Q| stony Brook University CSE506: Operating Systems

CSE 506:
Operating Systems

Networking & NFS

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

4 to 7 layer diagram

7 Application
6 Presentation 5 Application Message
5 Session
4 Transport 4 | Transport (TCP/UDP/...) | Segment
3 Network 3 Internet (IPv4, IPv6) Datagram/packet
2 Data link Link layer or
1/2 Host-to-network Frame

1 Physical (Ethernet,. . .)

1 TCP/IP

Figure 13-1. OSI and TCP/IP models

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

TCP/IP Reality

e The OSI model is great for undergrad courses
e TCP/IP (or UDP) is what the majority of world uses

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Ethernet (or 802.2 or 802.3)

 LAN (Local Area Network) connection

 Simple packet layout:

— Header
e type
source MAC address
destination MAC address
length (up to 1500 bytes regular, up to 9000 bytes “jumbo”)

— Data block (payload)
— Checksum

 Higher-level protocols “nested” inside payload
e “Unreliable” — no guarantee packet will be delivered

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Ethernet Details

e Each device listens to all traffic

— Hardware filters out traffic intended for other hosts
e j.e., different destination MAC address

— Can be put in “promiscuous” mode
e Accept everything, even if destination MAC is not own

e |f multiple devices talk at the same time
— Hardware automatically retries after a random delay

q\\\\ Stony Brook University CSE506: Operating Systems

Shared vs Switched

Workstgtion

—Ethernet

Workstation

Server

Shared Ethernet: . 1 collision domain for

multiple nodes. The possibility of collisions.
Mon-deterministic

Switched Full Duplex Ethernet: 1 collision

domain per node. Use of switch. No possibility
of collisions. Deterministic.

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Switched Networks

e Modern Ethernets are point-to-point and switched

e What is a hub vs. a switch?

— Both are boxes that link multiple computers together

— Hubs broadcast to all plugged-in computers
e Let NICs figure out what to pass to host

— Promiscuous mode sees everyone’s traffic

— Switches track who is plugged in

* Only send to expected recipient
— Makes sniffing harder L

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Internet Protocol (IP)

o 2 flavors: Version 4 and 6
— Version 4 widely used in practice

— Version 6 should be used in practice — but isn’t
e Public IPv4 address space is practically exhausted (see arin.net)

* Provides a network-wide unique address (IP address)
— Along with netmask
— Netmask determines if IP is on local LAN or not

e |f destination not on local LAN

— Packet sent to LAN’s gateway
— At each gateway, payload sent to next hop

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Address Resolution Protocol (ARP)

* |Ps are logical (set in OS with ifconfig or ipconfig)
 OS needs to know where (physically) to send packet

— And switch needs to know which port to send it to

e Each NIC has a MAC (Media Access Control) address
— “physical” address of the NIC

 OS needs to translate IP to MAC to send

— Broadcast “who has 10.22.17.207?” on the LAN
— Whoever responds is the physical location

e Machines can cheat (spoof) addresses by responding

— ARP responses cached to avoid lookup for each packet

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

User Datagram Protocol (UDP)

e Simple protocol for communication
— Send packet, receive packet

— No association between packets in underlying protocol

e Application is responsible for dealing with...
— Packet ordering
— Lost packets
— Corruption of content
— Flow control
— Congestion

* Applications on a host are assigned a port number
— A simple integer
— Multiplexes many applications on one device
— Ports below 1k reserved for privileged applications

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Transmission Control Protocol (TCP)

 Higher-level protocol layers end-to-end reliability
— Transparent to applications
— Lots of features

e packet acks, sequence numbers, automatic retry, etc.

— Pretty complicated

e Same port abstraction (1-64k)
— But different ports
— i.e., TCP port 22 isn’t the same port as UDP port 22

q\\\‘ Stony Brook University

Web Request Example

Transport header Jexamples/example1.html I (a)

- Transport layer payload

Src port=5000

Network header Dst port=80 Jexamples/example1.htm! || (b)

N Network layer payload

Src port=5000

Link layer header Dst port=80 /examples/example1.htm/

- Link layer payload
Src MAC=00:20:ed:76:00:01

Dst MAC=00:20:ed:76:00:02 Brsctp(())rrt%%OO Jexamples/example1.htm! || (d)
Internet protocol=IPv4 port=
Src MAC=00:20:ed:76:00:03 _
Dst MAC=00:20:ed:76:00:04 Src port=5000 Jexamples/examplel.htm! | (€)

Dst port=80

Internet protocol=IPv4

CSE506: Operating Systems

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Networking APIs

 Programmers rarely create Ethernet frames

 Most applications use the socket abstraction
— Stream of messages or bytes between two applications
— Applications specify protocol (TCP or UDP), remote IP

e bind()/listen() : waits for incoming connection
« connect()/accept() : connect to remote end

« send()/ recv () :send and receive data
— All headers are added/stripped by OS

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Linux implementation

e Sockets implemented in the kernel
— So are TCP, UDP, and IP

e Benefits:

— Application not involved in TCP ACKs, retransmit, etc.
e If TCP is implemented in library, app wakes up for timers

— Kernel trusted with correct delivery of packets

e Asingle system call:
— sys_socketcall(call, args)

* Has a sub-table of calls, like bind, connect, etc.

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Linux Plumbing

e Each message is putin a Sk_buff structure

— Passed through a stack of protocol handlers

— Handlers update bookkeeping, wrap headers, etc.

e At the bottom is the device itself (e.g., NIC driver)
— Sends/receives packets on the wire

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

sk_buff

headroom
!
Data
tailroom

—p
head
data
tail
end

struct sk_buff

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Efficient packet processing

 Moving pointers is better than removing headers

 Appending headers is more efficient than re-copy

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Received Packet Processing

Application
—
application reads socket reads m Wail for dala (il necessanA socket asks application gets
_____________________________ .
from socket frem queuse -,r for payload data, continues
I
I
I
Transport . A B |
| m— | m— ! | m— —
I
TEP checks pachket goes in i Vil dor TCF copies
far ermors sochket queus sacked read paykad
Internet —
[m — [m —
IF checks route o
for ermors different host
Llnk - ‘ {See IP Forwarding)
[m — [m — [—]
- scheduler runs net_bh pops net_bh matches outto Paskel wails
I "bottom half" packet queus protocol (IF) send queus o que e
S
I
]] [—] : — Data
]
pachket arrives device checks, packet goes on i Wil dor O IPCE;;EZ?EF
on medium stores packet backlog gueus acheduler B Ethernet Header

Source = http://www.cs.unh.edu/cnrg/people/gherrin/linux-net.html#tth_sEc6.2

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Interrupt Handler

 “Top half” responsible to:
— Allocate/get a buffer (sk_buff)
— Copy received data into the buffer
— Initialize a few fields
— Call “bottom half” handler

* |n reality:
— Systems allocate ring of sk_buffs and give to NIC
— Just “take” the buff from the ring

* No need to allocate (was done before)
 No need to copy data into it (DMA already did it)

q\\\\ Stony Brook University CSE506: Operating Systems

SoftIRQs

A hardware IRQ is the hardware interrupt line

— Use to trigger the “top half” handler from IDT

e SoftlRQ s the big/complicated software handler
— Or, “bottom half”

e How are these implemented in Linux?
— Two canonical ways: SoftIRQ and Tasklet
— More general than just networking

q\\\\ Stony Brook University CSE506: Operating Systems

SoftIRQs

o Kernel’s view: per-CPU work lists

— Tuples of <function, data>
* At the right time, call function(data)

— Right time: Return from exceptions/interrupts/sys. calls
— Each CPU also has a kernel thread ksoftirgd CPU#

* Processes pending requests
* |n case softirq can’t handle them quickly enough

q\\\\ Stony Brook University CSE506: Operating Systems

SoftIRQs

 Device programmer’s view:

— Only one instance of SoftIRQ will run on a CPU at a time

e Doesn’t need to be reentrant
— If interrupted by HW interrupt, will not be called again
» Guaranteed that invocation will be finished before start of next

— One instance can run on each CPU concurrently

* Must use spinlocks to avoid conflicting on data structures

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Tasklets

* For the faint of heart (and faint of locking prowess)

 Constrained to only run one at a time on any CPU

— Useful for poorly synchronized device drivers
* Those that assume a single CPU in the 90’s

— Downside: All bottom halves are serialized
» Regardless of how many cores you have

e Even if processing for different devices of the same type
— e.g., multiple disks using the same driver

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Receive bottom half
* For each pending sk_buff:

— Pass a copy to any taps (sniffers)
— Do any MAC-layer processing, like bridging

— Pass a copy to the appropriate protocol handler (e.g., IP)
e Recur on protocol handler until you get to a port number

— Perform some handling transparently (filtering, ACK, retry)
* If good, deliver to associated socket
e |If bad, drop

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Socket delivery

* Once bottom half moves payload into a socket:

— Check to see if task is blocked on input for this socket
* |If yes, wake it up corresponding process

e Read/recv system calls copy data into application

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Socket sending

e Send/write system calls copy data into socket
— Allocate sk_buff for data
— Be sure to leave plenty of head and tail room!

o System call handles protocol in application’s timeslice
— Receive handling not counted toward app

e Last protocol handler enqueues packet for transmit

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Receive livelock

* Condition when system never makes progress

— Spends all time starting to process new packets
e Hard to prioritize other work over interrupts
e Better process one packet to completion

— Than to run just the top half on a million

e NSNS e, ., "
Q| stony Brook University CSE506: Operating Systems

Receive livelock in practice

5000 | i 1 |
—_ eal
:E 4000 |- -
el
E 3000 — '..Wiﬂmut screend |
i
e 9 ‘
i
§ 2000 |- ¢ . |
[]
=
‘i 0 With screend ®
0 | 0 Dogm o o
0 2000 4000 G000 8000 10000 12000

Input packet rate (pkts/sec)

Fig. 2. Forwarding perlormance of unmodilied kernel.

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Shedding load

e |If can’t process all incoming packets

— Must drop some

e |f going to drop some packets, better do it early!

— Stop taking packets off of the network card
* NIC will drop packets once its buffers get full on its own

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Polling Instead of Interrupts

 Under heavy load, disable NIC interrupts
 Use polling instead
— Ask if there is more work once you’ve done the first batch

* Allows packet go through bottom half processing
— And the application, and then get a response back out
— Ensures some progress

q\\\\ Stony Brook University CSE506: Operating Systems

Why not poll all the time?

e If pollingis so great, why bother with interrupts?

e Latency

— If incoming traffic is rare, want high-priority
e Latency-sensitive applications get their data ASAP

e Ex.: annoying to wait at ssh prompt after hitting a key

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

General Insight on Polling

* |If the expected input rate is low

— Interrupts are better

e When expected input rate is above threshold
— Polling is better

 Need way to dynamically switch between methods

q\\\\ Stony Brook University CSE506: Operating Systems

Pictorially

Interrupt Reception
Driver disables interrupts

netif_rx_schedule()

f%

[Dawce in interrupt mode Dewce in polling mode }

" Kernel polls device }

Process_backlog()=0 @
(no more data in the buffer)

Driver re-enables interrupts Process_backlog()=1
(buffer not empty yet)

q\\\\ Stony Brook University CSE506: Operating Systems

Why is this only relevant to networks?
* Why don’t disks have this problem?

— Inherently rate limited

e |f CPU is too busy processing previous disk requests

— It can’t issue more

e External CPU can generate all sorts of network inputs

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Linux NAPI
e dbSg !t LE
e Drivers provides poll() for low-level receive

— Called in first step of softirq RX function

* Top half schedules poll() to do receive as softirg
— Can disable the interrupt under heavy loads

e Use timer interrupt to schedule a poll

— Bonus: Some NICs have a built-in timer

e Can fire an interrupt periodically, only if something to say!

* Gives kernel control to throttle network input

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Linux NAPI and Legacy Drivers

e Slow adoption —drivers need to be rewritten

 Backwards compatibility solution:
— Old top half creates sk_buffs and puts them in a queue
— Queue assigned to a fake “backlog” device
— Backlog poll device is scheduled by NAPI softirq
— Interrupts can still be disabled on NIC

e NSNS e, ., "
Q| stony Brook University CSE506: Operating Systems

NFS

CLIENT SERVER

System Calls

System Calls

VNODE/VFS

!

VNODE/VFS

PC Filesystem 4.2 Filesystem NFS Filesystem Servér Routines

l RPC / XDR

ooog

RPC / XDR
Network

)
S

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Intuition

* |Instead of translating VFS requests into disk accesses

— Translate them into remote procedure calls to server

e Easy, right?

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Challenges

e Server can crash or be disconnected
* (Client can crash or be disconnected
 How to coordinate multiple clients on same file?

e Security

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Disconnection

e Machine can crash between writes to the hard drive

— Client can crash between writes to the server

e Server must recover if client fails between requests

— Simple protocols (e.g., send block updates) won’t work
e Client disconnects after marking block in use, before referencing it

— When is it safe to reclaim the block?

 What if, 3 months later, the client tries to use the block?

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Stateful protocols

o Stateful protocols persist state across requests

— Like the example on previous slide

e Server Challenges:
— Knowing when a connection has failed (timeout)
— Tracking state that needs to be cleaned up on a failure

e Client Challenges:
— If server thinks we failed (timeout)

e Must recreate server state to make progress

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Stateless protocol

 The (potentially) simpler alternative:
— All necessary state is sent with a single request
— Server implementation much simpler!

e Downside:
— May introduce more complicated messages

* And more messages in general

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

NFS is stateless

* Every request sends all needed info
— User credentials (for security checking)
— File identifier and offset

 Each request matches VFS operation

— e.g., write, delete, stat

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Challenge: Lost request?

 Request sent to NFS server, no response received
— Did the message get lost in the network (UDP)?
— Did the server die?

— |Is the server slow?

 Don’t want to do things twice
— Bad idea: write data at the end of a file twice

* |dea: Make all requests idempotent
— Requests have same effect when executed multiple times

e Ex: write() has an explicit offset, same effect if done 2x

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Challenge: Inode reuse

* Process A opens file ‘foo’
— Maps to inode 30

* Process B unlinks file ‘foo’

— On local system, OS holds reference to the inode

* Blocks belonging to file ‘foo’ not reused

— NFS is stateless, server doesn’t know about open handle
* The file can be deleted and the inode reused
* Next request for inode 30 will go to the wrong file

e |dea: Generation numbers
— If inode in NFS is recycled, generation number is incremented
— Client requests include an inode + generation number

e Enables detecting attempts to access an old inode

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Challenge: Security
e Local UID/GID passed as part of the call

— UIDs must match across systems
— Yellow pages (yp) service; evolved to NIS
— Replaced with LDAP or Active Directory

e Root squashing: “root” (UID 0) mapped to “nobody”

— Ineffective security

e Can send any UID in the NFS packet
e With root access on NFS client, “su” to another user to get UID

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Challenge: File locking

 Must have way to change file without interference

— Get a server-side lock
 What happens if the client dies?
e Lots of options (timeouts, etc), mostly bad

— Punted to a separate, optional locking service
e With ugly hacks and timeouts

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Challenge: Removal of open files

e Unix allows accessing deleted files if still open

— Reference in in-memory inode prevents cleanup

* Applications expect this behavior
— How to deal with it with NFS?

 On client, check if file is open before removing it

— If yes, rename file instead of deleting it
e . nfs * filesin modern NFS

— When file is closed, delete temp file
* If client crashes, garbage file is left over L

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Challenge: Time synchronization
 Each CPU’s clock ticks at slightly different rates

— These clocks can drift over time

e Tools like ‘make’ use timestamps

— Clock drift can cause programs to misbehave

make[2]: warning: Clock skew detected.
Your build may be incomplete

e Systems using NFS must have clocks synchronized
— Usually with external protocol like NTP

e Synchronization depends on unknown communication delay
— Very complex protocol
— Works pretty well in practice

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Challenge: Caches and Consistency

e Clients A and B have file in their cache

e Client A writes to the file
— Data stays in A’s cache
— Eventually flushed to the server

e Client B reads the file

— Does B see the old contents or the new file contents?
e Who tells B that the cache is stale?

— Server can tell

» But only after A actually wrote/flushed the data

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Consistency/Performance Tradeoff

 Performance: cache always, write when convenient

— Other clients can see old data, or make conflicting updates

e Consistency: write everything immediately
— And tell everyone who may have it cached
— Much more network traffic, lower performance
— Common case: accessing an unshared file

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

Close-to-Open Consistency

e NFS Model: Flush all writes on a close

* When opening file, get latest version on the server
— Copy entire file from server into local cache

— 0Odd behavior when multiple clients use the same file
e Probably a reasonable compromise

— What if the file is really big?
 How big is “really big”?

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

NFS Evolution

e The simple protocol was version 2

e Version 3 (1995):
— 64-bit file sizes and offsets (large file support)

— Bundle attributes with other requests to eliminate stat()
— Other optimizations
— Still widely used today

e NN — Ny, T, R —
q\\\\ Stony Brook University CSE506: Operating Systems

NFS V4 (2000)

e Attempts to address many of the problems of v3

— Security (eliminate homogeneous UID assumptions)
— Performance

 Becomes a stateful prototocol
 pNFS —extensions for parallel distributed accesses

 Too advanced for its own good
— Much more complicated then v3

e Slow adoption

— Barely being phased in now

e With hacks that lose some of the features (looks more like v3)

