
CSE506: Operating Systems

CSE 506:
Operating Systems

Virtual File System

CSE506: Operating Systems

History
• Early OSes provided a single file system

– In general, system was tailored to target hardware

• In the early 80s, desire for more than one file system

– Any guesses why?

– Networked file systems
• Sharing parts of a file system across a network of workstations

CSE506: Operating Systems

Modern VFS
• Dozens of supported file systems

– Allows new features and designs transparent to apps

– Interoperability with removable media and other OSes

• Independent layer from backing storage

– In-memory file systems (ramdisks)

– Pseudo file systems used for configuration
• (/proc, /dev, …) only backed by kernel data structures

• And, of course, networked file system support

CSE506: Operating Systems

More detailed diagram

VFS

ext4

Page Cache

Block Device

IO Scheduler

Driver

Disk

Kernel

User

btrfs fat32 nfs

Network

CSE506: Operating Systems

User’s perspective
• Single programming interface

– (POSIX file system calls – open, read, write, etc.)

• Single file system tree

– Remote FS can be transparently mounted (e.g., at /home)

• Alternative: Custom library for each file system

– Much more trouble for the programmer

CSE506: Operating Systems

What the VFS does
• The VFS is a substantial piece of code

– not just an API wrapper

• Caches file system metadata (e.g., names, attributes)

– Coordinates data caching with the page cache

• Enforces a common access control model

• Implements complex, common routines

– path lookup

– opening files

– file handle management

CSE506: Operating Systems

FS Developer’s Perspective
• FS developer responsible for…

– Implementing standard objects/functions called by the VFS
• Primarily populating in-memory objects

– Typically from stable storage

• Sometimes writing them back

• Can use block device interfaces to schedule disk I/O

– And page cache functions

– And some VFS helpers

• Analogous to implementing Java abstract classes

CSE506: Operating Systems

High-level FS dev. tasks
• Translate between VFS objects and backing storage

(whether device, remote system, or other/none)

– Potentially includes requesting I/O

• Read and write file pages

• VFS doesn’t prescribe all aspects of FS design

– More of a lowest common denominator

CSE506: Operating Systems

Core VFS abstractions
• super block – FS-global data

– Early/many file systems put this as first block of partition

• inode (index node) – metadata for one file

• dentry (directory entry) –name to inode mapping

• file – file descriptor – dentry and cursor (file offset)

CSE506: Operating Systems

Super blocks
• SB + inodes are extended by file system developer

• Stores all FS-global data

– Opaque pointer (s_fs_info) for FS-specific data

• Includes many hooks

– Tasks such as creating or destroying inodes

• Dirty flag for when it needs to be synced with disk

• Kernel keeps a circular list of all of these

– When there are multiple FSes (in today’s systems: always)

CSE506: Operating Systems

Inode
• The second object extended by the FS

– Huge – more fields than we can talk about

• Tracks:

– File attributes: permissions, size, modification time, etc.

– File contents:
• Address space for contents cached in memory

• Low-level file system stores block locations on disk

– Flags, including dirty inode and dirty data

CSE506: Operating Systems

Inode history
• Original file systems stored files at fixed intervals

– If you knew the file’s index number
• you could find its metadata on disk

– Think of a portion of the disk as a big array of metadata

• Hence, the name ‘index node’

• Original VFS design called them ‘vnode’

– virtual node (perhaps more appropriately)

– Linux uses the name inode

CSE506: Operating Systems

Embedded inodes
• Many FSes embed VFS inode in FS-specific inode

struct myfs_inode {

int ondisk_blocks[];

/* other stuff*/

struct inode vfs_inode;

}

• Why?

– Finding the low-level from inode is simple
• Compiler translates references to simple math

CSE506: Operating Systems

Linking
• An inode uniquely identifies a file for its lifespan

– Does not change when renamed

• Model: inode tracks “links” or references on disk

– Count “1” for every reference on disk

– Created by file names in a directory that point to the inode
• What happens when a file is renamed?

– renaming file temporarily increases link count and then lowers it
(at least in some implementations)

• When link count is zero, inode (and contents) deleted

– There is no ‘delete’ system call, only ‘unlink’

CSE506: Operating Systems

Linking, cont.
• “Hard” link (link() system call/ln utility)

– Creates a new name for the same inode
• Opening either name opens the same file

– This is not a copy

• Open files create an in-memory reference to a file

– If an open file is unlinked, the directory entry is deleted
• inode and data retained until all in-memory references are deleted

– Famous feature: rm on large open file when out of quota

• Still out of quota

CSE506: Operating Systems

Common trick for temporary files
• How to clean up temp file when program crashes?

– create (1 link)

– open (1 link, 1 ref)

– unlink (0 link)

– File gets cleaned up when program dies
• Kernel removes last reference on exit

• Happens regardless if exit is clean or not

• Except if the kernel crashes / power is lost

– Need something like fsck to “clean up” inodes without dentries

» Dropped into lost+found directory

CSE506: Operating Systems

inode ‘stats’
• The ‘stat’ word encodes both permissions and type

• High bits encode the type:

– regular file, directory, pipe, device, socket, etc…

– Unix: Everything’s a file! VFS involved even with sockets!

• Lower bits encode permissions:

– 3 bits for each of User, Group, Other + 3 special bits

– Bits: 2 = read, 1 = write, 0 = execute

– Ex: 750 – User RWX, Group RX, Other nothing
• How about the “sticky” bit? “suid” bit?

– chmod has more pleasant syntax [ugo][+-][rwx]

CSE506: Operating Systems

Special bits
• For directories, ‘Execute’ means search

– X-only allows to find readable subdirectories or files
• Can’t enumerate the contents

• Useful for sharing files in your home directory

– Without sharing your home directory contents

• Setuid bit

– Program executes with owner’s UID

– Crude form of permission delegation

CSE506: Operating Systems

More special bits
• Group inheritance bit

– When I create a file, it is owned by my default group

– When I create in a ‘g+s’ directory, directory group owns file
• Useful for things like shared git repositories

• Sticky bit

– Prevents non-owners from deleting or renaming files
• Ex: CSE506 submission directory

CSE506: Operating Systems

File objects
• Represent an open file; point to a dentry and cursor

– Each process has a table of pointers to them

– The int fd returned by open is an offset into this table

• VFS-only abstractions

– FS doesn’t track which process has a reference to a file

• Files have a reference count. Why?

– Fork also copies the file handles
• Particularly important for stdin, stdout, stderr

– If child reads from the handle, it advances (shared) cursor
• These days, hard to tell if this is a “feature” or a “bug”

CSE506: Operating Systems

File handle games
• dup(), dup2()– Copy a file handle

– Creates 2 table entries for same file struct
• Increments the reference count

• seek() – adjust the cursor position

– Back when files were on tape...

• fcntl() – Set flags on file (ioctl() for inodes)

– CLOSE_ON_EXEC – bit prevents inheritance on exec()
• Set by open() or fcntl()

CSE506: Operating Systems

Dentries
• These store:

– A file name

– A link to an inode

– A parent ptr (null for root of file system)

• Ex: /home/myuser/vfs.pptx may have 4 dentries:

– /, home, myuser, and vfs.pptx

– Parent ptr distinguishes /home/myuser from /tmp/myuser

• Also VFS-only abstraction

– Although inode hooks on directories can populate them

CSE506: Operating Systems

Why dentries?
• Simple directory model can treat it as a file

– Contents are a list of <name, inode> tuples

• Why not just use the page cache?

– FS directory tree traversal very common
• Optimize with special data structures

• No need to re-parse and traverse on-disk layout format

• The dentry cache is a complex data structure

– We will discuss in more detail later

CSE506: Operating Systems

Symbolic Links
• Special file type that stores a string

– String usually assumed to be a filename

– Created with symlink() system call

• How different from a hard link

– Completely

– Doesn’t raise the link count of the file

– Can be “broken,” or point to a missing file (just a string)

• Sometimes abused to store short strings
[myself@newcastle ~/tmp]% ln -s "silly example" mydata

[myself@newcastle ~/tmp]% ls -l

lrwxrwxrwx 1 myself mygroup 23 Oct 24 02:42 mydata -> silly example

CSE506: Operating Systems

How does a text editor save a file?
• Hint: don’t want half-written file in case of crash

– Create a backup (using open)

– Write the full backup (using read old/ write new)

– Close both

– Do a rename(old, new) to atomically replace

CSE506: Operating Systems

Quick review: dentry
• What purpose does a dentry serve?

– Maps a path name to an inode
• More in 2 slides on how to find a dentry

• dentries are cached in memory

– Only “recently” accessed parts of dir are in memory
• Others may need to be read from disk

– dentries can be freed to reclaim memory (like pages)

CSE506: Operating Systems

dentry Caching
• 3 cases for a dentry:

– In memory (exists)

– Not in memory (doesn’t exist)

– Not in memory (on disk/evicted for space or never used)

• How to distinguish last 2 cases?

– Case 2 can generate a lot of needless disk traffic

– “Negative” dentry – Dentry with a NULL inode pointer

CSE506: Operating Systems

dentry Tracking
• dentries are stored in four data structures:

– A hash table (for quick lookup)

– A LRU list (for freeing cache space wisely)

– A child list of subdirectories (mainly for freeing)

– An alias list (to do reverse mapping of inode -> dentries)
• Recall that many names can point to one inode

CSE506: Operating Systems

Summary of open() Implementation
• Key kernel tasks:

– Map a human-readable path name to an inode
• Check access permissions, from / to the file

– Possibly create or truncate the file (O_CREAT, O_TRUNC)

– Create a file struct
• Allocate a descriptor

– Point descriptor at file struct

– Return descriptor

CSE506: Operating Systems

open() arguments
int open(char *path, int flags, int mode);

• Path: file name

• Flags: many (see manual page)

• Mode: If creating file, what perms? (e.g., 0755)

• Return value: File handle index (>= 0 on success)

– Or (0 –errno) on failure

CSE506: Operating Systems

Absolute vs. Relative Paths
• Each process has root and working directories

– Stored in pcb->root (or pcb->fs) and pcb->cwd
• These are dentry pointers (not strings)

• Why store a current root directory?
– Some programs are “chroot jailed”

• Should not be able to access anything outside of the jail

CSE506: Operating Systems

More on paths
• An absolute path starts with the ‘/’ character

– E.g., /home/myself/foo.txt, /lib/libc.so

• A relative path starts with anything else:

– E.g., vfs.pptx, ../../etc/apache2.conf

• First character dictates where to start searching

– Only two options: root (absolute) or cwd (relative)

CSE506: Operating Systems

Search
• Execute in a loop looking for next piece

– Treat ‘/’ character as component delimiter

– Each iteration looks up part of the path

• Ex: ‘/home/myself/foo’ would look up…

– ‘home’, ‘myself’, then ‘foo’, starting at ‘/’

CSE506: Operating Systems

Iteration 1
• For searched dentry (/), dereference the inode

• Check access permission (mode is stored in inode)
– Use permission() function pointer on inode

• Can be overridden by a file system

• If ok, look at next path component (/home)

CSE506: Operating Systems

Detail (2)
• Some special cases:

– If next component is a ‘.’, just skip it

– If next component is a ‘..’, move up to parent
• Catch special case where current dentry is root

– Treat this as a no-op

• If not a ‘.’ or ‘..’:
– Compute a hash value to find bucket in d_hash table

– Hash of path from root (e.g., ‘/home/foo’, not ‘foo’)

– Search the d_hash bucket at this hash value

CSE506: Operating Systems

Detail (3)
• If no dentry in the hash bucket

– Call lookup() method on parent inode (provided by FS)

• Probably will read the dentry from disk

– Or the network, or kernel data structures, …

• If dentry found, check if it is a symlink

– If so, call inode->readlink() (also provided by FS)
• Get the path stored in the symlink

– Then continue next iteration
• First char decides to start at root or at cwd again

• If not a symlink, check if it is a directory

– If not a directory and not last element, we have a bad path

CSE506: Operating Systems

Iteration 2
• We have dentry/inode for /home, now finding myself

• Check permission in /home

• Hash /home/myself, find dentry

• Confirm not ‘.’, ‘..’, or a symlink

• Confirm is a directory

• Repeat with dentry/inode for /home/myself

– Search for foo

CSE506: Operating Systems

Symlink Loops
• What if /home/myself/foo is a symlink to ‘foo’?

– Kernel gets in an infinite loop

• Can be more subtle:

– foo -> bar

– bar -> baz

– baz -> foo

CSE506: Operating Systems

Preventing infinite symlink recursion
• More heuristics

• If more than 40 symlinks resolved

– quit with –ELOOP

• If more than 6 symlinks in a row without non-symlink

– quit with –ELOOP

• Can prevent execution of legitimate 41 symlink path

– Better than an infinite loop

CSE506: Operating Systems

Back to open()
• Key tasks:

– Map a human-readable path name to an inode
• Check access permissions, from / to the file

– Possibly create or truncate the file (O_CREAT, O_TRUNC)

– Create a file descriptor

• We’ve seen how first few steps are done

CSE506: Operating Systems

Creation
• Handled as part of search; last item is special

– Usually, if an item isn’t found, search returns an error

• If last item (foo) exists and O_EXCL flag set, fail

– If O_EXCL is not set, return existing dentry

• If it does not exist, call FS create method

– Make a new inode and dentry
• Then open it

• Why is Create a part of Open?

– Avoid races in “if (!exist()) create(); open();”

CSE506: Operating Systems

File descriptors
• Descriptors index into per-process array of struct file

• struct file stores

– dentry pointer

– cursor into the file

– permissions (cache of inode’s value)

– reference count

• open() marks a free table entry as ‘in use’

– If full, create a new table 2x the size and copies old one

– Allocate a new file struct and put a pointer in table

CSE506: Operating Systems

Once open(), can read()
int read(int fd, void *buf, size_t bytes);

• fd: File descriptor index

• buf: Buffer kernel writes the read data into

• bytes: Number of bytes requested

• Returns: bytes read (if >= 0), or –errno

CSE506: Operating Systems

Summary of read() Implementation
• Translate int fd to a struct file (if valid)

– Check cached permissions in the file

– Increase reference count
• FS read() routine might context switch away temporarily

• Do read() routine associated with file (FS-specific)

– Probe the page cache for data

– Access storage if needed
• Can even do both: read() is allowed to return less than requested

• Drop refcount, return bytes read

CSE506: Operating Systems

Copying data to user
• Kernel needs to be sure that buffer is a valid address

– Validate that buf is a valid address
• And that buf size>=bytes requested

• How to do it?

– Can walk appropriate page table entries

• What could go wrong?

– Concurrent munmap from another thread

– Page might be lazy allocated by kernel

CSE506: Operating Systems

Trick for Validating User Buffers
• What if we don’t do all of this validation?

– Looks like kernel had a page fault

– Usually really bad

• Idea: set kernel flag in_copy_to_user

– If a page fault happens for a user address, don’t panic
• Just handle demand faults

– If the page is really bad
• Set indicator that write loop should be aborted

– Indicator can be left in a register

» Tricky context switch code while exiting the page fault

CSE506: Operating Systems

Zero-Copy
• How many memory copies needed for a large read?

– One in page cache

– One in user space

• What if we then write this to network?

– One more for NIC driver

• Avoided extra copies if read/write is page-granularity

– Steal physical page containing buffer from process

– Replace it with physical page from page cache
• Mark it as COW in process, just in case

– Avoids unnecessary copies in common case

