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More Resources 
• Cannot cover everything in one day 

• You will likely need to look up reference material: 
• SystemVerilog for VHDL Users: 

http://www.systemverilog.org/techpapers/date04_systemverilog.pdf 

• http://www.doulos.com/knowhow/sysverilog/ 

• http://www.eda.org/sv/SystemVerilog_3.1a.pdf 

• http://electrosofts.com/systemverilog/operators.html 

• http://www.cl.cam.ac.uk/teaching/1011/ECAD+Arch/files/SystemVerilogCheatSheet.pdf 

• http://www.sunburst-design.com/papers/CummingsSNUG2003SJ_SystemVerilogFSM.pdf 
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Basic Module Setup 
• Assume: 

• a, b, c are inputs to module 

• f is output of module 

• module is named “mymodule” 

 
module mymodule(a, b, c, f); 

    output f; 

    input a, b, c; 

 

    // Description goes here 

     

endmodule 

     

all ports declared here 

declare which 
ports are inputs, 
which are outputs 
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Module Instantiation 
• Just like C++ object instantiation 

– Module name is analogous to Class name 

– Inputs/outputs are analogous to constructor arguments 

module mymodule(a, b, c, f); 

 output f; 

 input a, b, c; 

 

    module_name instance_name(port_connections);  

endmodule 
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Structural Design 
• Example: multiplexor 

– Output equals an input 

– Which one depends on “sel” 

module mux(a, b, sel, f); 

    output f; 

    input a, b, sel; 

 

    logic c, d, not_sel; 

 

    not gate0(not_sel, sel); 

    and gate1(c, a, not_sel); 

    and gate2(d, b, sel); 

    or  gate3(f, c, d); 

endmodule 

datatype for describing logical value 

instantiate gates as above 
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Continuous Assign Statement 
• Specify behavior with assign statement and bit ops. 

module mux2(a, b, sel, f); 

    output f; 

    input a, b, sel; 

    logic c, d; 

 

    assign c = a & (~sel); 

    assign d = b & sel; 

    assign f = c | d; 

endmodule 
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Procedural Statement 
• Can specify behavior of combinational logic 

procedurally using always_comb block 

module mymodule(a, b, c, f); 

 output f; 

 input a, b, c; 

 

 always_comb begin 

  // Combinational logic described in 

  // C-like syntax 

 end 

endmodule     
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Procedural Behavioral Mux Description 

module mux3(a, b, sel, f); 

    output logic f; 

    input a, b, sel; 

 

    always_comb begin 

        if (sel == 0) begin 

            f = a; 

        end 

        else begin 

            f = b; 

        end 

    end 

endmodule 

Important: for behavior to be 
combinational, every output (f) 
must be assigned in all possible 
control paths 
 
Why?  Otherwise, would be a latch 

If we are going to drive f this 
way, need to declare it as logic 
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Condensed if-then-else Form 
• Syntax borrowed from C: 

 

 
• So, we can simplify the mux: 

 

 

 

• Or even skip the always_comb block: 

if (a) 

    b = c; 

else 

    b = d; 

same as b = (a) ? c : d; 

... 

    always_comb begin 

        f = (sel) ? b : a; 

    end 

... 

    assign f = (sel) ? b : a; 
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Accidental Latch Description 

module bad(a, b, f); 

    output logic f; 

    input a, b; 

 

    always_comb begin 

        if (b == 1) begin 

            f = a; 

        end 

 end 

endmodule 

• This is not combinational, 
because for certain values of 
b, f must remember its 
previous value. 

 
• This code describes a latch.  

(If you want a latch, you 
should define it using 
always_latch) 

 

Don’t do this! 
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Multiply-Assigned Values 

module bad2(...); 

   ... 

    

   always_comb begin 

        b = ... something ... 

   end 

    

   always_comb begin 

        b = ... something else ... 

   end 

 

endmodule 

 

• Both of these blocks execute 
concurrently 

 
• So what is the value of b? 

We don’t know! 
 

Don’t do this! 
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Multi-Bit Values 
• Can define inputs, outputs, or logic with multiple bits 

module mux4(a, b, sel, f); 

    output logic [3:0] f; 

    input [3:0] a, b; 

    input sel; 

 

    always_comb begin 

  if (sel == 0) begin 

           f = a; 

  end 

  else begin 

           f = b; 

  end 

    end 

endmodule 
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Multi-Bit Constants and Concatenation 
• Can give constants with specified number bits 

– In binary or hexadecimal 

• Can concatenate with { and } 

• Can reverse order (to index buffers left-to-right) 
logic [3:0] a, b, c; 

logic signed [3:0] d; 

logic [1:0] e, f; 

assign a = 4’b0010;   // four bits, specified in binary 

assign b = 4’hC;      // four bits, specified in hex == 1100 

assign c = 3;         // == 0011 

assign d = -2;         // 2’s complement == 1110 as bits 

assign e = {a, b};    // concatenate == 0010_1100 

assign f = a[2 : 1];  // two bits from middle == 01 

assign g = b[c +: 2]; // two bits from bit c == 11 
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Case Statements and “Don’t-Cares” 

module newmod(out, in0, in1, in2); 

    input in0, in1, in2; 

    output logic out; 

 

    always_comb begin 

        case({in0, in1, in2}) 

            3'b000: out = 1; 

            3'b001: out = 0; 

            3'b010: out = 0; 

            3'b011: out = x; 

            3'b10x: out = 1; 

      default: out = 0; 

        endcase 

    end 

endmodule 

 

output value is 
undefined in this case 

Last bit is a “don’t 
care” -- this line will 
be active for 100 OR 
101 

default gives “else” 
behavior.  Here active 
if 110 or 111 
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Arithmetic Operators 
• Standard arithmetic operators defined: + - * / % 

• Many subtleties here, so be careful: 

– four bit number + four bit number = five bit number 
• Or just the bottom four bits 

– arbitrary division is difficult 
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Addition and Subtraction 
• Be wary of overflow! 

 

 

 

 

• Use “signed” if you want values as 2’s complement 

logic [3:0] a, b; 

logic [4:0] c; 

 

assign c = a+b; 

logic [3:0] d, e, f; 

 

assign f = d + e; 

4’b1000 + 4’b1000 = … 
In this case, overflows to zero 

Five bit output can prevent overflow: 
4’b1000 + 4’b1000 gives 5’b10000 

logic signed [3:0] g, h, i; 

logic signed [4:0] j; 

assign g = 4’b0001; // == 1 

assign h = 4’b0111; // == 7 

assign i = g – h;   

assign j = g – h; 
i == 4’b1010 == -6 
j == 5’b11010 == -6 
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Multiplication 
• Multiply k bit number with m bit number 

– How many bits does the result have?    

 

 

 

• If you use fewer bits in your code 

– Get least significant bits of the product 

k+m logic signed [3:0] a, b; 

logic signed [7:0] c; 

assign a = 4'b1110; // -2 

assign b = 4'b0111; // 7 

assign c = a*b; c = 8’b1111_0010 == -14 

logic signed [3:0] a, b, d; 

assign a = 4'b1110; // -2 

assign b = 4'b0111; // 7 

assign d = a*b; d = 4’0010 == 2 Underflow! 
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Sequential Design 
• Everything so far was purely combinational 

– Stateless 

• What about sequential systems? 

– flip-flops, registers, finite state machines 

• New constructs 
– always_ff @(posedge clk, …) 

– non-blocking assignment <= 
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Edge-Triggered Events 
• Variant of always block called always_ff 

– Indicates that block will be sequential logic (flip flops) 

• Procedural block occurs only on a signal’s edge 
– @(posedge …) or @(negedge …) 

always_ff @(posedge clk, negedge reset_n) begin 

 

   // This procedure will be executed 

 // anytime clk goes from 0 to 1 

   // or anytime reset_n goes from 1 to 0 

 

end 
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Flip Flops (1/3) 

module flipflop(d, q, clk); 

    input d, clk; 

    output logic q; 

 

    always_ff @(posedge clk) begin 

        q <= d; 

    end 

endmodule 

• q remembers what d was at the last clock edge 

– One bit of memory 

• Without reset: 
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Flip Flops (2/3) 
• Asynchronous reset: 

module flipflop_asyncr(d, q, clk, rst_n); 

    input d, clk, rst_n; 

    output logic q; 

 

    always_ff @(posedge clk, negedge rst_n) begin 

        if (rst_n == 0) 

            q <= 0; 

        else         

            q <= d; 

    end 

endmodule 
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Flip Flops (3/3) 
• Synchronous reset: 

module flipflop_syncr(d, q, clk, rst_n); 

    input d, clk, rst_n; 

    output logic q; 

 

    always_ff @(posedge clk) begin 

        if (rst_n == 0) 

            q <= 0; 

        else         

            q <= d; 

    end 

endmodule 
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Multi-Bit Flip Flop 

module flipflop_asyncr(d, q, clk, rst_n); 

    input [15:0] d; 

    input clk, rst_n; 

    output logic [15:0] q; 

 

    always_ff @(posedge clk, negedge rst_n) begin 

        if (rst_n == 0) 

            q <= 0; 

        else         

            q <= d; 

    end 

endmodule 
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Parameters 
• Parameters allow modules to be easily changed 

 

 

 

 

 

• Instantiate and set parameter: 

module my_flipflop(d, q, clk, rst_n); 

    parameter WIDTH=16; 

    input [WIDTH-1:0] d; 

    input clk, rst_n; 

    output logic [WIDTH-1:0] q; 

 

    ... 

endmodule 

my_flipflop #(12) f0(d, q, clk, rst_n); 

my_flipflop f0(d, q, clk, rst_n); 

default value set to 16 

uses default value 

changes parameter to 
12 for this instance 
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Non-Blocking Assignment  a <= b; 
• <= is the non-blocking assignment operator 

– All left-hand side values take new values concurrently 

 

 

 

• This models synchronous logic! 

always_ff @(posedge clk) begin 

   b <= a; 

   c <= b; 

end 

c gets the old value of b, not 
value assigned just above 
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Non-Blocking vs. Blocking 
• Use non-blocking assignment <= to describe 

edge-triggered (synchronous) assignments 

 

 

 

• Use blocking assignment = to describe 
combinational assignment 

always_ff @(posedge clk) begin 

   b <= a; 

   c <= b; 

end 

always_comb begin 

   b = a; 

   c = b; 

end 

Adapted from slides by Peter Milder 



CSE502: Computer Architecture 

Design Example 
• Let’s say we want to compute f = a + b*c 

– b and c are 4 bits, a is 8 bits, and f is 9 bits 

• First, we will build it as a combinational circuit 

• Then, we will add registers at its inputs and outputs 
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Finite State Machines (1/2) 
• State names 

• Output values 

• Transition values 

• Reset state 

A/00

B/00

C/11

D/10

0

0

0

0

1

1
1

1

reset
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Finite State Machines (2/2) 
• What does an FSM look like when implemented? 

 

 

 

 

 

• Combinational logic and registers 
(things we already know how to do!) 
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Full FSM Example (1/2) 
 module fsm(clk, rst, x, y); 

    input clk, rst, x; 

    output logic [1:0] y; 

    enum { STATEA=2'b00, STATEB=2'b01, STATEC=2'b10, 

           STATED=2'b11 } state, next_state; 

 

    // next state logic 

    always_comb begin 

        case(state) 

            STATEA: next_state = x ? STATEB : STATEA; 

            STATEB: next_state = x ? STATEC : STATED; 

            STATEC: next_state = x ? STATED : STATEA; 

            STATED: next_state = x ? STATEC : STATEB; 

        endcase 

    end 

 

// ... continued on next slide 
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Full FSM Example (2/2) 
 // ... continued from previous slide 

    // register 

    always_ff @(posedge clk) begin 

        if (rst) 

            state <= STATEA; 

        else 

            state <= next_state; 

    end 

    always_comb begin // Output logic 

        case(state) 

            STATEA: y = 2'b00; 

            STATEB: y = 2'b00; 

            STATEC: y = 2'b11; 

            STATED: y = 2'b10; 

        endcase 

    end 

endmodule 
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Multi-Dimensional Arrays 
 module multidimarraytest(); 

    logic [2:0][3:0] myarray; 

 

    assign myarray[0] = 4'b0010; 

    assign myarray[1][3:2] = 2'b01; 

    assign myarray[1][1] = 1'b1; 

    assign myarray[1][0] = 1'b0; 

    assign myarray[2][3:0] = 4'hC; 

    initial begin 

        $display("myarray         == %b", myarray); 

        $display("myarray[2:0]    == %b", myarray[2:0]); 

        $display("myarray[1:0]    == %b", myarray[1:0]; 

        $display("myarray[1]      == %b", myarray[1]);                

        $display("myarray[1][2]   == %b", myarray[1][2]); 

        $display("myarray[2][1:0] == %b", myarray[2][1:0]);         

    end 

endmodule 

Adapted from slides by Peter Milder 



CSE502: Computer Architecture 

Memory (Combinational read) 
 module mymemory(clk, data_in, data_out,                 

                r_addr, w_addr, wr_en); 

   parameter WIDTH=16, SIZE=256, LOGSIZE=8; 

   input [WIDTH-1:0] data_in; 

   output logic [WIDTH-1:0] data_out; 

   input clk, wr_en; 

   input [LOGSIZE-1:0] r_addr, w_addr; 

 

   logic [SIZE-1:0][WIDTH-1:0] mem; 

 

   assign data_out = mem[r_addr]; 

 

   always_ff @(posedge clk) begin 

       mem <= mem; 

       if (wr_en) 

           mem[w_addr] <= data_in; 

   end 

endmodule 

Combinational read 

Synchronous write 

Default: memory does not 
change 
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Memory (Synchronous read) 
 module mymemory2(clk, data_in, data_out,  

                 r_addr, w_addr, wr_en); 

   parameter WIDTH=16, SIZE=256, LOGSIZE=8; 

   input [WIDTH-1:0] data_in; 

   output logic [WIDTH-1:0] data_out; 

   input clk, wr_en; 

   input [LOGSIZE-1:0] r_addr, w_addr; 

 

   logic [SIZE-1:0][WIDTH-1:0] mem; 

 

   always_ff @(posedge clk) begin 

       data_out <= mem[r_addr]; 

 

       mem <= mem; 

       if (wr_en) 

           mem[w_addr] <= data_in; 

   end 

endmodule 

Synchronous read 

What happens if we try 
to read and write the 
same address? 
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Assertions 
• Assertions are test constructs 

– Automatically validated as design as simulated 

– Written for properties that must always be true 

• Makes it easier to test designs 

– Don’t have to manually check for these conditions 
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Example: A good place for assertions 
• Imagine you have a FIFO queue 

– When queue is full, it sets status_full to true 

– When queue is empty, it sets status_empty to true 

 

 

 

 

• When status_full is true, wr_en must be false 

• When status_empty is true, rd_en must be false 

FIFO

data_in

wr_en

rd_en

data_out

status_full

status_empty
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Immediate Assertions 
• Checks an expression when statement is executed 

 

 

 

• Example: 

 

assertion_name: assert(expression) 

    pass_code; 

else 

    fail_code; 

 always @(posedge clk) begin 

      assert((status_full == 0) || (wr_en == 0)) 

      else $error("Tried to write to FIFO when full.");       

 end 

Use $display to print text, or $error to print an error message, or 
$fatal to print an error message and halt simulation 
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