
CSE506: Operating Systems

CSE 506:
Operating Systems
What Software Expects of the OS

CSE506: Operating Systems

What Software Expects of the OS
• Memory

• System Calls

• System Services

• Launching “Program” Executables

• Shell

CSE506: Operating Systems

Memory Abstraction
• OS provides memory space to application

– Application observes a contiguous “private” memory space

– OS prevents “illegal” actions (e.g., no-exec, read-only)

• Memory typically includes several “sections”
.text – program area

.rodata – read-only variables

.data – variables that have an initial value

.bss – variables that are initially zero

heap

stack

CSE506: Operating Systems

Traditional Memory View
• Don’t use addrs. close to 0

– Allows to detect bad accesses

• Heap grows upward

– Increases when app asks for mem.

• Stack grows downward

– Function calls push return addr.

– Local variables go on stack
• Main source of stack smash attacks

– Must reserve stack space
• Ensure that heap doesn’t hit stack

#FFFF,FFFF

stack

↓

↑

heap

bss

data

rodata

program

#0000,0000

CSE506: Operating Systems

Modern Memory View
• Heap no longer allocated up

– Although it still can be

• Shared libraries appear

• [vdso] adds magic memory

– e.g., always contains current time

#FFFF,FFFF vdso

stack

↓

libs

heap

heap

bss

data

rodata

program

#0000,0000

CSE506: Operating Systems

What Software Expects of the OS
• Memory

• System Calls

• System Services

• Launching “Program” Executables

• Shell

CSE506: Operating Systems

System Calls
• Mechanism for app to interact with the OS

– Similar to function calls

– Code securely implemented in the OS

– Follows predefined interface
• Called “ABI” – Application Binary Interface

• Functions referenced by predefined number

• Example syscall triggers

– “trap” instruction

– Special “syscall” instruction

– Forced memory exception

CSE506: Operating Systems

Example System Calls
• getpid()

– Return process’s ID

– Function 39 in 64-bit Linux, 20 in FreeBSD

• brk()

– Return current “top” of heap

– Function 12 in 64-bit Linux, 69 in FreeBSD

Linux has ~650, FreeBSD ~400 syscalls

CSE506: Operating Systems

What Software Expects of the OS
• Memory

• System Calls

• System Services

• Launching “Program” Executables

• Shell

CSE506: Operating Systems

Services Provided by OS
• Usually through syscalls

– Variants: vdso provides time of day, stack grows on faults

• Typical “important” services

– Scheduler

– Memory management

– Threads

– Terminal

– File system

– Network

– Limits

Numerous services exist; we’ll stick to these above.

CSE506: Operating Systems

Process Control and Threads (1/2)
• Create and control processes and threads

– Same syscall for both in Linux: clone()

– FreeBSD uses fork() for procs and thr_create() for threads

• Difference between processes and threads?

– Fundamentally similar, separate “threads” of control

– Threads share same memory space
• But have their own stack pointers

– All threads should share one PID, but have own TIDs

• Exert control over processes

– kill()/signal() to KILL, TERMinate, STOP, CONTinue

CSE506: Operating Systems

Process Control and Threads (2/2)
• Create and control processes and threads

• clone() in Linux, fork() in FreeBSD

• Creates an identical copy of the process:
int pid = fork();

if (pid == 0) {

// child code

} else if (pid > 0) {

// parent code

} else {

// error (pid == -1)

}

CSE506: Operating Systems

Scheduler
• If there are multiple processes

– Something has to decide what should run

• Takes into account many parameters

– Readiness to run, priority, history

• Can be invoked by various triggers

– On syscall – called cooperative multi-tasking
• Low overhead

• What happens when there are no system calls?

– On timer – called preemptive multi-tasking
• Processes can get de-scheduled at any time

• Can still be slightly cooperative by calling yield() syscall

CSE506: Operating Systems

Memory Management
• Each process sees its own memory space

– Called virtual memory

• Computer has DRAM chips plugged into it

– Called physical memory

• OS manages physical memory

– Operates on contiguous pages of memory (typically 4KB)

– Maintains a virtual-to-physical mapping
• Physical pages are allocated on demand

– Supports paging (saving physical page contents to disk)
• Sometimes used interchangeably with swapping (entire apps)

CSE506: Operating Systems

Memory Management
• Process starts with some memory

– text, data, stack, heap

• Stack grows automatically

– On an access below the stack

– Allocate up to and including the demanded page

• Heap grows on request

– Traditionally, brk(new_value)

– Modern systems use mmap()

– malloc() uses one or the other
• Implementations rarely release brk() memory back to the OS

CSE506: Operating Systems

Terminal (1/3)
• Not the same as console

– Although console is usually connected to a terminal

• Terminals have two ends

– One connects to an input/output device
• Teletype, more recently serial port, today screen and keyboard

– Other end attached to software (e.g., bash)

– Anything written into one end comes out the other
• Extremely convenient for such a simple interface

• Provide input discipline

– Buffers input until newline

• Handles necessities like local echo

CSE506: Operating Systems

Terminal (2/3)
• Formatting done via escape sequences

– Sequences of characters control output behavior

– E.g., vt100 family sets red color with: ESC[31m

• Input also has a level of processing

– Printable characters pass as-is

– Modifiers (e.g., Control) used for additional control
• “H” is ASCII 40, “Ctrl+H” is ASCII 8

– Backspace key is typically just ASCII 8

• “C” is ASCII 35, “Ctrl+C” is ASCII 3

– Terminal sends SIGINT to foreground process when receiving char 3

– Implements type-ahead, buffers chars until they are read

CSE506: Operating Systems

Terminal (3/3)
• Most systems today use pseudo terminals

– No physical hardware attached for I/O
• Simulated with network (e.g., ssh) or graphical widow (e.g., xterm)

– Arranged as pair of devices in OS
• Traditional software end is slave

• Traditional teletype is master

• Things written to slave end come out of master and vice versa

• Terminals are a fundamental part of the OS

– Sadly, many people consider them archaic and legacy

– In truth, a necessary and major modern component

CSE506: Operating Systems

File System
• Provides access to data

– open, read, write, seek, close, chdir, getcwd

– opendir, readdir, closedir, unlink

– mmap (interface combines memory and files)

• Organized as mount points

– Each mount point is a directory in the parent system

– “root” mount point always at the top

• OS maintains a descriptor table for each open file

– Returned by open()

– Used by all subsequent operations

Everyone here must already be familiar with this

CSE506: Operating Systems

Network
• Enables communication between processes

– Can be even on same machine (e.g., “localhost”)

• Dominated by IPv4 today

• Common operations

– Assign address to an interface

– Manipulate routing table

– Make outgoing connections, receive incoming connections

– Send data, receive data

• Uses same descriptor table as files

– Called socket descriptors for network

Everyone here must already be familiar with this

CSE506: Operating Systems

Limits
• OS protects processes from each other

– And processes from themselves

• Parent process limits are inherited by child process

• Process can set its own limits

– Can set hard limits lower or equal to existing ones
• Can only reduce, can never increase

– Can set soft limits lower or equal to hard ones
• These are the actual limits enforced by the OS

• Examples:

– Max memory, max stack size, max open files

– Some limits are per user – e.g., number of processes

CSE506: Operating Systems

What Software Expects of the OS
• Memory

• System Calls

• System Services

• Launching “Program” Executables

• Shell

CSE506: Operating Systems

Launching Program Executables (1/2)
• Roughly a 3-step process

– Load initial contents into memory

– Find starting point (usually function called _start())

– Set initial registers (stack pointer, program counter)

• How to load program into memory?

– Dictated by binary format
• Most systems today use ELF or PE

– Defines parts of the file to load and where to load tem
• Broken up into sections

– Offset (in the file), length, destination address, and size

– Length can be smaller than size – indicates zero pad

CSE506: Operating Systems

Launching Program Executables (2/2)
• Programs are launched using execve syscall

• First bytes determine binary format

– 0x7F E L F : ELF binary

– #!command : (shebang) interpret with (command)

• An “interpreter” is run instead of the program

– Program becomes first argument to interpreter

– Interpreter path also supported in ELF binaries
• Useful for shared libraries

• Interpreter is set to /lib/ld.so for instance

– Running “/bin/ls /” is equivalent to “/libexec/ld-elf.so /bin/ls /”

CSE506: Operating Systems

What Software Expects of the OS
• Memory

• System Calls

• System Services

• Launching “Program” Executables

• Shell

CSE506: Operating Systems

Shell
• Gives user ability to interact with machine

– Can be text or graphical

• Traditionally text-based
– Two families – sh (bash, zsh, ksh) and csh (tcsh)

• Interprets commands, one by one
– Commands are either shell built-ins or executables

– Shells include many user-friendly features
• PATH env variable, tab completion, …

• System starts by running /etc/rc (“run commands”)
– Starts with #!/bin/sh

