
CSE506: Operating Systems

CSE 506:
Operating Systems

Networking & NFS

CSE506: Operating Systems

4 to 7 layer diagram

CSE506: Operating Systems

TCP/IP Reality
•The OSI model is great for undergrad courses

•TCP/IP (or UDP) is what the majority of world uses

CSE506: Operating Systems

Ethernet (or 802.2 or 802.3)
•LAN (Local Area Network) connection

•Simple packet layout:
–Header

•type

•source MAC address

•destination MAC address

•length (up to 1500 bytes regular, up to 9000 bytes “jumbo”)

•…

–Data block (payload)

–Checksum

•Higher-level protocols “nested” inside payload

•“Unreliable” – no guarantee packet will be delivered

CSE506: Operating Systems

Ethernet Details
•Each device listens to all traffic

–Hardware filters out traffic intended for other hosts
•i.e., different destination MAC address

–Can be put in “promiscuous” mode
•Accept everything, even if destination MAC is not own

•If multiple devices talk at the same time

–Hardware automatically retries after a random delay

CSE506: Operating Systems

Shared vs Switched

Source: http://www.industrialethernetu.com/courses/401_3.htm

CSE506: Operating Systems

Switched Networks
•Modern Ethernets are point-to-point and switched

•What is a hub vs. a switch?

–Both are boxes that link multiple computers together

–Hubs broadcast to all plugged-in computers
•Let NICs figure out what to pass to host

–Promiscuous mode sees everyone’s traffic

–Switches track who is plugged in
•Only send to expected recipient

–Makes sniffing harder L

CSE506: Operating Systems

Internet Protocol (IP)
•2 flavors: Version 4 and 6

–Version 4 widely used in practice

–Version 6 should be used in practice – but isn’t
•Public IPv4 address space is practically exhausted (see arin.net)

•Provides a network-wide unique address (IP address)

–Along with netmask

–Netmask determines if IP is on local LAN or not

•If destination not on local LAN

–Packet sent to LAN’s gateway

–At each gateway, payload sent to next hop

CSE506: Operating Systems

Address Resolution Protocol (ARP)
•IPs are logical (set in OS with ifconfig or ipconfig)

•OS needs to know where (physically) to send packet

–And switch needs to know which port to send it to

•Each NIC has a MAC (Media Access Control) address

–“physical” address of the NIC

•OS needs to translate IP to MAC to send

–Broadcast “who has 10.22.17.20?” on the LAN

–Whoever responds is the physical location
•Machines can cheat (spoof) addresses by responding

–ARP responses cached to avoid lookup for each packet

CSE506: Operating Systems

User Datagram Protocol (UDP)
•Simple protocol for communication

–Send packet, receive packet

–No association between packets in underlying protocol
•Application is responsible for dealing with…

–Packet ordering

–Lost packets

–Corruption of content

–Flow control

–Congestion

•Applications on a host are assigned a port number
–A simple integer

–Multiplexes many applications on one device

–Ports below 1k reserved for privileged applications

CSE506: Operating Systems

Transmission Control Protocol (TCP)
•Higher-level protocol layers end-to-end reliability

–Transparent to applications

–Lots of features
•packet acks, sequence numbers, automatic retry, etc.

–Pretty complicated

•Same port abstraction (1-64k)

–But different ports

–i.e., TCP port 22 isn’t the same port as UDP port 22

CSE506: Operating Systems

Web Request Example

CSE506: Operating Systems

Networking APIs
•Programmers rarely create Ethernet frames

•Most applications use the socket abstraction

–Stream of messages or bytes between two applications

–Applications specify protocol (TCP or UDP), remote IP

•bind()/listen() : waits for incoming connection

•connect()/accept() : connect to remote end

•send()/ recv () : send and receive data

–All headers are added/stripped by OS

CSE506: Operating Systems

Linux implementation
•Sockets implemented in the kernel

–So are TCP, UDP, and IP

•Benefits:

–Application not involved in TCP ACKs, retransmit, etc.
•If TCP is implemented in library, app wakes up for timers

–Kernel trusted with correct delivery of packets

•A single system call:

–sys_socketcall(call, args)
•Has a sub-table of calls, like bind, connect, etc.

CSE506: Operating Systems

Linux Plumbing
•Each message is put in a sk_buff structure

–Passed through a stack of protocol handlers

–Handlers update bookkeeping, wrap headers, etc.

•At the bottom is the device itself (e.g., NIC driver)

–Sends/receives packets on the wire

CSE506: Operating Systems

sk_buff

CSE506: Operating Systems

Efficient packet processing
•Moving pointers is better than removing headers

•Appending headers is more efficient than re-copy

CSE506: Operating Systems

Received Packet Processing

Source = http://www.cs.unh.edu/cnrg/people/gherrin/linux-net.html#tth_sEc6.2

CSE506: Operating Systems

Interrupt Handler
•“Top half” responsible to:

–Allocate/get a buffer (sk_buff)

–Copy received data into the buffer

–Initialize a few fields

–Call “bottom half” handler

•In reality:
–Systems allocate ring of sk_buffs and give to NIC

–Just “take” the buff from the ring
•No need to allocate (was done before)

•No need to copy data into it (DMA already did it)

CSE506: Operating Systems

SoftIRQs
•A hardware IRQ is the hardware interrupt line

–Use to trigger the “top half” handler from IDT

•SoftIRQ is the big/complicated software handler

–Or, “bottom half”

•How are these implemented in Linux?

–Two canonical ways: SoftIRQ and Tasklet

–More general than just networking

CSE506: Operating Systems

SoftIRQs
•Kernel’s view: per-CPU work lists

–Tuples of <function, data>

•At the right time, call function(data)

–Right time: Return from exceptions/interrupts/sys. calls

–Each CPU also has a kernel thread ksoftirqd_CPU#
•Processes pending requests

•In case softirq can’t handle them quickly enough

CSE506: Operating Systems

SoftIRQs
•Device programmer’s view:

–Only one instance of SoftIRQ will run on a CPU at a time
•Doesn’t need to be reentrant

–If interrupted by HW interrupt, will not be called again

» Guaranteed that invocation will be finished before start of next

–One instance can run on each CPU concurrently
•Must use spinlocks to avoid conflicting on data structures

CSE506: Operating Systems

Tasklets
•For the faint of heart (and faint of locking prowess)

•Constrained to only run one at a time on any CPU

–Useful for poorly synchronized device drivers
•Those that assume a single CPU in the 90’s

–Downside: All bottom halves are serialized
•Regardless of how many cores you have

•Even if processing for different devices of the same type

–e.g., multiple disks using the same driver

CSE506: Operating Systems

Receive bottom half
•For each pending sk_buff:

–Pass a copy to any taps (sniffers)

–Do any MAC-layer processing, like bridging

–Pass a copy to the appropriate protocol handler (e.g., IP)
•Recur on protocol handler until you get to a port number

–Perform some handling transparently (filtering, ACK, retry)

•If good, deliver to associated socket

•If bad, drop

CSE506: Operating Systems

Socket delivery
•Once bottom half moves payload into a socket:

–Check to see if task is blocked on input for this socket
•If yes, wake it up corresponding process

•Read/recv system calls copy data into application

CSE506: Operating Systems

Socket sending
•Send/write system calls copy data into socket

–Allocate sk_buff for data

–Be sure to leave plenty of head and tail room!

•System call handles protocol in application’s timeslice

–Receive handling not counted toward app

•Last protocol handler enqueues packet for transmit

CSE506: Operating Systems

Receive livelock
•Condition when system never makes progress

–Spends all time starting to process new packets

•Hard to prioritize other work over interrupts

•Better process one packet to completion

–Than to run just the top half on a million

CSE506: Operating Systems

Receive livelock in practice

Source: Mogul & Ramakrishnan, ToCS 96

Ideal

CSE506: Operating Systems

Shedding load
•If can’t process all incoming packets

–Must drop some

•If going to drop some packets, better do it early!

–Stop taking packets off of the network card
•NIC will drop packets once its buffers get full on its own

CSE506: Operating Systems

Polling Instead of Interrupts
•Under heavy load, disable NIC interrupts

•Use polling instead

–Ask if there is more work once you’ve done the first batch

•Allows packet go through bottom half processing

–And the application, and then get a response back out

–Ensures some progress

CSE506: Operating Systems

Why not poll all the time?
•If polling is so great, why bother with interrupts?

•Latency

–If incoming traffic is rare, want high-priority
•Latency-sensitive applications get their data ASAP

•Ex.: annoying to wait at ssh prompt after hitting a key

CSE506: Operating Systems

General Insight on Polling
•If the expected input rate is low

–Interrupts are better

•When expected input rate is above threshold

–Polling is better

•Need way to dynamically switch between methods

CSE506: Operating Systems

Pictorially

Source: download.intel.com/design/intarch/PAPERS/323704.pdf

CSE506: Operating Systems

Why is this only relevant to networks?
•Why don’t disks have this problem?

–Inherently rate limited

•If CPU is too busy processing previous disk requests

–It can’t issue more

•External CPU can generate all sorts of network inputs

CSE506: Operating Systems

Linux NAPI
•άbŜǿ !tLέ

•Drivers provides poll() for low-level receive

–Called in first step of softirq RX function

•Top half schedules poll() to do receive as softirq

–Can disable the interrupt under heavy loads
•Use timer interrupt to schedule a poll

–Bonus: Some NICs have a built-in timer
•Can fire an interrupt periodically, only if something to say!

•Gives kernel control to throttle network input

CSE506: Operating Systems

Linux NAPI and Legacy Drivers
•Slow adoption – drivers need to be rewritten

•Backwards compatibility solution:

–Old top half creates sk_buffs and puts them in a queue

–Queue assigned to a fake “backlog” device

–Backlog poll device is scheduled by NAPI softirq

–Interrupts can still be disabled on NIC

CSE506: Operating Systems

NFS

CSE506: Operating Systems

Intuition
•Instead of translating VFS requests into disk accesses

–Translate them into remote procedure calls to server

•Easy, right?

CSE506: Operating Systems

Challenges
•Server can crash or be disconnected

•Client can crash or be disconnected

•How to coordinate multiple clients on same file?

•Security

CSE506: Operating Systems

Disconnection
•Machine can crash between writes to the hard drive

–Client can crash between writes to the server

•Server must recover if client fails between requests

–Simple protocols (e.g., send block updates) won’t work
•Client disconnects after marking block in use, before referencing it

–When is it safe to reclaim the block?
•What if, 3 months later, the client tries to use the block?

CSE506: Operating Systems

Stateful protocols
•Stateful protocols persist state across requests

–Like the example on previous slide

•Server Challenges:

–Knowing when a connection has failed (timeout)

–Tracking state that needs to be cleaned up on a failure

•Client Challenges:

–If server thinks we failed (timeout)
•Must recreate server state to make progress

CSE506: Operating Systems

Stateless protocol
•The (potentially) simpler alternative:

–All necessary state is sent with a single request

–Server implementation much simpler!

•Downside:

–May introduce more complicated messages
•And more messages in general

CSE506: Operating Systems

NFS is stateless
•Every request sends all needed info

–User credentials (for security checking)

–File identifier and offset

•Each request matches VFS operation

–e.g., write, delete, stat

CSE506: Operating Systems

Challenge: Lost request?
•Request sent to NFS server, no response received

–Did the message get lost in the network (UDP)?

–Did the server die?

–Is the server slow?
•Don’t want to do things twice

–Bad idea: write data at the end of a file twice

•Idea: Make all requests idempotent

–Requests have same effect when executed multiple times
•Ex: write() has an explicit offset, same effect if done 2x

CSE506: Operating Systems

Challenge: Inode reuse
•Process A opens file ‘foo’

–Maps to inode 30

•Process B unlinks file ‘foo’

–On local system, OS holds reference to the inode

•Blocks belonging to file ‘foo’ not reused

–NFS is stateless, server doesn’t know about open handle

•The file can be deleted and the inode reused

•Next request for inode 30 will go to the wrong file

•Idea: Generation numbers

–If inode in NFS is recycled, generation number is incremented

–Client requests include an inode + generation number

•Enables detecting attempts to access an old inode

CSE506: Operating Systems

Challenge: Security
•Local UID/GID passed as part of the call

–UIDs must match across systems

–Yellow pages (yp) service; evolved to NIS

–Replaced with LDAP or Active Directory

•Root squashing: “root” (UID 0) mapped to “nobody”

–Ineffective security
•Can send any UID in the NFS packet

•With root access on NFS client, “su” to another user to get UID

CSE506: Operating Systems

Challenge: File locking
•Must have way to change file without interference

–Get a server-side lock
•What happens if the client dies?

•Lots of options (timeouts, etc), mostly bad

–Punted to a separate, optional locking service
•With ugly hacks and timeouts

CSE506: Operating Systems

Challenge: Removal of open files
•Unix allows accessing deleted files if still open

–Reference in in-memory inode prevents cleanup
•Applications expect this behavior

–How to deal with it with NFS?

•On client, check if file is open before removing it

–If yes, rename file instead of deleting it
•. nfs * files in modern NFS

–When file is closed, delete temp file
•If client crashes, garbage file is left over L

CSE506: Operating Systems

Challenge: Time synchronization
•Each CPU’s clock ticks at slightly different rates

–These clocks can drift over time

•Tools like ‘make’ use timestamps

–Clock drift can cause programs to misbehave

make[2]: warning: Clock skew detected.

Your build may be incomplete .

•Systems using NFS must have clocks synchronized

–Usually with external protocol like NTP
•Synchronization depends on unknown communication delay

–Very complex protocol

–Works pretty well in practice

CSE506: Operating Systems

Challenge: Caches and Consistency
•Clients A and B have file in their cache

•Client A writes to the file

–Data stays in A’s cache

–Eventually flushed to the server

•Client B reads the file

–Does B see the old contents or the new file contents?
•Who tells B that the cache is stale?

–Server can tell

» But only after A actually wrote/flushed the data

CSE506: Operating Systems

Consistency/Performance Tradeoff
•Performance: cache always, write when convenient

–Other clients can see old data, or make conflicting updates

•Consistency: write everything immediately

–And tell everyone who may have it cached

–Much more network traffic, lower performance

–Common case: accessing an unshared file

CSE506: Operating Systems

Close-to-Open Consistency
•NFS Model: Flush all writes on a close

•When opening file, get latest version on the server

–Copy entire file from server into local cache

–Odd behavior when multiple clients use the same file
•Probably a reasonable compromise

–What if the file is really big?
•How big is “really big”?

CSE506: Operating Systems

NFS Evolution
•The simple protocol was version 2

•Version 3 (1995):

–64-bit file sizes and offsets (large file support)

–Bundle attributes with other requests to eliminate stat()

–Other optimizations

–Still widely used today

CSE506: Operating Systems

NFS V4 (2000)
•Attempts to address many of the problems of v3

–Security (eliminate homogeneous UID assumptions)

–Performance

•Becomes a stateful prototocol

•pNFS –extensions for parallel distributed accesses

•Too advanced for its own good

–Much more complicated then v3
•Slow adoption

–Barely being phased in now
•With hacks that lose some of the features (looks more like v3)

