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Amdahl’s Law
Speedup = timewithout enhancement / timewith enhancement

An enhancement speeds up fraction f of a task by factor S
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The Iron Law of Processor Performance
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We will concentrate on CPI, others are important too!

Total Work

In Program
CPI or 1/IPC 1/f (frequency)

Algorithms,

Compilers,

ISA Extensions

Microarchitecture
Microarchitecture,

Process Tech
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Performance
• Latency (execution time): time to finish one task

• Throughput (bandwidth): number of tasks/unit time

– Throughput can exploit parallelism, latency can’t

– Sometimes complimentary, often contradictory

• Example: move people from A to B, 10 miles

– Car: capacity = 5, speed = 60 miles/hour

– Bus: capacity = 60, speed = 20 miles/hour

– Latency: car = 10 min, bus = 30 min

– Throughput: car = 15 PPH (count return trip), bus = 60 PPH

No right answer: pick metric for your goals
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Performance Improvement
• Processor A is X times faster than processor B if

– Latency(P,A) = Latency(P,B) / X

– Throughput(P,A) = Throughput(P,B) * X

• Processor A is X% faster than processor B if

– Latency(P,A) = Latency(P,B) / (1+X/100)

– Throughput(P,A) = Throughput(P,B) * (1+X/100)

• Car/bus example

– Latency? Car is 3 times (200%) faster than bus

– Throughput? Bus is 4 times (300%) faster than car
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Partial Performance Metrics Pitfalls
• Which processor would you buy?

– Processor A: CPI = 2, clock = 2.8 GHz

– Processor B: CPI = 1, clock = 1.8 GHz

– Probably A, but B is faster (assuming same ISA/compiler)

• Classic example

– 800 MHz Pentium III faster than 1 GHz Pentium 4

– Same ISA and compiler
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Averaging Performance Numbers (1/2)
• Latency is additive, throughput is not

Latency(P1+P2,A) = Latency(P1,A) + Latency(P2,A)

Throughput(P1+P2,A) != Throughput(P1,A)+Throughput(P2,A)

• Example:

– 180 miles @ 30 miles/hour + 180 miles @ 90 miles/hour

– 6 hours at 30 miles/hour + 2 hours at 90 miles/hour 
• Total latency is 6 + 2 = 8 hours

• Total throughput is not 60 miles/hour

– Total throughput is only 45 miles/hour! (360 miles / (6 + 2 hours))

Arithmetic mean is not always the answer!
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Averaging Performance Numbers (2/2)
• Arithmetic: times

– proportional to time

– e.g., latency

• Harmonic: rates

– inversely proportional to time

– e.g., throughput

• Geometric: ratios

– unit-less quantities

– e.g., speedups
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Memorize these to avoid looking them up later
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Parallelism: Work and Critical Path
• Parallelism: number of independent tasks available 

• Work (T1): time on sequential system

• Critical Path (T): time on infinitely-parallel system

• Average Parallelism:
Pavg = T1 / T

• For a p-wide system:
Tp  max{ T1/p, T }
Pavg >> p   Tp  T1/p

x = a + b;   
y = b * 2
z =(x-y) * (x+y)

Can trade off frequency for parallelism
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Locality Principle
• Recent past is a good indication of near future

Temporal Locality: If you looked something up, it is very likely 
that you will look it up again soon

Spatial Locality: If you looked something up, it is very likely 
you will look up something nearby soon
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Power vs. Energy (1/2)
• Power: instantaneous rate of energy transfer

– Expressed in Watts

– In Architecture, implies conversion of electricity to heat

– Power(Comp1+Comp2)=Power(Comp1)+Power(Comp2)

• Energy: measure of using power for some time

– Expressed in Joules

– power * time (joules = watts * seconds)

– Energy(OP1+OP2)=Energy(OP1)+Energy(OP2)
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Power vs. Energy (2/2)

Does this example help or hurt?
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Why is energy important?
• Because electricity consumption has costs

– Impacts battery life for mobile

– Impacts electricity costs for tethered
• Delivering power for buildings, countries

• Gets worse with larger data centers ($7M for 1000 racks)



CSE502: Computer Architecture

Why is power important?
• Because power has a peak

• All power “spent” is converted to heat

– Must dissipate the heat

– Need heat sinks and fans

• What if fans not fast enough?

– Chip powers off (if it’s smart enough)

– Melts otherwise

• Thermal failures even when fans OK

– 50% server reliability degradation for +10oC

– 50% decrease in hard disk lifetime for +15oC
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Power
• Dynamic power vs. Static power

– Static: “leakage” power

– Dynamic: “switching” power

• Static power: steady, constant energy cost

• Dynamic power: transitions from 01 and 10
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Power: The Basics (1/2)
• Dynamic Power

– Related to switching activity of transistors (from 01 and 10)

• Dynamic Power ∝𝐶𝑉𝑑𝑑
2𝐴𝑓

– C: capacitance, function of transistor size and wire length
– Vdd: Supply voltage
– A: Activity factor (average fraction of transistors switching)
– f: clock frequency
– About 50-70% of processor power

Applied Voltage

Source Drain

Gate

Current

Threshold Voltage

Gate

Source Drain

+ + + + +

- - - - -
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Power: The Basics (2/2)
• Static Power

– Current leaking from a transistor even if doing nothing (steady, constant energy cost)

• Static Power ∝ 𝑉𝑑𝑑and ∝𝑒−𝑐1𝑉𝑡ℎand ∝ 𝑒𝑐2𝑇

– This is a first-order model
– 𝑐1, 𝑐2: some positive constants
– 𝑉𝑡ℎ: Threshold Voltage
– 𝑇: Temperature
– About 30-50% of processor power

Channel Leakage

Sub-threshold Conductance

Gate Leakage
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Thermal Runaway

• Leakage is an exponential function of temperature

•  Temp leads to  Leakage

• Which burns more power

• Which leads to  Temp, which leads to…

Positive feedback loop will melt your chip
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Why Power Became an Issue? (1/2)

• Ideal scaling was great (aka Dennard scaling)

– Every new semiconductor generation:
• Transistor dimension: x 0.7

• Transistor area: x 0.5

• C and Vdd: x 0.7

• Frequency: 1 / 0.7 = 1.4

– Constant dynamic power density

– In those good old days, leakage was not a big deal

Dynamic Power:
𝐶𝑉𝑑𝑑

2𝐴𝑓

40% faster and 2x more transistors at same power
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Why Power Became an Issue? (2/2)
• Recent reality: Vdd does not decrease much

– Switching speed is roughly proportional to Vdd - Vth
• If too close to threshold voltage (Vth) → slow transistor

• Fast transistor & low Vdd → low Vth → exponential leakage increase 

→ Dynamic power density keeps increasing
– Leakage power has also become a big deal today

• Due to lower Vth, smaller transistors, higher temperatures, etc.

• Example: power consumption in Intel processors
– Intel 80386 consumed ~ 2 W
– 3.3 GHz Intel Core i7 consumes ~ 130 W
– Heat must be dissipated from 1.5 x 1.5 cm2 chip
– This is the limit of what can be cooled by air

Referred to as the Power Wall



CSE502: Computer Architecture

How to Reduce Power? (1/3)

• Clock gating
– Stop switching in unused components

– Done automatically in most designs

– Near instantaneous on/off behavior

• Power gating
– Turn off power to unused cores/caches

– High latency for on/off
• Saving SW state, flushing dirty cache lines, turning off clock tree

• Carefully done to avoid voltage spikes or memory bottlenecks

– Issue: Area & power consumption of power gate

– Opportunity: use thermal headroom for other cores
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How to Reduce Power? (2/3)

• Reduce Voltage (V): quadratic effect on dyn. power

– Negative (~linear) effect on frequency

• Dynamic Voltage/Frequency Scaling (DVFS): set 
frequency to the lowest needed

– Execution time = IC * CPI * f

• Scale back V to lowest for that frequency

– Lower voltage  slower transistors

– Dyn. Power ≈ C * V2 * F

Not Enough! Need Much More!
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How to Reduce Power? (3/3)
• Design for E & P efficiency rather than speed

• New architectural designs:
– Simplify the processor, shallow pipeline, less speculation
– Efficient support for high concurrency (think GPUs)
– Augment processing nodes with accelerators
– New memory architectures and layouts
– Data transfer minimization
– …

• New technologies:
– Low supply voltage (Vdd) operation: Near-Threshold Voltage Computing
– Non-volatile memory (Resistive memory, STTRAM, …)
– 3D die stacking
– Efficient on-chip voltage conversion
– Photonic interconnects
– …
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Processor Is Not Alone

Need whole-system approaches to save energy

23%
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Disk

Services

Fans

AC/DC Conversion

SunFire T2000

< ¼ System Power > ½ CPU Power
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ISA: A contract between HW and SW
• ISA: Instruction Set Architecture

– A well-defined hardware/software interface

• The “contract” between software and hardware

– Functional definition of operations supported by hardware

– Precise description of how to invoke all features

• No guarantees regarding

– How operations are implemented

– Which operations are fast and which are slow (and when)

– Which operations take more energy (and which take less)
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Components of an ISA
• Programmer-visible states

– Program counter, general purpose registers, 
memory, control registers

• Programmer-visible behaviors
– What to do, when to do it

• A binary encoding

if imem[rip]==“add rd, rs, rt”

then

rip  rip+1

gpr[rd]=gpr[rs]+grp[rt]

Example “register-transfer-level”
description of an instruction

ISAs last forever, don’t add stuff you don’t need
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RISC vs. CISC
• Recall Iron Law:

– (instructions/program) * (cycles/instruction) * (seconds/cycle)

• CISC (Complex Instruction Set Computing)
– Improve “instructions/program” with “complex” instructions
– Easy for assembly-level programmers, good code density

• RISC (Reduced Instruction Set Computing)
– Improve “cycles/instruction” with many single-cycle instructions
– Increases “instruction/program”, but hopefully not as much

• Help from smart compiler

– Perhaps improve clock cycle time (seconds/cycle) 
• via aggressive implementation allowed by simpler instructions 

Today’s x86 chips translate CISC into ~RISC
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IssueDecode MemoryExecuteAddr-gen. Fetch

Prototypical Processor Organization
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(Write-back)


