
CSE502: Computer Architecture

CSE 502:
Computer Architecture

SystemVerilog

Adapted from slides by Peter Milder

CSE502: Computer Architecture

More Resources
• Cannot cover everything in one day

• You will likely need to look up reference material:
• SystemVerilog for VHDL Users:

http://www.systemverilog.org/techpapers/date04_systemverilog.pdf

• http://www.doulos.com/knowhow/sysverilog/

• http://www.eda.org/sv/SystemVerilog_3.1a.pdf

• http://electrosofts.com/systemverilog/operators.html

• http://www.cl.cam.ac.uk/teaching/1011/ECAD+Arch/files/SystemVerilogCheatSheet.pdf

• http://www.sunburst-design.com/papers/CummingsSNUG2003SJ_SystemVerilogFSM.pdf

Adapted from slides by Peter Milder

http://www.systemverilog.org/techpapers/date04_systemverilog.pdf
http://www.systemverilog.org/techpapers/date04_systemverilog.pdf
http://www.doulos.com/knowhow/sysverilog/
http://www.doulos.com/knowhow/sysverilog/
http://www.eda.org/sv/SystemVerilog_3.1a.pdf
http://www.eda.org/sv/SystemVerilog_3.1a.pdf
http://electrosofts.com/systemverilog/operators.html
http://electrosofts.com/systemverilog/operators.html
http://www.cl.cam.ac.uk/teaching/1011/ECAD+Arch/files/SystemVerilogCheatSheet.pdf
http://www.cl.cam.ac.uk/teaching/1011/ECAD+Arch/files/SystemVerilogCheatSheet.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2003SJ_SystemVerilogFSM.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2003SJ_SystemVerilogFSM.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2003SJ_SystemVerilogFSM.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2003SJ_SystemVerilogFSM.pdf

CSE502: Computer Architecture

Basic Module Setup
• Assume:

• a, b, c are inputs to module

• f is output of module

• module is named “mymodule”

module mymodule(a, b, c, f);

 output f;

 input a, b, c;

 // Description goes here

endmodule

all ports declared here

declare which
ports are inputs,
which are outputs

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Module Instantiation
• Just like C++ object instantiation

– Module name is analogous to Class name

– Inputs/outputs are analogous to constructor arguments

module mymodule(a, b, c, f);

 output f;

 input a, b, c;

 module_name instance_name(port_connections);

endmodule

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Structural Design
• Example: multiplexor

– Output equals an input

– Which one depends on “sel”

module mux(a, b, sel, f);

 output f;

 input a, b, sel;

 logic c, d, not_sel;

 not gate0(not_sel, sel);

 and gate1(c, a, not_sel);

 and gate2(d, b, sel);

 or gate3(f, c, d);

endmodule

datatype for describing logical value

instantiate gates as above

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Continuous Assign Statement
• Specify behavior with assign statement and bit ops.

module mux2(a, b, sel, f);

 output f;

 input a, b, sel;

 logic c, d;

 assign c = a & (~sel);

 assign d = b & sel;

 assign f = c | d;

endmodule

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Procedural Statement
• Can specify behavior of combinational logic

procedurally using always_comb block

module mymodule(a, b, c, f);

 output f;

 input a, b, c;

 always_comb begin

 // Combinational logic described in

 // C-like syntax

 end

endmodule

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Procedural Behavioral Mux Description

module mux3(a, b, sel, f);

 output logic f;

 input a, b, sel;

 always_comb begin

 if (sel == 0) begin

 f = a;

 end

 else begin

 f = b;

 end

 end

endmodule

Important: for behavior to be
combinational, every output (f)
must be assigned in all possible
control paths

Why? Otherwise, would be a latch

If we are going to drive f this
way, need to declare it as logic

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Condensed if-then-else Form
• Syntax borrowed from C:

• So, we can simplify the mux:

• Or even skip the always_comb block:

if (a)

 b = c;

else

 b = d;

same as b = (a) ? c : d;

...

 always_comb begin

 f = (sel) ? b : a;

 end

...

 assign f = (sel) ? b : a;

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Accidental Latch Description

module bad(a, b, f);

 output logic f;

 input a, b;

 always_comb begin

 if (b == 1) begin

 f = a;

 end

 end

endmodule

• This is not combinational,
because for certain values of
b, f must remember its
previous value.

• This code describes a latch.

(If you want a latch, you
should define it using
always_latch)

Don’t do this!
Adapted from slides by Peter Milder

CSE502: Computer Architecture

Multiply-Assigned Values

module bad2(...);

 ...

 always_comb begin

 b = ... something ...

 end

 always_comb begin

 b = ... something else ...

 end

endmodule

• Both of these blocks execute
concurrently

• So what is the value of b?

We don’t know!

Don’t do this!
Adapted from slides by Peter Milder

CSE502: Computer Architecture

Multi-Bit Values
• Can define inputs, outputs, or logic with multiple bits

module mux4(a, b, sel, f);

 output logic [3:0] f;

 input [3:0] a, b;

 input sel;

 always_comb begin

 if (sel == 0) begin

 f = a;

 end

 else begin

 f = b;

 end

 end

endmodule

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Multi-Bit Constants and Concatenation
• Can give constants with specified number bits

– In binary or hexadecimal

• Can concatenate with { and }

• Can reverse order (to index buffers left-to-right)
logic [3:0] a, b, c;

logic signed [3:0] d;

logic [1:0] e, f;

assign a = 4’b0010; // four bits, specified in binary

assign b = 4’hC; // four bits, specified in hex == 1100

assign c = 3; // == 0011

assign d = -2; // 2’s complement == 1110 as bits

assign e = {a, b}; // concatenate == 0010_1100

assign f = a[2 : 1]; // two bits from middle == 01

assign g = b[c +: 2]; // two bits from bit c == 11

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Case Statements and “Don’t-Cares”

module newmod(out, in0, in1, in2);

 input in0, in1, in2;

 output logic out;

 always_comb begin

 case({in0, in1, in2})

 3'b000: out = 1;

 3'b001: out = 0;

 3'b010: out = 0;

 3'b011: out = x;

 3'b10x: out = 1;

 default: out = 0;

 endcase

 end

endmodule

output value is
undefined in this case

Last bit is a “don’t
care” -- this line will
be active for 100 OR
101

default gives “else”
behavior. Here active
if 110 or 111

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Arithmetic Operators
• Standard arithmetic operators defined: + - * / %

• Many subtleties here, so be careful:

– four bit number + four bit number = five bit number
• Or just the bottom four bits

– arbitrary division is difficult

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Addition and Subtraction
• Be wary of overflow!

• Use “signed” if you want values as 2’s complement

logic [3:0] a, b;

logic [4:0] c;

assign c = a+b;

logic [3:0] d, e, f;

assign f = d + e;

4’b1000 + 4’b1000 = …
In this case, overflows to zero

Five bit output can prevent overflow:
4’b1000 + 4’b1000 gives 5’b10000

logic signed [3:0] g, h, i;

logic signed [4:0] j;

assign g = 4’b0001; // == 1

assign h = 4’b0111; // == 7

assign i = g – h;

assign j = g – h;
i == 4’b1010 == -6
j == 5’b11010 == -6

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Multiplication
• Multiply k bit number with m bit number

– How many bits does the result have?

• If you use fewer bits in your code

– Get least significant bits of the product

k+m logic signed [3:0] a, b;

logic signed [7:0] c;

assign a = 4'b1110; // -2

assign b = 4'b0111; // 7

assign c = a*b; c = 8’b1111_0010 == -14

logic signed [3:0] a, b, d;

assign a = 4'b1110; // -2

assign b = 4'b0111; // 7

assign d = a*b; d = 4’0010 == 2 Underflow!

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Sequential Design
• Everything so far was purely combinational

– Stateless

• What about sequential systems?

– flip-flops, registers, finite state machines

• New constructs
– always_ff @(posedge clk, …)

– non-blocking assignment <=

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Edge-Triggered Events
• Variant of always block called always_ff

– Indicates that block will be sequential logic (flip flops)

• Procedural block occurs only on a signal’s edge
– @(posedge …) or @(negedge …)

always_ff @(posedge clk, negedge reset_n) begin

 // This procedure will be executed

 // anytime clk goes from 0 to 1

 // or anytime reset_n goes from 1 to 0

end

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Flip Flops (1/3)

module flipflop(d, q, clk);

 input d, clk;

 output logic q;

 always_ff @(posedge clk) begin

 q <= d;

 end

endmodule

• q remembers what d was at the last clock edge

– One bit of memory

• Without reset:

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Flip Flops (2/3)
• Asynchronous reset:

module flipflop_asyncr(d, q, clk, rst_n);

 input d, clk, rst_n;

 output logic q;

 always_ff @(posedge clk, negedge rst_n) begin

 if (rst_n == 0)

 q <= 0;

 else

 q <= d;

 end

endmodule

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Flip Flops (3/3)
• Synchronous reset:

module flipflop_syncr(d, q, clk, rst_n);

 input d, clk, rst_n;

 output logic q;

 always_ff @(posedge clk) begin

 if (rst_n == 0)

 q <= 0;

 else

 q <= d;

 end

endmodule

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Multi-Bit Flip Flop

module flipflop_asyncr(d, q, clk, rst_n);

 input [15:0] d;

 input clk, rst_n;

 output logic [15:0] q;

 always_ff @(posedge clk, negedge rst_n) begin

 if (rst_n == 0)

 q <= 0;

 else

 q <= d;

 end

endmodule

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Parameters
• Parameters allow modules to be easily changed

• Instantiate and set parameter:

module my_flipflop(d, q, clk, rst_n);

 parameter WIDTH=16;

 input [WIDTH-1:0] d;

 input clk, rst_n;

 output logic [WIDTH-1:0] q;

 ...

endmodule

my_flipflop #(12) f0(d, q, clk, rst_n);

my_flipflop f0(d, q, clk, rst_n);

default value set to 16

uses default value

changes parameter to
12 for this instance

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Non-Blocking Assignment a <= b;
• <= is the non-blocking assignment operator

– All left-hand side values take new values concurrently

• This models synchronous logic!

always_ff @(posedge clk) begin

 b <= a;

 c <= b;

end

c gets the old value of b, not
value assigned just above

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Non-Blocking vs. Blocking
• Use non-blocking assignment <= to describe

edge-triggered (synchronous) assignments

• Use blocking assignment = to describe
combinational assignment

always_ff @(posedge clk) begin

 b <= a;

 c <= b;

end

always_comb begin

 b = a;

 c = b;

end

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Design Example
• Let’s say we want to compute f = a + b*c

– b and c are 4 bits, a is 8 bits, and f is 9 bits

• First, we will build it as a combinational circuit

• Then, we will add registers at its inputs and outputs

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Finite State Machines (1/2)
• State names

• Output values

• Transition values

• Reset state

A/00

B/00

C/11

D/10

0

0

0

0

1

1
1

1

reset

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Finite State Machines (2/2)
• What does an FSM look like when implemented?

• Combinational logic and registers
(things we already know how to do!)

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Full FSM Example (1/2)
 module fsm(clk, rst, x, y);

 input clk, rst, x;

 output logic [1:0] y;

 enum { STATEA=2'b00, STATEB=2'b01, STATEC=2'b10,

 STATED=2'b11 } state, next_state;

 // next state logic

 always_comb begin

 case(state)

 STATEA: next_state = x ? STATEB : STATEA;

 STATEB: next_state = x ? STATEC : STATED;

 STATEC: next_state = x ? STATED : STATEA;

 STATED: next_state = x ? STATEC : STATEB;

 endcase

 end

// ... continued on next slide

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Full FSM Example (2/2)
 // ... continued from previous slide

 // register

 always_ff @(posedge clk) begin

 if (rst)

 state <= STATEA;

 else

 state <= next_state;

 end

 always_comb begin // Output logic

 case(state)

 STATEA: y = 2'b00;

 STATEB: y = 2'b00;

 STATEC: y = 2'b11;

 STATED: y = 2'b10;

 endcase

 end

endmodule

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Multi-Dimensional Arrays
 module multidimarraytest();

 logic [2:0][3:0] myarray;

 assign myarray[0] = 4'b0010;

 assign myarray[1][3:2] = 2'b01;

 assign myarray[1][1] = 1'b1;

 assign myarray[1][0] = 1'b0;

 assign myarray[2][3:0] = 4'hC;

 initial begin

 $display("myarray == %b", myarray);

 $display("myarray[2:0] == %b", myarray[2:0]);

 $display("myarray[1:0] == %b", myarray[1:0];

 $display("myarray[1] == %b", myarray[1]);

 $display("myarray[1][2] == %b", myarray[1][2]);

 $display("myarray[2][1:0] == %b", myarray[2][1:0]);

 end

endmodule

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Memory (Combinational read)
 module mymemory(clk, data_in, data_out,

 r_addr, w_addr, wr_en);

 parameter WIDTH=16, SIZE=256, LOGSIZE=8;

 input [WIDTH-1:0] data_in;

 output logic [WIDTH-1:0] data_out;

 input clk, wr_en;

 input [LOGSIZE-1:0] r_addr, w_addr;

 logic [SIZE-1:0][WIDTH-1:0] mem;

 assign data_out = mem[r_addr];

 always_ff @(posedge clk) begin

 mem <= mem;

 if (wr_en)

 mem[w_addr] <= data_in;

 end

endmodule

Combinational read

Synchronous write

Default: memory does not
change

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Memory (Synchronous read)
 module mymemory2(clk, data_in, data_out,

 r_addr, w_addr, wr_en);

 parameter WIDTH=16, SIZE=256, LOGSIZE=8;

 input [WIDTH-1:0] data_in;

 output logic [WIDTH-1:0] data_out;

 input clk, wr_en;

 input [LOGSIZE-1:0] r_addr, w_addr;

 logic [SIZE-1:0][WIDTH-1:0] mem;

 always_ff @(posedge clk) begin

 data_out <= mem[r_addr];

 mem <= mem;

 if (wr_en)

 mem[w_addr] <= data_in;

 end

endmodule

Synchronous read

What happens if we try
to read and write the
same address?

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Assertions
• Assertions are test constructs

– Automatically validated as design as simulated

– Written for properties that must always be true

• Makes it easier to test designs

– Don’t have to manually check for these conditions

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Example: A good place for assertions
• Imagine you have a FIFO queue

– When queue is full, it sets status_full to true

– When queue is empty, it sets status_empty to true

• When status_full is true, wr_en must be false

• When status_empty is true, rd_en must be false

FIFO

data_in

wr_en

rd_en

data_out

status_full

status_empty

Adapted from slides by Peter Milder

CSE502: Computer Architecture

Immediate Assertions
• Checks an expression when statement is executed

• Example:

assertion_name: assert(expression)

 pass_code;

else

 fail_code;

 always @(posedge clk) begin

 assert((status_full == 0) || (wr_en == 0))

 else $error("Tried to write to FIFO when full.");

 end

Use $display to print text, or $error to print an error message, or
$fatal to print an error message and halt simulation

Adapted from slides by Peter Milder

