
CSE506: Operating Systems

CSE 506:
Operating Systems

Disk Scheduling

CSE506: Operating Systems

Key to Disk Performance
• Don’t access the disk

– Whenever possible

• Cache contents in memory

– Most accesses hit in the block cache

• Prefetch blocks into block cache (a.k.a. read-ahead)

– When OS accesses disk, get next few blocks too
• Keep them in block cache

– If access hits on prefetched block
• Read the next few blocks in the background

– Avoids demand access to the disk

CSE506: Operating Systems

Caching + Throughput
• Most reads and writes to disk are asynchronous

– Dirty data can be buffered and written at OS’s leisure

– Most reads hit in block cache – read-ahead works

• How to optimally order pending disk I/O requests?

– Hint: it isn’t first-come, first-served

CSE506: Operating Systems

Another view of disk accesses
• Between block cache and disk, there is a queue

– All disk requests wait in this queue

– Requests are a tuple of (block #, read/write, buffer addr)

• Requests can be reordered

– To achieve best performance across all requests

• What reordering heuristic to use? If any?

– Heuristic is called the IO Scheduler

CSE506: Operating Systems

A simple disk model
• Disks are slow

– Moving parts much slower than circuits

– Flash storage is faster

• Still multiple orders of magnitude slower than memory

• Programming interface: simple array of sectors (blocks)

• Physical disk layout:

– Concentric “cylinders” of blocks on a platter

• Two tracks, one on each side

– E.g., sectors 0-9 on innermost track, 10-19 on next track, etc.

– Disk arm (with heads attached) moves between tracks

– Platter rotates under disk head to align w/ requested sector

CSE506: Operating Systems

Disk Model

0 1
2

3
4 5

6

7

Each block on
a sector

Disk
Arm

Disk Head
reads at

granularity of
entire sector

Disk spins at a
constant speed.

Tracks rotate
underneath head.

CSE506: Operating Systems

Disk Model

Disk
Arm 0 1

2

3
4 5

6

7

8 9
10

11

12

13
14 15 16

17
18

19

20
21

Concentric
tracks

Disk head seeks to
different tracks

Gap between 7
and 8 accounts for

seek time

CSE506: Operating Systems

Many Tracks

Disk
Arm

CSE506: Operating Systems

Several (~4) Platters

Platters spin
together at same

speed

Each platter has two
heads; All heads seek

together on arm

CSE506: Operating Systems

3 key latencies
• I/O delay: Time to read/write a sector

• Rotational delay: Time for track to rotate under head

– Note: disk rotates continuously at constant speed

• Seek delay: Time to move disk arm to cylinder

CSE506: Operating Systems

Greedy IO Scheduler
• Latency of op. is function arm and cylinder position

• Each request changes these values

• Idea: build a model of the disk

– Use delay values from measurement or manuals

– Use math to evaluate latency of each pending request

– Greedy algorithm: always select lowest latency

CSE506: Operating Systems

Problem with Greedy?
• “Far” requests will starve

• Disk head may just hover around the “middle” tracks

CSE506: Operating Systems

Elevator Algorithms (SCAN)
• Arm moves in continuous “sweeps” in and out

– Reorder requests within a sweep
• Closest block in direction of travel is next to be read

• Request that was just passed has to wait for sweep to return

• Prevents starvation

– Sectors “inside” or “outside” serviced after bounded time

• Reasonably good throughput

– Sort requests to minimize seek latency

• Simple to code

– Programming model hides low-level details

CSE506: Operating Systems

Elevator Algorithms (C-SCAN)
• SCAN is not fair

– Cylinders in the middle get serviced ~twice as often
• Likely to be handled when arm travels in either direction

• Only perform ops when moving in one direction

– Once the end is reached, quickly go to the beginning

• More fair

– But probably lower average performance

CSE506: Operating Systems

Pluggable Schedulers
• Linux allows the disk scheduler to be replaced

– Just like the CPU scheduler

• Can choose a different heuristic that favors:

– Fairness

– Real-time constraints

– Performance

CSE506: Operating Systems

Complete Fairness Queue (CFQ)
• Idea: Add a second layer of queues (one per process)

– Round-robin promote them to the “real” queue

• Goal: Fairly distribute disk bandwidth among tasks

• Problems?

– Overall throughput likely reduced

– Ping-pong disk head around

CSE506: Operating Systems

Deadline Scheduler
• Associate expiration times with requests

• Prioritize requests closer to expiration

– Constrains reordering to ensure forward progress

• Good for real-time applications

CSE506: Operating Systems

Anticipatory Scheduler
• Idea: Try to anticipate locality of requests

• If process P issue bursts of requests for close blocks

– If a request from P arrives
• Hold request in queue for a while

• Hope that more “nearby” requests come in

– Eventually, schedule all pending requests at once
• Coalesce adjacent requests

CSE506: Operating Systems

Optimizations at Cross-purposes
• The disk itself does some optimizations

– Caching
• Disks have their own caches

• And do their own read-ahead

– Reordering requests internally
• Disk protocols (e.g., SATA) allow many outstanding commands

– Can’t assume that requests are serviced in-order

– Bad sectors can be remapped to “spares”
• Problem: disk arm flailing on an old disk

