
CSE502: Computer Architecture

Review and Background

CSE502: Computer Architecture

1

timeorig

f(1 - f)

timeorig

f(1 - f)

timeorig

Amdahl’s Law
Speedup = timewithout enhancement / timewith enhancement

An enhancement speeds up fraction f of a task by factor S

timenew = timeorig·((1-f) + f/S)

Soverall = 1 / ((1-f) + f/S)

(1 - f)

timenew

f/S(1 - f)

timenew

f/S

CSE502: Computer Architecture

The Iron Law of Processor Performance

Cycle

Time

nInstructio

Cycles

Program

nsInstructio

Program

Time

We will concentrate on CPI, others are important too!

Total Work

In Program
CPI or 1/IPC 1/f (frequency)

Algorithms,

Compilers,

ISA Extensions

Microarchitecture
Microarchitecture,

Process Tech

CSE502: Computer Architecture

Performance
• Latency (execution time): time to finish one task

• Throughput (bandwidth): number of tasks/unit time

– Throughput can exploit parallelism, latency can’t

– Sometimes complimentary, often contradictory

• Example: move people from A to B, 10 miles

– Car: capacity = 5, speed = 60 miles/hour

– Bus: capacity = 60, speed = 20 miles/hour

– Latency: car = 10 min, bus = 30 min

– Throughput: car = 15 PPH (count return trip), bus = 60 PPH

No right answer: pick metric for your goals

CSE502: Computer Architecture

Performance Improvement
• Processor A is X times faster than processor B if

– Latency(P,A) = Latency(P,B) / X

– Throughput(P,A) = Throughput(P,B) * X

• Processor A is X% faster than processor B if

– Latency(P,A) = Latency(P,B) / (1+X/100)

– Throughput(P,A) = Throughput(P,B) * (1+X/100)

• Car/bus example

– Latency? Car is 3 times (200%) faster than bus

– Throughput? Bus is 4 times (300%) faster than car

CSE502: Computer Architecture

Partial Performance Metrics Pitfalls
• Which processor would you buy?

– Processor A: CPI = 2, clock = 2.8 GHz

– Processor B: CPI = 1, clock = 1.8 GHz

– Probably A, but B is faster (assuming same ISA/compiler)

• Classic example

– 800 MHz Pentium III faster than 1 GHz Pentium 4

– Same ISA and compiler

CSE502: Computer Architecture

Averaging Performance Numbers (1/2)
• Latency is additive, throughput is not

Latency(P1+P2,A) = Latency(P1,A) + Latency(P2,A)

Throughput(P1+P2,A) != Throughput(P1,A)+Throughput(P2,A)

• Example:

– 180 miles @ 30 miles/hour + 180 miles @ 90 miles/hour

– 6 hours at 30 miles/hour + 2 hours at 90 miles/hour
• Total latency is 6 + 2 = 8 hours

• Total throughput is not 60 miles/hour

– Total throughput is only 45 miles/hour! (360 miles / (6 + 2 hours))

Arithmetic mean is not always the answer!

CSE502: Computer Architecture

Averaging Performance Numbers (2/2)
• Arithmetic: times

– proportional to time

– e.g., latency

• Harmonic: rates

– inversely proportional to time

– e.g., throughput

• Geometric: ratios

– unit-less quantities

– e.g., speedups

n

i iTime
n 1

1

n

i

iRate

n

1

1

n

n

i

iRatio
1

Memorize these to avoid looking them up later

CSE502: Computer Architecture

Parallelism: Work and Critical Path
• Parallelism: number of independent tasks available

• Work (T1): time on sequential system

• Critical Path (T): time on infinitely-parallel system

• Average Parallelism:
Pavg = T1 / T

• For a p-wide system:
Tp max{ T1/p, T }
Pavg >> p Tp T1/p

x = a + b;
y = b * 2
z =(x-y) * (x+y)

Can trade off frequency for parallelism

CSE502: Computer Architecture

Locality Principle
• Recent past is a good indication of near future

Temporal Locality: If you looked something up, it is very likely
that you will look it up again soon

Spatial Locality: If you looked something up, it is very likely
you will look up something nearby soon

CSE502: Computer Architecture

Power vs. Energy (1/2)
• Power: instantaneous rate of energy transfer

– Expressed in Watts

– In Architecture, implies conversion of electricity to heat

– Power(Comp1+Comp2)=Power(Comp1)+Power(Comp2)

• Energy: measure of using power for some time

– Expressed in Joules

– power * time (joules = watts * seconds)

– Energy(OP1+OP2)=Energy(OP1)+Energy(OP2)

W
h

at
 u

se
s

p
o

w
er

 in
 a

 c
h

ip
?

CSE502: Computer Architecture

Power vs. Energy (2/2)

Does this example help or hurt?

CSE502: Computer Architecture

Why is energy important?
• Because electricity consumption has costs

– Impacts battery life for mobile

– Impacts electricity costs for tethered
• Delivering power for buildings, countries

• Gets worse with larger data centers ($7M for 1000 racks)

CSE502: Computer Architecture

Why is power important?
• Because power has a peak

• All power “spent” is converted to heat

– Must dissipate the heat

– Need heat sinks and fans

• What if fans not fast enough?

– Chip powers off (if it’s smart enough)

– Melts otherwise

• Thermal failures even when fans OK

– 50% server reliability degradation for +10oC

– 50% decrease in hard disk lifetime for +15oC

CSE502: Computer Architecture

Power
• Dynamic power vs. Static power

– Static: “leakage” power

– Dynamic: “switching” power

• Static power: steady, constant energy cost

• Dynamic power: transitions from 01 and 10

W
h

at
 u

se
s

p
o

w
er

 in
 a

 c
h

ip
?

CSE502: Computer Architecture

Power: The Basics (1/2)
• Dynamic Power

– Related to switching activity of transistors (from 01 and 10)

• Dynamic Power ∝𝐶𝑉𝑑𝑑
2𝐴𝑓

– C: capacitance, function of transistor size and wire length
– Vdd: Supply voltage
– A: Activity factor (average fraction of transistors switching)
– f: clock frequency
– About 50-70% of processor power

Applied Voltage

Source Drain

Gate

Current

Threshold Voltage

Gate

Source Drain

+ + + + +

- - - - -

Current

CSE502: Computer Architecture

Power: The Basics (2/2)
• Static Power

– Current leaking from a transistor even if doing nothing (steady, constant energy cost)

• Static Power ∝ 𝑉𝑑𝑑and ∝𝑒−𝑐1𝑉𝑡ℎand ∝ 𝑒𝑐2𝑇

– This is a first-order model
– 𝑐1, 𝑐2: some positive constants
– 𝑉𝑡ℎ: Threshold Voltage
– 𝑇: Temperature
– About 30-50% of processor power

Channel Leakage

Sub-threshold Conductance

Gate Leakage

CSE502: Computer Architecture

Thermal Runaway

• Leakage is an exponential function of temperature

• Temp leads to Leakage

• Which burns more power

• Which leads to Temp, which leads to…

Positive feedback loop will melt your chip

CSE502: Computer Architecture

Why Power Became an Issue? (1/2)

• Ideal scaling was great (aka Dennard scaling)

– Every new semiconductor generation:
• Transistor dimension: x 0.7

• Transistor area: x 0.5

• C and Vdd: x 0.7

• Frequency: 1 / 0.7 = 1.4

– Constant dynamic power density

– In those good old days, leakage was not a big deal

Dynamic Power:
𝐶𝑉𝑑𝑑

2𝐴𝑓

40% faster and 2x more transistors at same power

CSE502: Computer Architecture

Why Power Became an Issue? (2/2)
• Recent reality: Vdd does not decrease much

– Switching speed is roughly proportional to Vdd - Vth
• If too close to threshold voltage (Vth) → slow transistor

• Fast transistor & low Vdd → low Vth → exponential leakage increase

→ Dynamic power density keeps increasing
– Leakage power has also become a big deal today

• Due to lower Vth, smaller transistors, higher temperatures, etc.

• Example: power consumption in Intel processors
– Intel 80386 consumed ~ 2 W
– 3.3 GHz Intel Core i7 consumes ~ 130 W
– Heat must be dissipated from 1.5 x 1.5 cm2 chip
– This is the limit of what can be cooled by air

Referred to as the Power Wall

CSE502: Computer Architecture

How to Reduce Power? (1/3)

• Clock gating
– Stop switching in unused components

– Done automatically in most designs

– Near instantaneous on/off behavior

• Power gating
– Turn off power to unused cores/caches

– High latency for on/off
• Saving SW state, flushing dirty cache lines, turning off clock tree

• Carefully done to avoid voltage spikes or memory bottlenecks

– Issue: Area & power consumption of power gate

– Opportunity: use thermal headroom for other cores

CSE502: Computer Architecture

How to Reduce Power? (2/3)

• Reduce Voltage (V): quadratic effect on dyn. power

– Negative (~linear) effect on frequency

• Dynamic Voltage/Frequency Scaling (DVFS): set
frequency to the lowest needed

– Execution time = IC * CPI * f

• Scale back V to lowest for that frequency

– Lower voltage slower transistors

– Dyn. Power ≈ C * V2 * F

Not Enough! Need Much More!

CSE502: Computer Architecture

How to Reduce Power? (3/3)
• Design for E & P efficiency rather than speed

• New architectural designs:
– Simplify the processor, shallow pipeline, less speculation
– Efficient support for high concurrency (think GPUs)
– Augment processing nodes with accelerators
– New memory architectures and layouts
– Data transfer minimization
– …

• New technologies:
– Low supply voltage (Vdd) operation: Near-Threshold Voltage Computing
– Non-volatile memory (Resistive memory, STTRAM, …)
– 3D die stacking
– Efficient on-chip voltage conversion
– Photonic interconnects
– …

CSE502: Computer Architecture

Processor Is Not Alone

Need whole-system approaches to save energy

23%

20%

20% 4%
10%

9%

14%

Processor

Memory

I/O

Disk

Services

Fans

AC/DC Conversion

SunFire T2000

< ¼ System Power > ½ CPU Power

CSE502: Computer Architecture

ISA: A contract between HW and SW
• ISA: Instruction Set Architecture

– A well-defined hardware/software interface

• The “contract” between software and hardware

– Functional definition of operations supported by hardware

– Precise description of how to invoke all features

• No guarantees regarding

– How operations are implemented

– Which operations are fast and which are slow (and when)

– Which operations take more energy (and which take less)

CSE502: Computer Architecture

Components of an ISA
• Programmer-visible states

– Program counter, general purpose registers,
memory, control registers

• Programmer-visible behaviors
– What to do, when to do it

• A binary encoding

if imem[rip]==“add rd, rs, rt”

then

rip rip+1

gpr[rd]=gpr[rs]+grp[rt]

Example “register-transfer-level”
description of an instruction

ISAs last forever, don’t add stuff you don’t need

CSE502: Computer Architecture

RISC vs. CISC
• Recall Iron Law:

– (instructions/program) * (cycles/instruction) * (seconds/cycle)

• CISC (Complex Instruction Set Computing)
– Improve “instructions/program” with “complex” instructions
– Easy for assembly-level programmers, good code density

• RISC (Reduced Instruction Set Computing)
– Improve “cycles/instruction” with many single-cycle instructions
– Increases “instruction/program”, but hopefully not as much

• Help from smart compiler

– Perhaps improve clock cycle time (seconds/cycle)
• via aggressive implementation allowed by simpler instructions

Today’s x86 chips translate CISC into ~RISC

CSE502: Computer Architecture

IssueDecode MemoryExecuteAddr-gen. Fetch

Prototypical Processor Organization

Instruction

Access

Register

File
PC

+4

Data

Access
ALU

(Write-back)

