
CSE506: Operating Systems

CSE 506:
Operating Systems

Threading

CSE506: Operating Systems

Threading Review
ÅMultiple threads of execution in one address space

Åx86 hardware:

ïOne CR3 register and set of page tables
ÅShared by 2+ different contexts (each has RIP, RSP, etc.)

ÅLinux:

ïOne mm_structshared by several task_structs

CSE506: Operating Systems

Threading Libraries
ÅKernel provides basic functionality

ïEx.: create new thread

ÅThreading library (e.g., libpthread) provides nice API

ïThread management (join, cleanup, etc.)

ïSynchronization (mutex, condition variables, etc.)

ïThread-local storage

ÅPart of design is division of labor

ïBetween kernel and library

CSE506: Operating Systems

User vs. Kernel Threading
ÅKernel threading

ïEvery application-level thread is kernel-visible
ÅHas its own task struct

ïCalled 1:1

ÅUser threading

ïMultiple application-level threads (m)
ÅMultiplexed on n kernel-visible threads (m > n)

ïContext switching can be done in user space
ÅJust a matter of saving/restoring all registers (including RSP!)

ïCalled m:n
ÅSpecial case: m:1 (no kernel support)

CSE506: Operating Systems

Tradeoffs of Threading Approaches
ÅContext switching overheads

ÅFiner-grained scheduling control

ÅBlocking I/O

ÅMulti-core

CSE506: Operating Systems

Context Switching Overheads
ÅForking a thread halves your time slice

ïTakes a few hundred cycles to get in/out of kernel
ÅPlus cost of switching a thread

ïTime in the scheduler counts against your timeslice

Å2 threads, 1 CPU

ïRun the context switch code in user space
ÅAvoids trap overheads, etc.

ÅGet more time from the kernel

CSE506: Operating Systems

Finer-Grained Scheduling Control
ÅThread 1 has lock, Thread 2 waiting for lock

ïThread 1’s quantum expired

ïThread 2 spinning until its quantum expires

ïCan donate Thread 2’s quantum to Thread 1?
ÅBoth threads will make faster progress!

ÅMany examples (producer/consumer, barriers, etc.)

ÅDeeper problem:

ïApplication’s data and synchronization unknown to kernel

CSE506: Operating Systems

Blocking I/O
ÅI/O requires going to the kernel

ÅWhen one user thread does I/O

ïAll other user threads in same kernel thread wait

ïSolvable with asyncI/O
ÅMuch more complicated to program

CSE506: Operating Systems

Multi-core
ÅKernel can schedule threads on different cores

ïHigher performance through parallelism

ÅUser-level threads unknown to kernel

ïRestricted to switching within one core

ïm:n libraries can help here
ÅUser code can expect kernel threads to run on different cores

ÅMake things a lot more complicated

CSE506: Operating Systems

User-level threading
ÅUser scheduler creates:

ïAnalog of task struct for each thread
ÅStores register state when preempted

ïStack for each thread

ïSome sort of run queue
ÅSimple list in the (optional) paper

ÅApplication free to use O(1), CFS, round-robin, etc.

CSE506: Operating Systems

User-threading in practice
ÅHas come in and out of vogue

ïCorrelated to efficiency of OS thread create and switch

ÅLinux 2.4 –Threading was really slow

ïUser-level thread packages were hot
ÅCode is really complicated

ïHard to maintain

ïHard to tune

ÅLinux 2.6 –Substantial effort into tuning threads

ïMost JVMs abandoned user-threads
ÅTolerable performance at low complexity

CSE506: Operating Systems

CSE 506:
Operating Systems

Kernel Synchronization

CSE506: Operating Systems

What is Synchronization?
ÅCode on multiple CPUs coordinate their operations

ÅExamples:

ïLocking provides mutual exclusion
ÅCPU A locks CPU B’s run queue to steal tasks

ïOtherwise CPU B may start running a task that CPU A is stealing

ïThreads wait at barrier for completion of computation

ïCoordinating which CPU handles an interrupt

CSE506: Operating Systems

Lock Frequency
ÅModern OS kernel is a complex parallel program

ïArguably the most complex
ÅDatabase community would likely be the only ones to argue

ÅIncludes most common synchronization patterns

ïAnd a few interesting, uncommon ones

CSE506: Operating Systems

Kernel Locking History
ÅTraditionally, didn’t worry about it

ïMost machines were single processor

ÅEventually started supporting multi-processors

ïCalled kernels “SMP” around this time

ïTypically had a few (one?) lock
ÅCalled “Giant” lock

ÅGiant lock became a bottleneck

ïSwitched to fine-grained locking
ÅWith many different types of locks

ÅGrew tools to dynamically detect/fix locking bugs

ïE.g., FreeBSD “WITNESS” infrastructure

CSE506: Operating Systems

Performance Scalability
ÅHow much performance do additional CPUs give?

ïNone: extra CPU is wasted: No scalability

ï2x CPUs doubles work done per time: Perfect scalability

ÅMost software isn’t scalable

ÅMost scalable software isn’t perfectly scalable

ÅHardware matters for scalability

ïWhen OS people say “2x CPUs”
ÅDid they add a chip to another socket with its own memory?

ÅDid they double cores that shares cache with other cores?

ÅDid they enable hyper threads in all cores?

CSE506: Operating Systems

Performance Scalability (Time)

0

2

4

6

8

10

12

1 2 3 4

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

CPUs

Perfect Scalability

Not Scalable

Somewhat scalable
Ideal: Time
halves with

2x CPUS

CSE506: Operating Systems

Performance Scalability (Throughput)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4

P
e

rf
o

rm
an

ce
1

 /
 E

xe
cu

ti
o

n
 T

im
e

 (
s)

CPUs

Perfect Scalability

Not Scalable

Somewhat scalable

Slope =1 ==
perfect
scaling

CSE506: Operating Systems

Coarse-Grained Locking
ÅA single lock for everything

ïIdea: Before touching any shared data, grab the lock

ïProblem: completely unrelated operations serialized
ÅAdding CPUs doesn’t improve performance

CSE506: Operating Systems

Fine-Grained Locking
ÅMany “little” locks for individual data structures

ïGoal: Unrelated activities hold different locks
ÅHence, adding CPUs improves performance

ïCost: complexity of coordinating locks

CSE506: Operating Systems

ÅUnsavory trade-off between complexity & scalability

P
e

rf
o

rm
an

ce

Complexity

Fine-Grained Locking

Coarse-Grained
Locking

Current Reality

CSE506: Operating Systems

How Do Locks Work?
ÅLocks are addresses in shared memory

ïTo check if locked, read value from location

ïTo unlock, write value to location to indicate unlocked

ïTo lock, write value to location to indicate locked
ÅIf already locked, keep reading value until unlockobserved

ÅUse hardware-provided atomic instruction

ïDetermines who wins under contention

ïRequires waiting strategy for the loser(s)

CSE506: Operating Systems

Atomic Instructions
ÅRegular memory accesses don’t work

l ock: movq [lock],% rax

cmpq %rax,1

je lock ;# ñspinò lock

movq 1,[lock]

ÅAtomic Instructionsguarantee atomicity

ïPerform Read, Modify, and Writetogether (RMW)

ïMany flavors in the real world (lockprefix on x86)
ÅCompare and Swap(CAS)

ÅFetch and Add

ÅTest and Set

ÅLoad Linked / Store Conditional

Other CPU may òmovq 1,[lock] ó at same time

CSE506: Operating Systems

Waiting Strategies
ÅSpinning

ïPoll lock in a busy loop

ïWhen lock is free, try to acquire it

ÅBlocking

ïPut process on wait queue and go to sleep
ÅCPU may do useful work

ïWinner (lock holder) wakes up loser(s)
ÅAfter releasing lock

ïSame thing as used to wait on I/O

CSE506: Operating Systems

Which strategy to use?
ÅExpected waiting time vs. time of 2 context switches

ïIf lock will be held a long time, blocking makes sense

ïIf the lock is only held momentarily, spinning makes sense

ÅAdaptive sometimes works

ïTry to spin a bit
ÅIf successful, great

ÅIf unsuccessful, block

ïCan backfire (if spin is never successful)

CSE506: Operating Systems

Reader/Writer Locks
ÅIf everyone is reading, no need to block

ïEveryone reads at the same time

ÅWriters require mutual exclusion

ïFor anyone to write, wait for all readers to give up lock

CSE506: Operating Systems

Linux RW-Spinlocks
ÅLow 24 bits count active readers

ïUnlocked: 0x01000000

ïTo read lock: atomic_dec_unless(count, 0)
Å1 reader: 0x:00ffffff

Å2 readers: 0x00fffffe

ÅEtc.

ÅReaders limited to 2^24

Å25th bit for writer

ïWrite lock –CAS 0x01000000 -> 0
ÅReaders will fail to acquire the lock until we add 0x1000000

CSE506: Operating Systems

Readers Starving Writers
ÅConstant stream of readers starves writer

ÅWe may want to prioritize writers over readers

ïFor instance, when readers are polling for the write

CSE506: Operating Systems

Linux Seqlocks
ÅExplicitly favor writers, potentially starve readers

ÅIdea:

ïAn explicit write lock (one writer at a time)

ïPlus a version number
ÅEach writer increments at beginning andend of critical section

ÅReaders: Check version, read data, check again

ïIf version changed, try again in a loop

ïIf version hasn’t changed and is even, data is safe to use

CSE506: Operating Systems

Seqlock Example

70

% Time for
CSE 506

30

% Time for
All Else

0
Version
Lock

Invariant:
Must add up to

100%

CSE506: Operating Systems

Version
Lock

Seqlock Example

70

% Time for
CSE 506

30

% Time for
All Else

0

Reader:

do {

v = version;

a = cse506;

b = other;

} while (v % 2 == 1 ||

v != version);

Writer:

lock();

version++;

other = 20 ;

cse506 = 80;

version++;

unlock();

1280 20

What if reader
executed now?

CSE506: Operating Systems

Lock Composition
ÅNeed to touch two data structures (A and B)

ïEach is protected by its own lock

ÅWhat could go wrong?

ïDeadlock!

ïThread 0: lock(a); lock(b)

ïThread 1: lock(b); lock(a)

ÅHow to solve?

ïLock ordering

CSE506: Operating Systems

Lock Ordering
ÅA code convention

ÅDevelopers gather, eat lunch, plan order of locks

ïPotentially worse: gather, drink beer, plan order of locks

ÅNothing prevents violating convention

ïResearch topics on making this better:
ÅFinding locking bugs

ÅAutomatically locking things properly

ÅTransactional memory

CSE506: Operating Systems

mm/filemap.c lock ordering
/*

* Lock ordering:

* - >i_mmap_lock (vmtruncate)

* - >private_lock (__ free_pte - >__set_page_dirty_buffers)

* - >swap_lock (exclusive_swap_page , others)

* - >mapping - >tree_lock

* - >i_mutex

* - >i_mmap_lock (truncate - >unmap_mapping_range)

* - >mmap_sem

* - >i_mmap_lock

* - >page_table_lock or pte_lock (various, mainly in memory.c)

* - >mapping - >tree_lock (arch - dependent flush_dcache_mmap_lock)

* - >mmap_sem

* - >lock_page (access_process_vm)

* - >mmap_sem

* - >i_mutex (msync)

* - >i_mutex

* - >i_alloc_sem (various)

* - >inode_lock

* - >sb_lock (fs / fs - writeback.c)

* - >mapping - >tree_lock (__ sync_single_inode)

* - >i_mmap_lock

* - >anon_vma.lock (vma_adjust)

* - >anon_vma.lock

* - >page_table_lock or pte_lock (anon_vma_prepare and various)

* - >page_table_lock or pte_lock

* - >swap_lock (try_to_unmap_one)

* - >private_lock (try_to_unmap_one)

* - >tree_lock (try_to_unmap_one)

* - >zone.lru_lock (follow_page - >mark_page_accessed)

* - >zone.lru_lock (check_pte_range - >isolate_lru_page)

* - >private_lock (page_remove_rmap - >set_page_dirty)

* - >tree_lock (page_remove_rmap - >set_page_dirty)

* - >inode_lock (page_remove_rmap - >set_page_dirty)

* - >inode_lock (zap_pte_range - >set_page_dirty)

* - >private_lock (zap_pte_range - >__set_page_dirty_buffers)

* - >task - >proc_lock

* - >dcache_lock (proc_pid_lookup)

*/

CSE506: Operating Systems

CSE 506:
Operating Systems

MP Scheduling

CSE506: Operating Systems

Symmetric Multi-Processing (SMP)

ÅAll CPUs similar, equally “close” to memory

ÅHorribly abused name by software community

ïUse “SMP” for anything with more than 1 “context”

CPU0 CPU1 CPU2 CPU3

Memory

CSE506: Operating Systems

Multi-core (CMP)

ÅAll CPUs inside a single chip

CPU0 CPU1 CPU2 CPU3

Memory

Node

CSE506: Operating Systems

Non-Uniform Memory Access (NUMA)

ÅWant to keep execution near memory
ïAccessing “remote” memory is more expensive

CPU0 CPU1 CPU2 CPU3

MemoryMemory

Node Node

CSE506: Operating Systems

Hyper-Threading (SMT)
ÅOne core, but multiple contexts

ïWhat’s a context?
ÅA set of register values (including ones like CR3)

ÅOS view: 2 logical CPUs

ï“CPU” is also horribly abused
ÅReally should be “hardware context” or “hardware thread”

ïDoes not duplicate execution resources

ïPrograms on same core may interfere with each other
ÅBut both may run

ï2x slow threads may be better than 1x fast one

CSE506: Operating Systems

Hyper-Threading (SMT)

ÅAll CPUs inside a single chip

CPU0
CPU4

CPU1
CPU5

CPU2
CPU6

CPU3
CPU7

Memory

Node

CSE506: Operating Systems

All Kinds of Parallelism Together

Å2-socket NUMA, w/2 dual-threaded cores per socket

CPU0
CPU4

CPU1
CPU5

CPU2
CPU6

CPU3
CPU7

MemoryMemory

Node 0 Node 1

CSE506: Operating Systems

One set of Run Queues per “CPU”

CPU 0 CPU 1

.

.

.

.

.

.

CPU 1 Needs
More Work!

CSE506: Operating Systems

Rebalancing Tasks
ÅOnce task in one CPU’s runqueue

ïIt stays on that CPU?

ÅWhat if all processes on CPU 0 exit

ïBut all of the processes on CPU 1 fork more children?

ÅWe need to periodically rebalance

ïCPU that runs out of work does the rebalance
Åwork stealing

ÅBalance overheads against benefits

ïFiguring out where to move tasks isn’t free

CSE506: Operating Systems

Scheduling Domains
ÅGeneral abstraction for CPU topology

Å“Tree” of CPUs

ïEach leaf node contains a group of “close” CPUs

ÅWhen a CPU is idle, it triggers rebalance

ïMost rebalancing within the leaf

ïHigher threshold to rebalance across a parent

ÅWhat if all CPUs are busy

ïBut some have fewer running tasks than others?
ÅMight still want to rebalance

ïHeuristics in scheduler to decide when to trigger rebalance

CSE506: Operating Systems

SMP Scheduling Domain

CPU0 CPU1 CPU2 CPU3

Flat, all CPUS
equivalent!

CSE506: Operating Systems

NUMA Scheduling Domains

CPU0 CPU1 CPU2 CPU3

NUMA DOMAIN 0 NUMA DOMAIN 1

CPU0 starts
rebalancing
herefirst

Higher
threshold to

move to
sibling/parent

CSE506: Operating Systems

NUMA + Hyperthreading

CPU0
CPU4

NUMA DOMAIN 1 NUMA DOMAIN 1

CPU1
CPU5

CPU2
CPU6

CPU3
CPU7

Logical
CPU

Physical
CPU

is a sched
domain

CSE506: Operating Systems

Rebalancing Strategy
ÅRead the loadavgof each CPU

ïFind the one with the highest loadavg

ÅFigure out how many tasks we should take

ïIf worth it, take tasks
ÅNeed to lock runqueue

ïIf not, try again later

CSE506: Operating Systems

CSE 506:
Operating Systems

Read-Copy Update

CSE506: Operating Systems

RCU in a nutshell
ÅMany structures mostly read, occasionally written

ÅRW locks allow concurrent reads

ïStill require an atomic decrement of a lock counter

ïAtomic ops are expensive

ÅIdea: Only require locks for writers

ïCarefully update data structure
ÅReaders see consistent views of data

CSE506: Operating Systems

Principle (1/2)
ÅLocks have an acquire and release cost

ïSubstantial, since atomic ops are expensive

ÅFor short critical sections, cost dominates perf.

CSE506: Operating Systems

Principle (2/2)
ÅReader/writer locks allow parallel execution

ïStill serialize increment/decrement of read count
ÅAtomic instructions inherently “serializing”

ïAtomic instructions contend on addresses
ÅContention resolution not free, even in hardware

ÅRead lock becomes a scalability bottleneck

ïEven if data it protects is read 99% of time

CSE506: Operating Systems

Lock-free data structures
ÅSome data structures don’t require locks

ÅThey are difficult to create

ïHighly error prone

ïTry to use existing ones if needed

ÅCan eliminate R/W locks and atomic ops

CSE506: Operating Systems

RCU: Split the difference
ÅHard part of lock-free data is parallel pointer updates

ïConcurrent changes to pointers are hard

ÅRCU: Use locks for hard case

ïWrites take a lock

ïReads don’t take a lock
ÅBut writes are careful to preserve consistency

ïAvoid performance-killing read lock (the common case)

CSE506: Operating Systems

Example: Linked lists

A C E

B

Reader goes to B

B’s next
pointer is

uninitialized;
Reader gets a

page fault

Insert(B)

This implementation
needs a lock

CSE506: Operating Systems

Example: Linked lists

A C E

B

Reader goes to C or B-
--either is ok

Insert(B)

CSE506: Operating Systems

Example recap
ÅFirst create node B

ïSet up all outgoing pointers

ÅThen we overwrite pointer from A

ïNo atomic instruction or reader lock needed
ÅEither traversal is safe

ÅReader can never follow a bad pointer

ïWriters still serialize using a lock

CSE506: Operating Systems

Example 2: Linked lists

A C E

Reader may still be
looking at C. When

can we delete?

Delete (C)

CSE506: Operating Systems

Problem
ÅLogically remove node by making it unreachable

ïNo pointers to this node in the list

ÅEventually need to free the node’s memory

ïWhen is this safe?

CSE506: Operating Systems

Worst-case scenario
ÅReader follows pointer to node X (about to be freed)

ÅAnother CPU frees X

ÅX is reallocated and overwritten with other data

ÅReader interprets bytes in X->next as pointer

ïPage fault in kernel

CSE506: Operating Systems

Quiescence
ÅTrick: Don’t allow process to sleep in RCU traversal

ïIncludes kernel preemption, I/O waiting, etc.

ÅIf every CPU has called schedule() (quiesced)

ïIt is safe to free the node
ÅBecause schedule() can’t be called in the middle of traversal

ÅEach CPU counts number of schedule() calls

ïMaintain list of items to free
ÅRecord timestamp on each CPU

ïWait for each CPU to call schedule
ÅDo the free

CSE506: Operating Systems

Big Picture
ÅCarefully designed data structures

ïReaders always see consistent view

ÅLow-level “helper” functions encapsulate complexity

ïMemory barriers

ïQuiescence

RCU “library”

Hash
List

Pending
Signals

CSE506: Operating Systems

Linux API
ÅDrop in replacement for read_lock:

ïrcu_read_lock()

Årcu_assign_pointer() and rcu_dereference_pointer()

ïStill need special assignment to ensure consistency

Åcall_rcu(object, delete_fn) to do deferred deletion

