
CSE506: Operating Systems

CSE 506:
Operating Systems

File Systems

CSE506: Operating Systems

Traditional File Systems
• “FS”, UFS/FFS, Ext2, …

• Several simple on disk structures

– Superblock
• magic value to identify filesystem type

• Places to find metadata on disk (e.g., inode array, free block list)

– Inode array
• Attributes (e.g., file or directory, size)

• Pointers to data blocks

– Several direct blocks for small files

– {Singly, Doubly, Triply}-Indirect blocks for large files

– Blocks
• File contents

CSE506: Operating Systems

Working with a File System
• Need to format disk prior to use

– Write a superblock
• With correct magic number

– Write details about disk size/number of blocks
• Need a free list or bitmap

– Write first several inodes
• Usually “root” directory inode has designated index (e.g., “2”)

• Done with newfs

– Works on raw device (via /dev/diskdriver)

– For course project, create program on host
• Avoid the hassle of allowing formatting from inside your OS

CSE506: Operating Systems

Locating/Allocating Blocks

Wikipedia ext2

CSE506: Operating Systems

Tracking Free Objects on Disk
• Use blocks pointed to from inode

– On erase, must replace freed blocks onto free “list”

• Disk size traditionally known in advance

– Disk maintains list of free blocks
• Easy to keep track of in a bitmap

– Virtual machine disks can be resized
• Requires resizing filesystem to accept new blocks

– Add elements to free list or mark bits in free map

• Need to maintain list of free inodes too

– Otherwise must probe inode map for free slot

– Superblock should remember head of list

CSE506: Operating Systems

File Systems and Crashes
• What can go wrong?

– Write a block pointer in an inode
… before marking block as used in bitmap

– Write a reclaimed block into an inode
… before removing old inode that points to it

– Allocate an inode
… without putting it in a directory
• Inode is “orphaned”

– etc.

CSE506: Operating Systems

Deeper Issue
• Operations span multiple on-disk data structures

– Requires more than one disk write
• Multiple disk writes not performed together

– Single sector writes aren’t guaranteed either (e.g., power loss)

• Disk writes are always a series of updates

– System crash can happen between any two updates
• Crash between dependent updates leaves structures inconsistent!

CSE506: Operating Systems

Atomicity
• Property that something either happens or it doesn’t

– No partial results

• Desired for disk updates

– Either inode bitmap, inode, and directory are updated
• … or none of them are

• Preventing corruption is fundamentally hard

– If the system is allowed to crash

CSE506: Operating Systems

fsck
• When file system mounted, mark on-disk superblock

– If system is cleanly shut down, last disk write clears this bit

– If the file system isn’t cleanly unmounted, run fsck

• Does linear scan of all bookkeeping

– Checks for (and fixes) inconsistencies

– Puts orphaned pieces into /lost+found

CSE506: Operating Systems

fsck Examples
• Walk directory tree

– Make sure each reachable inode is marked as allocated

• For each inode, check the reference count

– Make sure all referenced blocks are marked as allocated

• Double-check that blocks and inodes are reachable

– Or in free list

• Summary: very expensive, slow scan of file system

CSE506: Operating Systems

Journaling
• Idea: Keep a log of metadata operations

– On system crash, look at data structures that were involved

• Limits the scope of recovery

– Faster fsck
• Cheap enough to be done while mounting

CSE506: Operating Systems

Two Ways to Journal (Log)
• Two main choices for a journaling scheme

– (Borrowed/developed along with databases)

– Often referred to as logging
• Called journaling for filesystems (usually metadata only)

• Undo: write how to go back to sane state

• Redo: write how to go forward to sane state

CSE506: Operating Systems

Undo Logging
1. Write what you are about to do (and how to undo)

2. Make changes on rest of disk

3. Write commit record to log

– Marks logged operations as complete

• If system crashes before log commit record

– Execute undo steps when recovering

• Undo steps must be on disk before other changes

CSE506: Operating Systems

Redo Logging
1. Write planned operations to the log

– At the end, write a commit record

2. Make changes on rest of disk

3. When updates are done, mark log entry obsolete

• If system crashes during (2) or (3)

– Re-execute all steps when recovering

CSE506: Operating Systems

Journaling Used in Practice
• Ext3 uses redo logging

• Easier to defer taking something apart
… than to put it back together later

– Delete something

– Reuse a block for something else
• Before journal entry commits

• Only works if data comfortably fits into memory

– Databases often use undo logging
• Avoid loading and writing large data sets twice

CSE506: Operating Systems

Atomicity Strategies
• Write journal log entry to disk

– Include transaction number (sequence counter)

– Write global counter to indicate log entry was written
• This write is point at which journal is “committed”

– Sometimes called a linearization point

• Either the sequence number is written or not

– Sequence number not written until log entry on disk

• Can also overwrite same spot at the end of log entry

– First write entry with “incomplete” flag

– Second entry with identical contents and “complete” flag

CSE506: Operating Systems

Batching of Journal writes
• Journaling would requires many synchronous writes

– Synchronous writes are expensive

• Can batch multiple transactions into big one

– Assuming no fsync()

– Use a heuristic to decide on transaction size
• Wait up to 5 seconds

• Wait until disk block in the journal is full

• Batching reduces number of synchronous writes

CSE506: Operating Systems

ext4
• ext3 has some limitations

– Ex: Can’t work on large data sets
• Can’t fix without breaking backwards compatibility

• ext4 removes limitations

– Plus adds a few features

CSE506: Operating Systems

Example
• Ext3 limited to 16 TB max size

– 32-bit block numbers (232 * 4k block size)

– Can’t make bigger block sizes on disk

– Can’t fix without breaking backwards compatibility

• Ext4 – 48 bit block numbers

CSE506: Operating Systems

Indirect Blocks vs. Extents
• Instead of representing each block

– Represent contiguous chunks of blocks with an extent

• More efficient for large files

– Ex.: Disk blocks 50—300 represent blocks 0—250 of file
• Vs.: Allocate and initialize 250 slots in an indirect block

• Deletion requires marking 250 slots as free

• Worse for highly fragmented or sparse files

– If no contiguous blocks, need extent for each block

– Basically a more expensive indirect block scheme

CSE506: Operating Systems

Static Inode Allocations
• When ext3 or ext4 file system created

– Create all possible inodes
• Can’t change count after creation

• If need many files, format for many inodes

– Simplicity
• Fixed inode locations allows easy lookup

• Dynamic tracking requires another data structure

– What if that structure gets corrupted?

• Bookkeeping more complicated when blocks change type

– Downsides
• Wasted space if inode count is too high

• Available capacity, but out of space if inode count is too low

CSE506: Operating Systems

Directory Scalability
• ext3 directory can have 32,000 sub-directories/files

– Painfully slow to search
• Just a simple array on disk (linear scan to lookup a file)

• ext4 replaces structure with an HTree

– Hash-based custom BTree

– Relatively flat tree to reduce risk of corruptions

– Big performance wins on large directories – up to 100x

