and
switching activity of the multiplier.

We have applied the technique to three different
multiplication schemes and presented the results obtained for
these modified multipliers on some benchmark data
extracted from two typical DSP applications. The results
show that this technique can achieve 16 to 39 percent
switching activity reduction and 18 to 40 percent clock tick
count reduction, depending on the MSP distribution of
multiplication operands.

REFERENCES
[1] J. Choi, J. Jeon, and K. Choi, “Power minimization of functional units

by partially guarded computation,” in Proc. ISLPED, 2000, pp. 131-
136.

[2] Y. Liu and S. Furber, “The design of a low power asynchronous
multiplier,” in Proc. ISLPED, 2004, pp. 301-306.

[3] Z. Huang, “High-level optimization techniques for low-power
multiplier design,” PhD dissertation in Computer Science, UCLA,
2003.

[4] M.-C. Wen, S.-J. Wang, and Y.-N. Lin, “Low-power parallel
multiplier with column bypassing”, Electronics Letters, vol. 41, no.
10, pp. 581-583, 12th May 2005.

[5] I.S. Abu-Khater, A. Bellaouar, and M.I. Elmasry, “Circuit techniques
for CMOS low-power high-performance multipliers,” IEEE Journal
on Solid-State Circuits, vol. 31, no. 10, pp. 1535-1546, Oct.1996.

[6] S. Hong, S. Kim, M.C. Papaefthymiou, and W.E. Stark, “Low power
parallel multiplier design for DSP applications through coefficient
optimization,” in Proc. ASIC/SOC, 1999, pp. 286-290.

[7] B. Parhami, “Computer arithmetic: algorithms and hardware design”,
New York: Oxford University Press, 2000, pp. 143-145.

[8] V.P. Nelson et al, “Digital logic circuit analysis and design”,
Englewood Cliffs, NJ: Prentice Hall, 1995, pp. 259-264.

TABLE II. SWITCHING ACTIVITY REDUCTION IN MODIFIED CIRCUITS

Multiplier SU-LP SU-BP NS-LP NS-BP SD-LP SD-BP N-LP N-BP Avg

MBM 16 18 18 19 28 25 16 25 21

CSA MBM 25 24 28 27 39 34 24 34 29

SHAM 18 25 20 27 29 33 18 33 25

TABLE III. CLOCK TICK COUNT REDUCTION IN MODIFIED CIRCUITS

Multiplier SU-LP SU-BP NS-LP NS-BP SD-LP SD-BP N-LP N-BP Avg

MBM 18 28 20 29 29 35 18 35 27

CSA MBM 18 28 20 29 29 35 18 35 27

SHAM 29 38 31 40 40 40 29 45 37

2712

	Main
	Welcome Messages
	Committees
	Table of Contents
	Technical Program
	Tutorials
	Keynote Talks
	Conference at a Glance
	Technical Program at a Glance
	Author Index
	Session Chair Index
	Reviewers
	CD-ROM Help
	Search
	Zoom In
	Zoom Out
	View Full Page
	Go to Previous Document

