Q| stony Brook University CSE506: Operating Systems

CSE 506:

Operating Systems
Threading

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Threading Review

A Multiple threads of execution in one address space

A x86 hardware:

I One CR3 register and set of page tables
A Shared by 2+ different contexts (each has RIP, RSP, etc.)

A Linux;
I Onemm_structshared by severahsk structs

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Threading Libraries

A Kernel provides basic functionality
I EX.: create new thread
A Threading library (e.glippthread) provides nice API
I Thread management (join, cleanup, etc.)
I Synchronizationnqutex, condition variables, etc.)
I Threadlocal storage
A Part of design is division of labor
I Between kernel and library

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

User vs. Kernel Threading

A Kernel threading

I Every applicatiosevel thread is kernelisible
A Has its owrtask struct

I Calledl:1
A User threading

I Multiple applicationlevel threads (m)

A Multiplexed on n kernevisible threads (m > n)
I Context switching can be done in user space

A Just a matter of saving/restoriral registers (including RSP!)
I Calledm:n

A Special casen:1 (no kernel support)

q\\\\ Stony Brook University CSE506: Operating Systems

Tradeoffs of Threading Approaches

A Context switching overheads

A Finergrained scheduling control
A Blocking 1/0

A Multi-core

q\\\\ Stony Brook University CSE506: Operating Systems

Context Switching Overheads

A Forking a thread halves your time slice
I Takes a few hundred cycles to get in/fout of kernel
A Plus cost of switching a thread
I Time in the scheduler counts against yaioreslice

A 2 threads, 1 CPU

I Run the context switch code in user space
A Avoids trap overheads, etc.
A Get more time from the kernel

q\\\\ Stony Brook University CSE506: Operating Systems

FinerGrained Scheduling Control

A Thread 1 has lock, Thread 2 waiting for lock
I Thread 1's gqguantum expired
I Thread 2 spinning until its quantum expires

I Can donate Thread 2's qguan
A Both threads will make faster progress!

A Many examples (producer/consumer, barriers, etc.)

A Deeper problem:
I Appl i cation’s data and syn

q\\\\ Stony Brook University CSE506: Operating Systems

Blocking I/O

A 1/0 requires going to the kernel

A When one user thread does I/O
T All other user threads in same kernel thread wait

I Solvable withasyncl/O
A Much more complicated to program

q\\\\ Stony Brook University CSE506: Operating Systems

Multi-core

A Kernel can schedule threads on different cores
I Higher performance through parallelism

A Usetlevel threads unknown to kernel
I Restricted to switching within one core

I m:n libraries can help here
A User code can expect kernel threads to run on different cores
A Make things a lot more complicated

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Userlevel threading

A User scheduler creates:
I Analog of tasistructfor each thread
A Stores register state when preempted

I Stack for each thread

I Some sort of run queue
A Simple list in the (optional) paper
A Application free to use O(1), CFS, rowalin, etc.

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Userthreading In practice

A Has come in and out of vogue
I Correlated to efficiency of OS thread create and switch

A Linux 2.4- Threading was really slow

I Userlevel thread packages were hot

A Code is really complicated
I Hard to maintain
I Hard to tune

A Linux 2.6- Substantial effort into tuning threads

I Most JVMs abandoned uséireads
A Tolerable performance at low complexity

Q| stony Brook University CSE506: Operating Systems

CSE 506:
Operating Systems

Kernel Synchronization

q\\\\ Stony Brook University CSE506: Operating Systems

What Is Synchronization?

A Code on multiple CPUs coordinate their operations

A Examples:

I Locking provides mutual exclusion

ACPU A |l ocks CPU B’'s run queue
I Otherwise CPU B may start running a task that CPU A is stealing

I Threads wait at barrier for completion of computation
I Coordinating which CPU handles an interrupt

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Lock Frequency

A Modern OS kernel is a complex parallel program

I Arguably the most complex
A Database community would likely be the only ones to argue

A Includes most common synchronization patterns
I And a few interesting, uncommon ones

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Kernel Locking History

ATraditionally, didn’t wc
I Most machines were single processor

A Eventually started supporting multirocessors

I Call ed kernels *“ SMP” ar oun
I Typically had a few (one?) lock
ACal IGed “l oc k

A Giant lock became a bottleneck

I Switched to finegrained locking
A With many different types of locks

A Grew tools to dynamically detect/fix locking bugs
iE.g., FreeBSD “WI TNESS” in

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Performance Scalabllity

A How much performance do additional CPUs give?

I None:extra CPU ig/asted: No scalability

I 2Xx CPUs doubles work done per time: Perfect scalability
AMost software isn’t scal
AMost scal able software i

A Hardware matters for scalability

I When OS people say “2x CPU

A Did they add a chip to another socket with its own memory?
A Did they double cores that shares cache with other cores?
A Did they enable hyper threads in all cores?

e NSNS e, ., "
Q| stony Brook University CSE506: Operating Systems

Performance Scalability (Time)

12

10

—=Perfect Scalability
—=Not Scalable

Execution Time (s)

' g — hat scalabl
ldeal: Time Somewhat scalable

halves with
2X CPUS

e NSNS e, ., "
Q| stony Brook University CSE506: Operating Systems

Performance Scalability (Throughput)

Performance
1 / Execution Time (s

0.45
0.4
—~0.35

o - O
o © L © v ©
©O g1 U1 N O W

Slope =1 ==
perfect
scaling

—=Perfect Scalability

—=Not Scalable

—=Somewhat scalable

q\\\\ Stony Brook University CSE506: Operating Systems

CoarseGrained Locking

A A single lock for everything
I ldea: Before touching any shared data, grab the lock
I Problem: completely unrelated operatiossrialized

AAdding CPUs doesn’t improve pe

q\\\\ Stony Brook University CSE506: Operating Systems

FineGrained Locking

AMany “little” |l ocks for

I Goal: Unrelated activities hold different locks
A Hence, adding CPUs improves performance

I Cost: complexity of coordinating locks

Q| stony Brook University CSE506: Operating Systems
Current Reality

FineGrained Locking

Performance

CoarseGrained
Locking

Complexity

A Unsavonytrade-off between complexity& scalability

q\\\\ Stony Brook University CSE506: Operating Systems

How Do Locks Work?

A Locks are addressesshared memory
I To check if locked, read value from location
T To unlock, write value to location to indicate unlocked

I To lock, write value to location to indicate locked
A If already locked, keep reading value until unlobkerved

A Use hardwareorovidedatomic instruction
I Determines who wins under contention
I Requires waiting strategy for the loser(s)

q\\\\ Stony Brook University CSE506: Operating Systems

Atomic Instructions

AReguIar me mor y acCesSsesS
| ock: movq [lock],% , rax
cmpqg %rax,1
je lock H#
movq 1,[lock]

A Atomic Instructiongguarantee atomicity
I PerformRead, Modify, and Writéogether (RMW)

I Many flavors in the real worlddck prefix on x86)
A Compare and SwafCAS)
A Fetch and Add
A Test and Set
A Load Linked / Store Conditional

Aspino | ock

q\\\\ Stony Brook University CSE506: Operating Systems

Waiting Strategies

A Spinning
I Poll lock in a busy loop
I When lock is free, try to acquire it

A Blocking

I Put process on wait queue and go to sleep
A CPU may do useful work

I Winner (lock holder) wakes up loser(s)
A After releasing lock

I Same thing as used to wait on 1/O

q\\\\ Stony Brook University CSE506: Operating Systems

Which strategy to use?

A Expected waiting time vs. time of 2 context switches
I If lock will be held a long time, blocking makes sense
I If the lock is only held momentarily, spinning makes sense

A Adaptive sometimes works
I Try to spin a bit
A If successful, great
A If unsuccessful, block

I Can backfire (if spin is never successful)

q\\\\ Stony Brook University CSE506: Operating Systems

Reader/Writer Locks

A If everyone is reading, no need to block
I Everyone reads at the same time

A Writers require mutual exclusion
I For anyone to write, wait for all readers to give up lock

q\\\\ Stony Brook University CSE506: Operating Systems

Linux RWSpinlocks

A Low 24 bits count active readers
T Unlocked: 0x01000000

I To read lockatomic_dec_unlegsount, 0)
A 1 reader: 0x:0Offffff
A 2 readers: 0x00fffffe
A Etc.
A Readers limited to 224

A 25th bit for writer

I Write lock— CAS 0x0100006¢ 0
A Readers will fail to acquire the lock until we add 0x1000000

q\\\\ Stony Brook University CSE506: Operating Systems

Readers Starving Writers

A Constant stream of readers starves writer

A We may want to prioritize writers over readers
I For instance, when readers are polling for the write

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

LinuxSeqlocks

A Explicitly favor writers, potentially starve readers
A ldea:

I An explicit write lock (one writer at a time)

I Plus a version number
A Each writer increments at beginniagd end of critical section

A Readers: Check version, read data, check again
I If version changed, try again in a loop
Il f version hasn’t changed

Q' stony Brook University CSE506: Operating Systems

Seglock Example

Version

% Time fory % Time for Lock

CSE 506 All Else

Invariant:

Must add up to
100%

Q' stony Brook University CSE506: Operating Systems

Seglock Example

Version
Lock

% Time for % Time for
CSE 506 All Else
What If reader

Reader: executed now? Writer:
do { lock();
V = version; version++;
a = cse506:; other = 20
b = other: cse506 = 80;
}while (V% 2==1|| version++;
v I= version); unlock();

q\\\\ Stony Brook University CSE506: Operating Systems

Lock Composition

A Need to touch two data structures (A and B)
I Each is protected by its own lock

A What could go wrong?
I Deadlock!
I Thread 0O: lock(a); lock(b)
I Thread 1: lock(b); lock(a)
A How to solve?
I Lock ordering

q\\\\ Stony Brook University CSE506: Operating Systems

Lock Ordering

A A code convention

A Developers gather, eat lunch, plan order of locks
I Potentially worse: gather, drink beer, plan order of locks

A Nothing prevents violating convention

I Research topics on making this better:
A Finding locking bugs
A Automatically locking things properly
A Transactional memory

e 777NN N — —— —
\\\w Stony Brook University CSE506: Operating Systems

mm/filemap.c lock ordering

/*
* Lock ordering:
* ->i_mmap_lock (vmtruncate)
* - >private_lock (__free_pte ->__set page_dirty_buffers)
* - >swap_lock (exclusive_swap_page , others)
* - >mapping - >tree_lock
* ->|_mutex
* - >_mmap_lock (truncate - >unmap_mapping_range)
* ->mmap_sem
* - >_mmap_lock
* - >page_table_lock or pte_lock (various, mainly in memory.c)
* - >mapping - >tree_lock (arch - dependent flush_dcache_mmap_lock)
* ->mmap_sem
* - >lock_page (access_process_vm)
* ->mmap_sem
* - >i_mutex (msync)
* ->|_mutex
* ->i_alloc_sem (various)
* ->inode_lock
* ->sb_lock (fs / fs - writeback.c)
* - >mapping - >tree_lock (__sync_single_inode)
* ->_mmap_lock
* - >anon_vma.lock (vma_adjust)
* ->anon_vma.lock
* - >page_table_lock or pte_lock (anon_vma_prepare and various)
* ->page_table_lock or pte_lock
* - >swap_lock (try_to_unmap_one)
* - >private_lock (try_to_unmap_one)
* - >tree_lock (try_to_unmap_one)
* - >zone.lru_lock (follow_page ->mark_page _accessed)
* - >zone.lru_lock (check_pte_range - >isolate_lru_page)
* - >private_lock (page_remove_rmap ->set page_dirty)
* - >tree_lock (page_remove_rmap ->set page_dirty)
* - >inode_lock (page_remove_rmap ->set page_dirty)
* - >inode_lock (zap_pte_range - >set _page dirty)
* - >private_lock (zap_pte_range ->__set page_dirty buffers)
* ->task - >proc_lock
* - >dcache_lock (proc_pid_lookup)

*

Q| stony Brook University CSE506: Operating Systems

CSE 506:

Operating Systems
MP Scheduling

Q' stony Brook University CSE506: Operating Systems

Symmetric MultiProcessing (SMP)

AAll CPUs similar, equall

A Horribly abused name by software community
I Use “SMP” for anything wit

Q' stony Brook University CSE506: Operating Systems

Multi-core (CMP)

A All CPUs inside a single chip

Q' stony Brook University CSE506: Operating Systems

Non-Uniform Memory Access (NUMA)

Node Node

|
|
|
|
|
|
|
|
|
|
|
|
|
|
-l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
wl

h_______

A Want to keep execution near memory
I Accessing “remote” memory

q\\\\ Stony Brook University CSE506: Operating Systems

HyperThreading (SMT)

A One core, but multiple contexts

I'What ' s a context ?
A A set of register values (including ones like CR3)

A OS view: 2 logical CPUs

I“CPU” 1s also horribly abu
AReally should be “hardware cor

I Doesnot duplicate execution resources

I Programs on same core may interfere with each other

A But both may run
I 2x slow threads may be better than 1x fast one

Q' stony Brook University CSE506: Operating Systems

HyperThreading (SMT)

A All CPUs inside a single chip

q\\\‘ Stony Brook University

CSE506: Operating Systems

All Kinds of Parallelism Together

Node O

—_—_—_—_—_—_—_q

Node 1

F_____________q

| =

| ™

A 2-socket NUMA, w/2 duahreaded cores per socket

Q' stony Brook University CSE506: Operating Systems

One set O f Run Q

CPU O CPU 1

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Rebalancing Tasks

AOnce task ringuekene CPU’ s
I It stays on that CPU?

A What if all processes on CPU 0 exit
I But all of the processes on CPU 1 fork more children?

A We need to periodically rebalance

I CPU that runs out of work does the rebalance
A work stealing

A Balance overheads against benefits
I Figuring out where to move

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Scheduling Domains

A General abstraction for CPU topology

A“ Tree” of CPUs
T Each | eaf node contail ns a

A When a CPU is idle, it triggers rebalance
I Most rebalancing within the leaf
I Higher threshold to rebalance across a parent

A What if all CPUs are busy

I But some have fewer running tasks than others?

A Might still want to rebalance
I Heuristics in scheduler to decide when to trigger rebalance

Q' stony Brook University CSE506: Operating Systems

SMP Scheduling Domain

Q' stony Brook University CSE506: Operating Systems

NUMA Scheduling Domains

NUMA | JOMAML@ \

Q' stony Brook University CSE506: Operating Systems

NUMA +Hyperthreading

k 4
ﬂ

]

q\\\\ Stony Brook University CSE506: Operating Systems

Rebalancing Strategy

A Read thdoadavgof each CPU
I Find the one with the highe$badavg

A Figure out how many tasks we should take

I If worth it, take tasks
A Need to lockunqueue

I If not, try again later

Q| stony Brook University CSE506: Operating Systems

CSE 506:

Operating Systems
ReadCopy Update

q\\\\ Stony Brook University CSE506: Operating Systems

RCU In a nutshell

A Many structures mostly read, occasionally written

A RW locks allow concurrent reads
I Still require an atomic decrement of a lock counter
I Atomic ops are expensive

A ldea: Only require locks for writers

I Carefully update data structure
A Readers see consistent views of data

q\\\\ Stony Brook University CSE506: Operating Systems

Principle (1/2)
A Locks have an acquire and release cost
I Substantial, since atomic ops are expensive

A For short critical sections, cost dominajeesf

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Principle (2/2)
A Reader/writer locks allow parallel execution

I Still serialize increment/decrement of read count
AAt omic instructions inherentl.y

T Atomic instructions contend on addresses
A Contention resolution not free, even in hardware

A Read lock becomes a scalability bottleneck
I Even if data it protects is read 99% of time

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Lockfree data structures

ASome data structures dort
A They are difficult to create

I Highly error prone

I Try to use existing ones if needed
A Can eliminate R/W locks and atomic ops

q\\\\ Stony Brook University CSE506: Operating Systems

RCU: Split the difference

A Hardpart of lockfree data is parallel pointer updates
I Concurrent changes to pointers are hard

A RCU: Use locks for hard case

T Writes take a lock

I Reads don’t take a | ock
A But writes are careful to preserve consistency

I Avoid performancekilling read lock (the common case)

Q' stony Brook University CSE506: Operating Systems

Example: Linked lists
This implementation
needsalock

A—CE

B’ s n @

pointer Is
uninitialized;
Reader gets a
Reader goes to B page fault

Q' stony Brook University CSE506: Operating Systems

Example: Linked lists

Insert(B)

Reader goes to C or [
--either Is ok

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Example recap

A First create node B
I Set up all outgoing pointers

A Then we overwrite pointer from A

T No atomic instruction or reader lock needed
A Either traversal is safe

A Reader can never follow a bad pointer
I Writers still serialize using a lock

Q' stony Brook University CSE506: Operating Systems

Example 2: Linked lists

Delete (C)

Reader may still be
looking at C. When
can we delete?

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Problem

A Logically remove node by making it unreachable
I No pointers to this node in the list

AEventually need to free
I When is this safe?

q\\\\ Stony Brook University CSE506: Operating Systems

Worst-case scenario

A Reader follows pointer to node X (about to be freed)
A Another CPU frees X
A X is reallocated and overwritten with other data

A Reader interprets bytes in-next as pointer
I Page fault in kernel

q\\\\ Stony Brook University CSE506: Operating Systems

Quiescence

ATrick: Don’'t allow proce
I Includes kernel preemption, I/O waliting, etc.

A If every CPU has called schedulg(i€¢sced

I It is safe to free the node
ABecause schedule() can’'t be ce

A Each CPU counts number of schedule() calls

I Maintain list of items to free
A Record timestamp on each CPU

T Walt for each CPU to call schedule
A Do the free

e NSNS e, ., "
Q' stony Brook University CSE506: Operating Systems

Big Picture

A Carefully designed data structures
I Readers always see consistent view

AlLowl evel “helper” functi c
I Memory barriers
I Quiescence

q\\\\ Stony Brook University CSE506: Operating Systems

Linux API

A Drop in replacement foread_lock
I rcu_read_locK

A rcu_assign_point€) andrcu_dereference pointd)
I Still need special assignment to ensure consistency

A call_rcyobject,delete fr) to do deferred deletion

