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Mitigating Multi-bit Soft Errors in 

L1 Caches Using Last-Store Prediction

Abstract—Recent studies suggest that the rate of spatial

multi-bit soft errors will increase with future technology

scaling. Unfortunately, multi-bit errors cannot be

effectively mitigated with conventional techniques in L1

data caches (e.g., bit interleaving or stronger coding) due to

high power and/or latency overheads. We propose the last-

store predictor, a lightweight prediction mechanism that

accurately determines when a cache block is written for the

last time and writes the data back to the L2 cache where

increased access latency permits more effective multi-bit

error protection. Using a combination of commercial

workloads and SPEC CPU2000 benchmarks, we show that,

on average, write-back L1 data caches are 42% vulnerable

to multi-bit soft errors. Where SECDED ECC fails to

mitigate multi-bit errors, our mechanism reduces the

multi-bit soft-error vulnerability to 12% on average.

I. INTRODUCTION

Rising soft-error rates are a major concern for modern

microprocessor designers. The reduction in charge stored in

memory cells, a result of continued technology scaling, leaves

on-chip SRAMs (e.g., caches, TLBs, register files) highly

susceptible to soft errors. Coding techniques, such as SECDED

ECC (single-error correct, double-error detect), are widely

utilized for protecting on-chip SRAMs. For L1 data caches,

however, where low access latencies are critical, the additional

delay to correct ECC errors prohibits inline correction on a

read. In the event an error is detected on a read, recent designs

such as the AMD Opteron throw a machine check exception

asynchronously, potentially halting the machine to prevent

silent data corruption [1]. 

Further compounding problems, recent work suggests that

spatial multi-bit errors, where a single cosmic particle strike

upsets multiple neighboring memory cells, are increasingly

likely at future technology nodes [9,13]. Bit interleaving, also

called column multiplexing, is the conventional approach used

to protect memory arrays from spatial multi-bit errors. In bit

interleaving, bits belonging to multiple ECC check words are

physically interleaved so that a spatial multi-bit error does not

affect adjacent bits from a single check word. For SRAMs in a

high-performance processor, however, our results indicate that

interleaving beyond two-way is prohibitively expensive from a

power perspective as a result of the additional precharging of

bitlines from the interleaved data.

Previous work [7,10] shows that a large fraction—as much

as 80%—of cache frames contain “dead” data, where the last

access to a block has occurred but replacement has not yet

happened. For a write-back cache, dirty cache blocks that are

dead—a last store has occurred for each block—remain vulner-

able to multi-bit soft errors. Our results, which corroborate

those in Biswas el al. [3], show that roughly 85% of the cache

vulnerability is due to dirty blocks that are dead.

Based on these observations, we propose the last-store

predictor (LSP), a lightweight prediction mechanism that accu-

rately determines when a cache block is written for the last

time and initiates an early write-back of the data to the L2

cache, where increased access latency permits multi-bit protec-

tion. The write-back operation writes the value to L2 while

retaining the data and permissions in L1 to avoid additional

cache misses.

As proposed, the LSP extends the class of program-

counter (PC) trace-based predictors studied extensively in the

literature [6]. Immediately after observing a trace of PCs that

previously led to a last store, the predictor initiates the write-

back for the block. Thus, the last-store predictor provides

optimal reduction of vulnerability caused by dead time. Using

a combination of commercial workloads and SPEC CPU2000

benchmarks, we show that, on average, write-back L1 data

caches are 42% vulnerable to multi-bit soft errors. The LSP

reduces the multi-bit soft-error vulnerability to 12% on

average.

Paper Outline. The remainder of the paper is organized as

follows. Section II covers necessary background for our work

and our fault model. Section III presents the observations on

dead times that enable prediction and early write-back.

Section IV provides the details of the last-store predictor,

which we evaluate in Section V. We discuss related work in

Section VI and conclude in Section VII.

II. BACKGROUND

A.  Fault Model

As technology scales, lower supply voltages and smaller

feature sizes continue to decrease the charge stored per SRAM

cell [9,13]. The reduction in stored charge results in a lower

Qcrit, the critical charge required to flip a bit. Hence, the soft-

error rate increases. The two dominant physical sources of soft
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errors studied in the literature are alpha particles from trace

radioactivity in packaging materials and heavy neutrons

resulting from cosmic radiation [18]. This work considers soft

errors from both physical phenomena by investigating the

reduction in architectural vulnerability without regard to the

underlying fault mechanism.

Multi-bit errors can be classified as either spatial or

temporal. Spatial multi-bit errors are the result of a single event

upset, while temporal errors result from multiple, independent

upsets over time. In this work, we consider only spatial multi-

bit errors, as the natural tendency of the cache to 'refresh' itself

will mitigate temporal multi-bit errors [11]. Spatial multi-bit

errors result when a high-energy cosmic particle strikes a

silicon atom, and the resulting nuclear reaction gives off

secondary ions capable of upsetting other, nearby memory

cells [13]. 

Recent studies suggest that the spatial multi-bit error rate in

SRAMs is increasing exponentially with scaling, leaving

vendors without clear solutions to protect on-chip L1 caches.

Furthermore, large contiguous bit flips (up to 5) were observed

in accelerated beam testing [9], eliminating all practical code-

based protection schemes for L1.

B.  Cache Model

In this work, we consider protection mechanisms for write-

back L1 data caches. Write-back caches are becoming the

dominant paradigm for L1 caches in chip multiprocessors,

where write-through L1s connected to a shared L2 would be

bandwidth prohibitive.1

The conventional approach to protecting a write-back L1 is

with SECDED ECC (e.g., AMD Opteron [1]). A common

design point for ECC uses 8 check bits for every 64 data bits

(the nominal L1 cache access size). Normal stores of 64-bit

words can compute the ECC check word and store both data

and ECC in parallel. To update the ECC bits on a partial write,

the cache must issue a read-modify-write (RMW) operation.

For high-performance microprocessors, a major challenge of

ECC in an L1 cache is the additional check latency on a read

operation. The latency required to compute the ECC syndrome

and then correct any errors is often higher than the cache

access time itself. For the heavily integrated processor core and

data cache, this overhead prohibits inline correction of errone-

ously-read data. Instead, the approach taken in the AMD

Opteron is to assert a machine check exception, which can

potentially halt the system [1].

To reduce the likelihood of a soft error resulting in a

machine-check exception, the Opteron implements a form of

cache scrubbing, where a small hardware component traverses

the cache one frame at a time, checking for ECC errors and

performing inline correction outside the processor core [1].

Essentially, the scrubber component races with normal

program operation to reach an error first. If the scrubber wins,

a single-bit error will be corrected; however, if the processor

reaches the block first, a machine-check exception is thrown.

The Opteron allows the user to select a scrubber period,

thereby determining the tradeoffs of cache-port bandwidth,

power overheads, and soft-error vulnerability protection. Little

or no guidance is available to the user on the implications of

these tradeoffs.

C.  Interleaved ECC

The challenges presented by SECDED ECC also prevent

stronger codes—DECTED (double-correct, triple-detect),

TECQED (triple-correct, quad-detect), and the like—from

solving the problem of multi-bit errors. First, many of these

codes do not scale to the large number of contiguous errors

observed in beam testing [9]. Second, power and area required

for stronger codes prohibits their use even in small L1 caches.

The solution used in DRAMs and to some extent in SRAM

arrays, is to physically interleave the data bits belonging to

different ECC check words (illustrated in Figure 1(a)). With an

N-way degree of interleaving, bits from N different check

words are interleaved, and multi-bit errors up to N contiguous

bits in size can be tolerated.

The major problem with bit interleaving is the additional

power overhead resulting from precharging N times as many

bitlines. Because bitlines must be precharged ahead of address

decode, it is not possible for a latency-sensitive L1 cache to do

selective precharging.

To quantify the power overhead from various degrees of bit

interleaving, we modified CACTI 4.2 [15] to model bit-inter-

1.  The notable exception at this time is the Sun UltraSPARC T1 (Nia-

gara) [5], which can tolerate the resulting longer access time to L2 

with its heavily multi-threaded microarchitecture.

Fig. 1.  Bit interleaving to protect against spatial multi-bit errors. (a) illustrates the structure of 4-way physical bit
interleaving; (b) shows the dynamic power overheads as a function of the degree of interleaving, for different L1
cache associativities (all are 64kB, two ports, eight banks).
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leaved caches in which only sub-arrays containing the selected

word are activated. Given the target degree of interleaving,

CACTI explores the design space using wordline and bitline

segmenting. Figure 1(b) shows the normalized dynamic power

on a read operation as a function of the degree of interleaving.

We plot varying associativities, with all results obtained for a

64kB cache with two ports and eight banks (one port per bank).

We directed CACTI to optimize the cache design for delay, as

typical of L1 caches.

We observe that dynamic power consumption increases

roughly linearly with increasing degrees of bit interleaving.

Beyond two- or four-way interleaving, the overhead exceeds

twice the dynamic power of the baseline non-interleaved

cache. We conclude that interleaving beyond these points is not

practical due to power consumption, therefore requiring alter-

native solutions such as the work proposed in this paper.

III. OBSERVATIONS

A.  Avoiding dead-time vulnerability

A cache block is resident within a cache frame between the

time when a fill operation brings the block’s contents into the

cache and the time when that block is evicted through the

cache’s replacement policy. This timeframe can be broken

down into two components, the block’s live time and dead

time. A block’s live time begins when a cache fill places it into

its corresponding cache frame, and the block’s dead time

begins at the last cache hit before the block’s eventual eviction

(see Figure 2). Due to temporal and spatial locality of data

accesses, the contents of a cache block are likely to be accessed

many times within the block’s live time, whereas by definition,

the block contents remain un-accessed during the dead time

prior to the block’s eviction.

The temporal characteristics of cache blocks in the L1 have

been extensively studied in the literature [7,10]. Over a wide

range of workloads and cache organizations, the average cache

dead time is substantially longer than cache live time; conse-

quently, as much as 80% of cache frames contain blocks in a

“dead” state at any time [7,10]. We corroborate and extend

these findings, showing that, on average, the dead time to live-

time ratio is equally high for dirty cache blocks in a write-back

cache.

The long duration of dirty-block dead times has significant

implications for the architectural vulnerability of write-back

caches in the presence of soft errors. A dirty cache block

contains the only valid copy of data between the time a store

operation is performed and the time the block’s contents are

written back to a lower level of the memory hierarchy. Because

no stores are performed to the block for the duration of its dead

time, there is no benefit to delaying write-back until a block’s

eviction from the cache. Conversely, retaining data in a dirty

state during this time unnecessarily exposes the block to soft

errors for the long duration of the block’s dead time.

Dirty-block dead time constitutes the majority of time when

cache contents are vulnerable to soft error. We therefore

observe that performing write-back operations at the time of

the last store can substantially reduce the system’s architectural

vulnerability. Furthermore, even if a cache is protected by

SECDED ECC, performing write-back operations at the end of

the block’s live time reduces the probability of unrecoverable

errors and silent data corruption due to spatial and temporal

multi-bit errors during the block’s dead time. By performing

the write-back at the end of a block’s live time, the architec-

tural vulnerability approaches that of a write-through cache,

without incurring additional write-back bandwidth.

B.  Identifying block live time

This paper proposes the last-store predictor (LSP), a light-

weight mechanism for detecting when a block can be written

back to a lower level cache without increasing cache miss rates

or incurring substantial bandwidth overheads. Repetitive

program behavior enables the LSP to learn traces of store

instructions leading up to cache block evictions and to later

predict the last-store instruction upon detecting a store

sequence that previously preceded an eviction. By correctly

identifying last-store instructions, LSP can trigger a write-back

precisely at the last-store, thereby minimizing the time when a

cache block is vulnerable.

Figure 3 depicts an example of last-store prediction. For

simplicity, we assume a direct-mapped L1 for this example.

Cache blocks A1, A2, and A3 all map to the same cache frame.

The predictor tracks all stores {PCi, PCj, PCk} to block A2

until the block is evicted. Upon a miss to block A3, block A2 is

evicted, and the predictor records the instruction trace that led

to the last store as a fixed-size last-store signature. The trace is

represented by a hash of the program counter values that

performed a store to A2 (e.g., {PCi, PCj, PCk}). On subse-

quent encounters of the same sequence of store instructions

{PCi, PCj, PCk}, the predictor identifies PCk as the last store

Fig. 2.  Accesses to a cache block over time, illustrating
the transition from live time to dead time.
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triggers a write-back of the block prior to the miss to A3.
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prior to eviction and triggers a write-back of the corresponding

cache block.

The LSP mechanism is decoupled from data addresses; it is

not sensitive to data structure changes and exhibits short

training time. A trace of store instructions leading to an evic-

tion must be observed only once to enable the predictor to

identify all last-store operations performed by the same

sequence of instructions, regardless of the store addresses. For

example, stores at multiple array indices are commonly imple-

mented in loops. This data access pattern results in multiple

cache frames containing dirty cache blocks, all written by iden-

tical sequences of store instructions. On the first iteration of a

loop performing the store operation, LSP learns the sequence

of store instructions that lead up to the eviction of modified

blocks. LSP records only one fixed-size last-store signature for

this sequence of stores. For all subsequent iterations of the

loop, the same last-store signature is used to make a prediction

of the last-store instruction and enable LSP to initiate write-

back of the data at the time of the last store. This operation

makes stored data invulnerable to soft error for the remaining

time the block resides in the cache.

IV. DESIGN

We propose a cache protection scheme that provides detec-

tion of large-scale multi-bit errors and significantly reduces the

rate of uncorrectable errors. To detect multi-bit errors, we use

word-interleaved parity. While conventional parity stores one

parity bit for every 64 bits of data, interleaved parity keeps N

check bits (e.g., N=8) for every 64 bits and physically inter-

leaves the data so that no N contiguous bits are part of the same

parity group. Interleaving parity within a 64-bit data word

avoids the additional power overheads associated with inter-

leaved ECC because no additional bitlines must be precharged

(compared with non-interleaved ECC).

Our design treats errors detected in a clean cache block as

L1 misses, which results in the correct data being retrieved

from the memory system. When combined with the LSP, this

design removes the vulnerability for dirty blocks from the last

store until the block’s eviction. Following a write-back, subse-

quent read accesses do not incur performance overhead while

subsequent writes (mispredictions) either mark the block as

dirty (if the cache supports clean-exclusive state) or re-acquire

write permission from L2.

A.  LSP Structure

Figure 4 depicts the anatomy of a LSP implementation. LSP

comprises two low-associativity SRAM structures. The history

table, organized like the L1 tag array, maintains partial trace

encodings of store instructions for each block in the L1 data

cache. A signature table contains completed last-store signa-

tures known to correspond to last stores. Both structures are

latency insensitive because update and lookup operations in

these structures are not on the critical path of the processor.

B.  LSP training

Last-store signatures are constructed within the history

table. The history table parallels the L1 tag array. For each

frame in the L1, a corresponding history table entry maintains

an encoded trace of store instructions performed on that cache

block since the preceding fill operation. The entry also

contains a single predicted bit, to indicate that a last-store

prediction was previously made on the corresponding cache

block. The trace is incrementally constructed from program

counter values by applying truncated addition of each new PC

value to the previous trace encoding. The history entry is

cleared whenever the corresponding L1 frame undergoes block

eviction. Upon an eviction from L1, LSP extracts the

completed last-store signature from the history table and

updates the signature table. Each signature table entry consists

of a two-bit saturating counter. The signature table update

either replaces an old entry with the new signature and confi-

dence value “2”, or increments the confidence count if the new

signature is already present in the table.

C.  LSP prediction

After each update, the new trace encoding from the history

table is used to perform a lookup in the signature table. Pres-

ence in the signature table with a high confidence counter

value (greater than or equal to 2) indicates that after a previous

encounter of the same store-instruction sequence the cache

block was evicted. The latest instruction encoded in the trace is

therefore predicted as a last store, implying that the corre-

sponding block will not be written to again before it is evicted

from the cache. Upon detecting that a last store was performed,

LSP triggers a write-back on the corresponding cache block to

prevent the dirty data from remaining vulnerable in the cache.

On every L1 write, the trace encoding stored in the history

table is updated. Prior to update, the predicted bit is checked. If

this bit indicates that an incorrect prediction was made (predic-

tion was made but trace encoding was not cleared by a subse-

quent eviction), the signature table confidence value associated

with the old trace encoding is decremented.

V. EVALUATION

A.  Methodology

We use architectural vulnerability factor (AVF) [12] as a

measure of the reduction in soft-error rate achieved by various

protection mechanisms. AVF analysis determines the fraction

of time that, if an error had occurred, the error might have

affected execution outcome. Thus, our results do not indicate

failure rates, but rather show the average fraction of time

A2
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Fig. 4.  Anatomy of a LSP implementation.
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where a structure (e.g., L1 cache) is architecturally vulnerable

to soft error.

We adopt the methodology of Biswas et al. [3] to measure

AVF for the L1 cache. This technique marks events in the life

of every byte in each cache block (e.g., fill, read, write, evict).

Between any two events, we annotate the time as either vulner-

able—required for architecturally correct execution (ACE)—

or not vulnerable (unACE). The AVF for the data cache is then

the average fraction of the cache in the ACE state over the

entire execution.

Our experiments use traces of memory references from a

variety of commercial workloads and the SPEC CPU2000

benchmark suite, as shown in Table 1. All traces are run for 1B

instructions of warmup, and the AVF is measured for 2.5B

instructions thereafter. We include a 500M instruction

cooldown to resolve any remaining cache block lifetimes [3]. 

All traces are collected using FLEXUS, a full-system simula-

tor that extends Virtutech Simics. Our simulations run Solaris 8

on the SPARC ISA. We model a 64kB L1 data cache with two

read/write ports implemented with eight single-ported banks

(as in AMD Opteron [1]). Other details of the simulated

machine do not affect the AVF analysis.

Our workload traces include TPC-C v3.0 online transaction

processing (OLTP) workload on IBM DB2 v8 ESE. We select

three queries from the TPC-H decision support system (DSS),

showing scan-dominated, join-dominated, and mixed behavior.

All three DSS queries are run on IBM DB2 as well. We evalu-

ate web server performance with the SPECweb99 benchmark

on Apache HTTP Server v2.0. We include 26 of the 28 SPEC

CPU2000 benchmarks using the ref0 input sets. To report

aggregate results, we average the four workload classes (OLTP,

DSS, Web, and SPEC2K) with equal weight.

B.  AVF with Single-bit Fault Model

We first investigate the AVF of the data cache using four

alternative designs: write-through with no protection (design

‘A’), write-back with non-interleaved SECDED ECC (‘B’),

write-back with interleaved parity (‘C’), and write-back with

interleaved parity and a LSP (‘D’). The baseline LSP design

uses 16-bit signatures and a direct-mapped, 4K entry signature

table. We explore predictor sensitivity to signature storage size

later in this section.

Figure 5 shows the resulting AVF under a single-bit fault

model. For write-through with no protection, the AVF reported

corresponds to silent data corruption (SDC) AVF. For the

write-back caches, all AVFs reported are for detectable but

uncorrectable errors (DUE). We include the write-through

design simply to measure the “live” portion of the cache, rather

than advocate this as a practical design point or attempt to

compare SDC AVF with DUE AVF.2

The different categories (shown in the legend) correspond to

the AVF contribution of various events. The area shaded in

light gray is due to the time between a cache line fill or read

and a subsequent read with no intervening events. The cate-

gory ‘X -> Evict (dirty)’ corresponds to any event (‘X’) that

precedes an eviction of a dirty block (e.g., write-back to L2).

Note that design A, write-through with no protection, has no

‘X -> Evict (dirty)’ time.

From Figure 5, we first observe that write-back with ECC

(design ‘B’) outperforms the alternatives in terms of single-bit

AVF. What little vulnerability remains is due to the live time of

a dirty cache block, where this model of SECDED ECC cannot

perform inline correction. For clean blocks where an error is

detected, we assume the cache can obtain the correct value

from L2 or the rest of the memory system (e.g., treat the access

as an L1 miss). Hence, write-back with ECC reduces the AVF

over write-through with no protection by protecting read-only

blocks.

Write-back with interleaved parity (but no LSP) has over an

order-of-magnitude greater AVF than write-back with ECC

Online Transaction Processing (TPC-C)

DB2  100 warehouses (10 GB), 64 clients, 450 MB buffer pool

Web Server

Apache 16K connections, FastCGI, worker threading model

Zeus 16K connections, FastCGI

Decision Support (TPC-H on DB2)

Qry 2 Join-dominated, 450 MB buffer pool

Qry 6 Scan-dominated, 450 MB buffer pool 

Qry 17 Balanced scan-join, 450 MB buffer pool

SPEC CPU2000 

26 benchmarks, ref0 input sets

TABLE 1. Workload configurations.

2.  We omit write-through with interleaved parity because the AVF is 

always zero under our fault model.

Fig. 5.  AVF for a 64kB L1 data cache under a single-bit fault model, with various protection schemes. WT is a write-through
cache and WB is a write-back cache.
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entirely due to the contribution of dead-block time. This cor-

roborates the findings of previous studies [7,10], but also

shows the dead time of dirty blocks greatly exceeds live time. 

The addition of a last-store predictor reduces the AVF con-

tributed by dead blocks from 35% down to less than 12% on

average. This reduction corresponds to an average of 70% cov-

erage in the predictor, meaning that 70% of all last-stores are

correctly predicted. 

C.  Multi-Bit Fault Model

Figure 6 shows the AVF of the four designs described previ-

ously when subjected to a multi-bit fault model. We assume the

number of bit flips may be larger than two, and are thus not

always detectable by SECDED ECC. We assume that the inter-

leaved parity of designs ‘C’ and ‘D’—write-back with parity

and write-back with parity and LSP, respectively—is sufficient

to detect any multi-bit error in this fault model.

The AVF for write-through with no protection (design ‘A’) is

unchanged, as the silent-data corruption remains undetected

independent of the number of bit flips. Design ‘B’—write-back

with SECDED ECC, which we assume has no interleaved par-

ity—cannot detect the multi-bit errors and has an SDC AVF

exceeding 40%. Note that this result does not account for soft-

ware-level derating, where the flipped data bits may be unused

or trigger an error in the OS/application and hence become

DUE. The multi-bit AVF for SECDED ECC is not 100%

because blocks are sparsely accessed. For read-only blocks,

only the bytes read by instructions contribute to AVF.

Nevertheless, it is clear from Figure 6 that for a write-back

cache, a technique such as LSP must be used to reduce the vul-

nerability to multi-bit soft errors. Because the prediction mech-

anism is independent of the number of bits flipped, the design

with LSP (design ‘D’) maintains the low AVF of the previous

section (12% on average).

D.  LSP Design Sensitivity

We examine the sensitivity to LSP organization along three

dimensions: signature size, signature table size, and associativ-

ity. In all cases, we report the coverage and over-predictions of

the LSP. Coverage represents the fraction of last stores that are

correctly predicted by LSP. Over-predictions represent blocks

that are written back but then written again by the program

prior to eviction. Over-predictions waste L2 bandwidth but do

not otherwise affect execution.

Figure 7 shows the sensitivity to signature size—the number

of PC bits used in the signature—where 30 bits is the maxi-

mum possible size (uniquely determining the PC in SPARC).

These results use an infinite-sized, fully-associative signature

table to isolate the aliasing effects due to signature collisions.

For all the workloads, the general trend is not only to reduce

the coverage as the number of signature bits decreases, but also

to increase the over-prediction rate. This trend is due to a tog-

gling of signatures where the trace leading to a last store (rais-

ing the confidence counter) later results in an over-prediction

because of aliasing. From these results, we choose 16-bit sig-

natures as a compromise between coverage and LSP storage

size.

Having fixed the signatures at 16 bits, Figure 8 shows the

predictor sensitivity to signature-table size, while maintaining

a fully associative structure to isolate the effect of capacity

misses in the signature table. The shape observed for OLTP

and Web workloads is quite interesting, as over-predictions ini-

tially increase as the table size shrinks, but eventually peak

around 8K entries and then decline. The signature-size results

showed that significant aliasing occurs with 16-bit signatures.

Thus, as the table size increases from very small (1K), the

number of potential aliases increases. Eventually, the table

becomes large enough (e.g., 16K entries) to reduce the aliasing

and keep sufficient history of the traces that should not lead to

predictions, without affecting coverage.

From Figure 8, we observe that 4K entries is approximately

equal in coverage to infinite size and choose this size for the

remaining experiment: associativity. Figure 9 shows that with

16-bit signatures and a direct-mapped 4K-entry table, the cov-

Fig. 6.  AVF for a 64kB L1 data cache under a multi-bit fault model, with various protection schemes. 
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erage and over-predictions are sufficiently close to a fully-

associative organization. At this size and structure, the signa-

ture table needs four tag bits per entry and thus uses 3kB of

total storage (including the 2-bit confidence counters).

E.  Area and Power Overheads

The proposed LSP implementation augments the processor

microarchitecture with two additional structures. In this sec-

tion, we quantify the area and power overheads of LSP. We

note that both additional structures are substantially simpler

than a typical cache. The signature table is a direct-mapped

structure that accesses a single two-bit counter value without

word-selection logic. As a result, the signature table resembles

a cache tag array. Conversely, each history table entry corre-

sponds to a cache frame in the L1 data cache; therefore, this

structure only requires storage for its data, without need for a

serial or parallel tag lookup.

The LSP history table must store one encoded trace of pro-

gram counter values per cache block. The area overhead is

therefore limited by the number of cache frames in the cache.

Furthermore, the area overhead is insignificant when consid-

ered in comparison to ECC bits for a cache line. SECDED ECC

calls for 12.5% overhead (8 bits of ECC for every 64 bits of

data), whereas the fixed-size PC trace encodings and predicted

bit introduce approximately 3.3% overhead (17 bits per 64 byte

block).

To get a sense for the relative contribution of LSP com-

pared to the L1 of our architecture, we used CACTI 4.2 [15] to

estimate the energy of the history table and signature table

structures and a 64kB L1 cache in a 70nm technology. Despite

lookup on every L1 access, the narrow width of the history

table and lack of a separate data lookup in the LSP allows for

substantially lower read and write energy compared to the L1.

CACTI estimates 49pJ dynamic energy for accesses to the two-

ported L1 cache. For each L1 access, the last-store predictor

requires up to two accesses to the history table and up to two

accesses to the signature table. CACTI estimates a total of

3.4pJ dynamic energy for all four accesses to structures sized

according to results of the previous section.

CACTI estimates for leakage power of the LSP structures

are similarly small compared to the L1 cache. The data cache

will leak approximately 250mW, while the LSP structures will

leak only about 15mW as a result of significantly smaller size.

It should also be noted that lookup in the LSP structures does

not require low latency and is not on the critical path, enabling

a pipelined design using high-Vt and/or long channel length

transistors, which may further reduce leakage compared to the

highly latency-sensitive L1 cache.

VI. RELATED WORK

The mechanisms proposed in this paper fall under the

broader class of early-write-back techniques that reduce

vulnerability of L1 caches [2,8,16]. This paper differs from

prior work on early-write-back mechanisms by (1) evaluating

the AVF reduction for multi-bit errors and (2) studying the use

of trace-based prediction (LSP) as the mechanism that triggers

early write-back. 

Asadi et al. [2] propose a periodic write-back of dirty blocks

where a circuit examines cache frames sequentially, writing

back the data to L2 if the block is dirty. Much like hardware

scrubbing used in the AMD Opteron [1], the periodic write-

back hardware consumes an L1 port for every cycle in which it

examines the tag array for a dirty block. The LSP technique

proposed in this paper does not consume additional L1 cache-

port bandwidth.

Li et al. [8] propose early write-back to reduce the energy

consumption of single-bit error protection mechanisms. In

contrast, we propose a form of early write-back (with LSP) to

protect against multi-bit errors. As we showed in Section V,

the additional power required for the LSP arrays is signifi-

cantly smaller than the power used by the L1 cache.

Vera et al. [16] use cache decay, originally proposed for

leakage energy reduction, which evicts a block if it has been

dead for a period of time (called the decay interval). Their

evaluation differs from this paper in that [16] models a write-

through cache only and does not report multi-bit AVF reduc-

tions. Furthermore, the mechanisms in [16] invalidate the

Fig. 8.  Sensitivity to the number of entries in the LSP
signature table. A fully-associative signature table is used
for these experiments to isolate the effect of capacity
misses.

0%

25%

50%

75%

100%

125%

150%

175%

200%

In
f

1
6

K
8

K
4

K
2

K
1

K In
f

1
6

K
8

K
4

K
2

K
1

K In
f

1
6

K
8

K
4

K
2

K
1

K In
f

1
6

K
8

K
4

K
2

K
1

K In
f

1
6

K
8

K
4

K
2

K
1

K

OLTP DSS Web SPEC2K Average

P
e

rc
e

n
t 

o
f 

L
a

s
t 

S
to

re
s

Overpredictions

Uncovered

Covered

Fig. 9.  LSP sensitivity to associativity.
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blocks after the decay interval, which increases the miss rate in

L1 (on over-predictions) and degrades performance.

Recent work has also examined in-cache protection as an

alternative to early-write-back techniques. Kim and Somani [4]

selectively protect the most-frequently- or most-recently-used

cache blocks. These mechanisms target a fault model where

blocks are prone to errors during their access as a result of elec-

trical noise or cross-coupling [4] and do not address a particle-

radiation fault model.

Sadler and Sorin [14] decouple error detection from correc-

tion by integrating fast error-detection codes (EDCs) with the

data array in L1 and keep a separate structure for holding error

correcting codes (ECCs). The chosen codes could detect and

correct multi-bit faults. However, a large area overhead is

required for multi-bit correction codes. In contrast, the tech-

niques proposed in this paper do not rely on coding in L1 to

correct multi-bit errors and avoid the large area overheads.

Zhang et al. [17] propose the replication cache, a small, fully

associative structure that holds duplicate copies of recently-

written blocks. When evicting from the replication cache, the

data is written back to L2 (as in early-write-back mechanisms).

While in the replication cache, blocks enjoy full redundancy

and hence large-scale multi-bit fault protection. However, as

Sadler and Sorin [14] show, the fixed-size replication cache

incurs significant performance overheads in several SPECfp

applications because of thrashing in the replication cache and

the resulting bandwidth demands on L2.

VII. CONCLUSIONS

Increasing soft-error rates, particularly multi-bit error rates,

require alternatives to the interleaved ECC used in previous L1

data cache designs. We corroborate and extend prior findings

that the majority of time that a dirty cache block is present in

the cache is “dead” time; that is, after the last store to the block.

We leverage this observation to construct a lightweight

predictor for last stores that triggers early write-backs to reduce

the AVF of dirty blocks in L1 data caches. We show that, on

average, write-back L1 data caches are 42% vulnerable to

multi-bit soft errors. Where SECDED ECC fails to mitigate

multi-bit errors, our mechanism reduces the multi-bit soft-error

vulnerability to 12% on average.
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