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A CASE FOR SPECIALIZED PROCESSORS
FOR SCALE-OUT WORKLOADS
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EMERGING SCALE-OUT WORKLOADS NEED EXTENSIVE COMPUTATIONAL RESOURCES, BUT

DATACENTERS USING MODERN SERVER HARDWARE FACE PHYSICAL CONSTRAINTS. IN THIS

ARTICLE, THE AUTHORS SHOW THAT MODERN SERVER PROCESSORS ARE HIGHLY

INEFFICIENT FOR RUNNING CLOUD WORKLOADS. THEY INVESTIGATE THE

MICROARCHITECTURAL BEHAVIOR OF SCALE-OUT WORKLOADS AND PRESENT

OPPORTUNITIES TO ENABLE SPECIALIZED PROCESSOR DESIGNS THAT CLOSELY MATCH THE

NEEDS OF THE CLOUD.

......Cloud computing is emerging as
a dominant computing platform for deliver-
ing scalable online services to a global client
base. Today’s popular online services, such as
web search, social networks, and video shar-
ing, are all hosted in large scale-out datacen-
ters. With the industry rapidly expanding,
service providers are building new datacen-
ters, augmenting the existing infrastructure
to meet the increasing demand. However,
while demand for cloud infrastructure con-
tinues to grow, the semiconductor manufac-
turing industry has reached the physical
limits of voltage scaling,1,2 no longer able to
reduce power consumption or increase power
density in new chips. Physical constraints
have therefore become the dominant limiting
factor, because the size and power demands
of larger datacenters cannot be met.

Although major design changes are being
introduced at the board and chassis levels of
new cloud servers, the processors used in
modern servers were originally created for
desktops and are not designed to efficiently
run scale-out workloads. Processor vendors
use the same underlying microarchitecture

for servers and for the general-purpose mar-
ket, leading to extreme inefficiency in today’s
datacenters. Moreover, both general-purpose
and traditional server processor designs fol-
low a trajectory that benefits scale-up work-
loads, a trend that was established for desktop
processors long before the emergence of scale-
out workloads.

In this article, based on our paper for the
17th International Conference on Architec-
tural Support for Programming Languages
and Operating Systems,3 we observe that
scale-out workloads share many inherent
characteristics that place them into a work-
load class distinct from desktop, parallel, and
traditional server workloads. We perform a
detailed microarchitectural study of a range
of scale-out workloads, finding a large mis-
match between the demands of the scale-out
workloads and today’s predominant pro-
cessor microarchitecture. We observe signifi-
cant overprovisioning of the memory
hierarchy and core microarchitectural resour-
ces for the scale-out workloads.

We use performance counters to study the
behavior of scale-out workloads running on

Michael Ferdman

Stony Brook University

Almutaz Adileh

Ghent University

Onur Kocberber

Stavros Volos

Mohammad Alisafaee

Djordje Jevdjic

Cansu Kaynak

Adrian Daniel Popescu

Anastasia Ailamaki

Babak Falsafi
�Ecole Polytechnique F�ed�erale

de Lausanne

0272-1732/14/$31.00�c 2014 IEEE Published by the IEEE Computer Society

.............................................................

31



modern server processors. On the basis of
our analysis, we demonstrate the following:

� Scale-out workloads suffer from high
instruction-cache miss rates. Instruc-
tion caches and associated next-line
prefetchers found in modern pro-
cessors are inadequate for scale-out
workloads.

� Instruction-level parallelism (ILP)
and memory-level parallelism (MLP)
in scale-out workloads are low. Modern
aggressive out-of-order cores are ex-
cessively complex, consuming power
and on-chip area without providing
performance benefits to scale-out
workloads.

� Data working sets of scale-out work-
loads considerably exceed the ca-
pacity of on-chip caches. Processor
real estate and power are misspent on
large last-level caches that do not con-
tribute to improved scale-out work-
load performance.

� On- and off-chip bandwidth require-
ments of scale-out workloads are
low. Scale-out workloads see no bene-
fit from fine-grained coherence and
excessive memory and core-to-core
communication bandwidth.

Continuing the current processor trends
will further widen the mismatch between
scale-out workloads and server processors.
Conversely, the characteristics of scale-out
workloads can be effectively leveraged to spe-
cialize processors for these workloads in order
to gain area and energy efficiency in future
servers. An example of such a specialized pro-
cessor design that matches the needs of scale-
out workloads is Scale-Out Processor,4 which
has been shown to improve the system
throughput and the overall datacenter cost
efficiency by almost an order of magnitude.5

Modern cores and scale-out workloads
Today’s datacenters are built around con-

ventional desktop processors whose architec-
ture was designed for a broad market. The
dominant processor architecture has closely
followed the technology trends, improving
single-thread performance with each pro-
cessor generation by using the increased clock

speeds and “free” (in area and power) transis-
tors provided by progress in semiconductor
manufacturing. Although Dennard scaling
has stopped,1,2,6,7 with both clock frequency
and transistor counts becoming limited by
power, processor architects have continued to
spend resources on improving single-thread
performance for a broad range of applications
at the expense of area and power efficiency.

In this article, we study a set of applica-
tions that dominate today’s cloud infrastruc-
ture. We examined a selection of Internet
services on the basis of their popularity. For
each popular service, we analyzed the class
of application software used by major pro-
viders to offer these services, either on their
own cloud infrastructure or on a cloud
infrastructure leased from a third party.
Overall, we found that scale-out workloads
have similar characteristics. All applications
we examined

� operate on large data sets that are dis-
tributed across a large number of
machines, typically into memory-
resident shards;

� serve large numbers of completely
independent requests that do not
share any state;

� have application software designed
specifically for the cloud infrastruc-
ture, where unreliable machines may
come and go; and

� use connectivity only for high-level
task management and coordination.

Specifically, we identified and studied the
following workloads: an in-memory object
cache (Data Caching); a NoSQL persistent
data store (Data Serving); data filtering,
transformation, and analysis (MapReduce); a
video-streaming service (Media Streaming); a
large-scale irregular engineering computation
(SAT Solver); a dynamic Web 2.0 service
(Web Frontend); and an online search engine
node (Web Search). To highlight the dif-
ferences between scale-out workloads and
traditional workloads, we evaluated cloud
workloads alongside the following traditional
benchmark suites: Parsec 2.1 Parallel work-
loads, SPEC CPU2006 desktop and engineer-
ing workloads, SPECweb09 traditional web
services, TPC-C traditional transaction proc-
essing workload, TPC-E modern transaction

..............................................................................................................................................................................................

TOP PICKS

............................................................

32 IEEE MICRO



processing workload, and MySQL Web 2.0
back-end database.

Methodology
We conducted our study on a PowerEdge

M1000e enclosure with two Intel X5670 pro-
cessors and 24 Gbytes of RAM in each blade,
using Intel VTune to analyze the system’s
microarchitectural behavior. Each Intel X5670
processor includes six aggressive out-of-order
processor cores with a three-level cache hier-
archy: the L1 and L2 caches are private to
each core; the last-level cache (LLC)—the L3
cache—is shared among all cores. Each core
includes several simple stride and stream
prefetchers, labeled as “adjacent-line,” “HW
prefetcher,” and “DCU streamer” in the
processor documentation and system BIOS
settings. The blades use high-performance
Broadcom server network interface controllers
(NICs) with drivers that support multiple
transmit queues and receive-side scaling. The
NICs are connected by a built-in M6220
switch. For bandwidth-intensive benchmarks,
2-Gbit NICs are used in each blade.

Table 1 summarizes the blades’ key archi-
tectural parameters. We limited all workload
configurations to four cores, tuning the
workloads to achieve high utilization of the
cores (or hardware threads, in the case of
the SMT experiments), while maintaining
the workload quality-of-service requirements.
To ensure that all application and operating

system software runs on the cores under test,
we disabled all unused cores using the avail-
able operating system mechanisms.

Results
We explore the microarchitectural behav-

ior of scale-out workloads by examining the
commit-time execution breakdown in Fig-
ure 1. We classify each cycle of execution as
Committing if at least one instruction was
committed during that cycle, or as Stalled
otherwise. We note that computing a break-
down of the execution-time stall components
of superscalar out-of-order processors cannot
be performed precisely because of overlapped
work in the pipeline. We therefore present
execution-time breakdown results based on
the performance counters that have no over-
lap. Alongside the breakdown, we show the
Memory cycles, which approximate time
spent on long-latency memory accesses, but
potentially partially overlap with instruction
commits.

The execution-time breakdown of scale-
out workloads is dominated by stalls in both
the application code and operating system.
Notably, most of the stalls in scale-out work-
loads arise because of long-latency memory
accesses. This behavior is in contrast to the
CPU-intensive desktop (SPEC2006) and
parallel (Parsec) benchmarks, which stall exe-
cution significantly less than 50 percent
of the cycles and experience only a fraction

Table 1. Architectural parameters.

Component Details

Processor 32-nm Intel Xeon X5670, operating at 2.93 GHz

Chip multiprocessor width Six out-of-order cores

Core width Four-wide issue and retire

Reorder buffer 128 entries

Load-store queue 48/32 entries

Reservation stations 36 entries

Level-1 caches 32 Kbytes instruction and 32 Kbytes data, four-cycle

access latency

Level-2 cache 256 Kbytes per core, six-cycle access latency

Last-level cache (Level-3 cache) 12 Mbytes, 29-cycle access latency

Memory 24 Gbytes, three double-data-rate three (DDR3) channels,

delivering up to 32 Gbytes/second
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of the stalls due to memory accesses. Further-
more, although the execution-time break-
down of some scale-out workloads (such
as MapReduce and SAT Solver) appears
similar to the memory-intensive Parsec and
SPEC2006 benchmarks, the nature of these
workloads’ stalls is different. Unlike the scale-
out workloads, many Parsec and SPEC2006
applications frequently stall because of pipe-
line flushes after wrong-path instructions,
with much of the memory access time not on
the critical path of execution.

Scale-out workloads show memory system
behavior that more closely matches tradi-
tional online transaction processing work-
loads (TPC-C, TPC-E, and Web Backend).
However, we observe that scale-out work-
loads differ considerably from traditional
online transaction processing (TPC-C), which
spends more than 80 percent of the time
stalled, owing to dependent memory accesses.
We find that scale-out workloads are most
similar to the more recent transaction process-
ing benchmarks (TPC-E) that use more com-
plex data schemas or perform more complex
queries than traditional transaction process-
ing. We also observe that a traditional enter-
prise web workload (SPECweb09) behaves
differently than the Web Frontend workload,
representative of modern scale-out configura-
tions. Although the traditional web workload
is dominated by serving static files and a
few dynamic scripts, modern scalable web

workloads like Web Frontend handle a
much higher fraction of dynamic requests,
leading to higher core utilization and less OS
involvement.

Although the behavior across scale-out
workloads is similar, the class of scale-out
workloads as a whole differs significantly
from other workloads. Processor architec-
tures optimized for desktop and parallel
applications are not optimized for scale-out
workloads that spend most of their time wait-
ing for cache misses, resulting in a clear
microarchitectural mismatch. At the same
time, architectures designed for workloads
that perform only trivial computation and
spend all of their time waiting on memory
(such as SPECweb09 and TPC-C) also can-
not cater to scale-out workloads.

Front-end inefficiencies
There are three major front-end ineffi-

ciencies:

� Cores are idle because of high
instruction-cache miss rates.

� L2 caches increase average instruc-
tion-fetch latency.

� Excessive LLC capacity leads to long
instruction-fetch latency.

Instruction-fetch stalls play a critical role
in processor performance by preventing the
core from making forward progress because
of a lack of instructions to execute. Front-end

0%

Data
 C

ac
hin

g

Data
 S

er
vin

g

Map
Red

uc
e

Med
ia 

Stre
am

ing

SAT
 S

olv
er

W
eb

 Fr
on

ten
d

W
eb

 S
ea

rc
h

PA
RSEC (c

pu)

PA
RSEC (m

em
)

SPEC20
06

 (c
pu)

SPEC20
06

 (m
em

)

SPECweb
09

TP
C-C

TP
C-E

W
eb

 B
ac

ke
nd

25%

50%

75%

100%

To
ta

l e
xe

cu
tio

n 
cy

cl
es

Stalled (OS) Stalled (Application) Committing (Application) Committing (OS) Memory

Figure 1. Execution-time breakdown and memory cycles of scale-out workloads (left) and traditional benchmarks (right).

Execution time is further broken down into its application and operating system components.
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stalls serve as a fundamental source of ineffi-
ciency for both area and power, because the
core real estate and power consumption are
entirely wasted for the cycles that the front
end spends fetching instructions.

Figure 2 presents the instruction miss
rates of the L1 instruction cache and the L2
cache. In contrast to desktop and parallel
benchmarks, the instruction working sets of
many scale-out workloads considerably
exceed the capacity of the L1 instruction
cache, resembling the instruction-cache
behavior of traditional server workloads.
Moreover, the instruction working sets of
most scale-out workloads also exceed the L2
cache capacity, where even relatively infre-
quent instruction misses incur considerable
performance penalties. We find that modern
processor architectures can’t tolerate the
latency of the L1 instruction cache’s misses,
avoiding front-end stalls only for applications
whose entire instruction working set fits into
the L1 cache. Furthermore, the high L2
instruction miss rates indicate that the L1
instruction cache’s capacity experiences a sig-
nificant shortfall and can’t be mitigated by
the addition of a modestly sized L2 cache.

The disparity between the needs of
the scale-out workloads and the processor
architecture are apparent in the instruction-
fetch path. Although exposed instruction-

fetch stalls serve as a key source of inefficiency
under any circumstances, the instruction-
fetch path of modern processors actually
exacerbates the problem. The L2 cache expe-
riences high instruction miss rates, increasing
the average fetch latency of the missing fetch
requests by placing an additional intermedi-
ate lookup structure on the path to retrieve
instruction blocks from the LLC. Moreover,
the entire instruction working set of any
scale-out workload is considerably smaller
than the LLC capacity. However, because the
LLC is a large cache with a high uniform
access latency, it contributes an unnecessarily
large instruction-fetch penalty (29 cycles to
access the 12-Mbyte cache).

To improve efficiency and reduce front-
end stalls, processors built for scale-out work-
loads must bring instructions closer to the
cores. Rather than relying on a deep hier-
archy of caches, a partitioned organization
that replicates instructions and makes them
available close to the requesting cores8 is
likely to considerably reduce front-end stalls.
To effectively use the on-chip real estate, the
system would need to share the partitioned
instruction caches among multiple cores,
striking a balance between the die area dedi-
cated to replicating instruction blocks and
the latency of accessing those blocks from the
closest cores.
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Figure 2. L1 and L2 instruction miss rates for scale-out workloads (left) and traditional benchmarks (right). The miss rate is

broken down into its application and operating system components.

.............................................................

MAY/JUNE 2014 35



Furthermore, although modern process-
ors include next-line prefetchers, high
instruction-cache miss rates and significant
front-end stalls indicate that the prefetchers
are ineffective for scale-out workloads. Scale-
out workloads are written in high-level lan-
guages, use third-party libraries, and execute
operating system code, exhibiting complex
nonsequential access patterns that are not
captured by simple next-line prefetchers.
Including instruction prefetchers that predict
these complex patterns is likely to improve
overall processor efficiency by eliminating
wasted cycles due to front-end stalls.

Core inefficiencies
There are two major core inefficiencies:

� Low ILP precludes effectively using
the full core width.

� The reorder buffer (ROB) and the
load-store queue (LSQ) are underu-
tilized because of low MLP.

Modern processors execute instructions
out of order to enable simultaneous execu-
tion of multiple independent instructions per
cycle (IPC). Additionally, out-of-order execu-
tion elides stalls due to memory accesses by
executing independent instructions that fol-
low a memory reference while the long-
latency cache access is in progress. Modern
processors support up to 128-instruction
windows, with the width of the processor
dictating the number of instructions that

can simultaneously execute in one cycle. In
addition to exploiting ILP, large instruction
windows can exploit MLP by finding inde-
pendent memory accesses within the instruc-
tion window and performing the memory
accesses in parallel. The latency of LLC hits
and off-chip memory accesses cannot be hid-
den by out-of-order execution; achieving
high MLP is therefore key to achieving high
core utilization by reducing the data access
latency.

The processors we study use four-wide
cores that can decode, issue, execute, and
commit up to four instructions on each
cycle. However, in practice, ILP is limited
by dependencies. The Baseline bars in
Figure 3a show the average number of
instructions committed per cycle when
running on an aggressive four-wide out-of-
order core. Despite the abundant availabil-
ity of core resources and functional units,
scale-out workloads achieve a modest
application IPC, typically in the range of
0.6 (Data Caching and Media Streaming)
to 1.1 (Web Frontend). Although there
exist workloads that can benefit from wide
cores, with some CPU-intensive Parsec and
SPEC2006 applications reaching an IPC of
2.0 (indicated by the range bars in the fig-
ure), using wide processors for scale-out
applications does not yield a significant
benefit.

Modern processors have 32-entry or larger
load-store queues, enabling many memory-
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Figure 3. The instructions per cycle (IPC) and memory-level parallelism (MLP) of a simultaneous multithreading (SMT) enabled

core. Application IPC for systems with and without SMT out of a maximum IPC of 4 (a). MLP for systems with and without

SMT (b). Range bars indicate the minimum and maximum of the corresponding group.
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reference instructions in the 128-instruction
window. However, just as instruction depend-
encies limit ILP, address dependencies limit
MLP. The Baseline bars in Figure 3b present
the MLP, ranging from 1.4 (Web Frontend)
to 2.3 (SAT Solver) for the scale-out work-
loads. These results indicate that the memory
accesses in scale-out workloads are replete
with complex dependencies, limiting the
MLP that can be found by modern aggressive
processors. We again note that while desktop
and parallel applications can use high-MLP
support, with some Parsec and SPEC2006
applications having an MLP up to 5.0, sup-
port for high MLP is not useful for scale-out
applications. However, we find that scale-out
workloads generally exhibit higher MLP than
traditional server workloads. Noting that
such characteristics lend themselves well to
multithreaded cores, we examine the IPC and
MLP of an SMT-enabled core in Figure 3. As
expected, the MLP found and exploited by
the cores when two independent application
threads run on each core concurrently nearly
doubles compared to the system without
SMT. Unlike traditional database server
workloads that contain many inter-thread
dependencies and locks, the independent
nature of threads in scale-out workloads ena-
bles them to observe considerable perform-
ance benefits from SMT, with 39 to 69
percent improvements in IPC.

Support for four-wide out-of-order execu-
tion with a 128-instruction window and up
to 48 outstanding memory requests requires
multiple-branch prediction, numerous arith-
metic logic units (ALUs), forwarding paths,
many-ported register banks, large instruction
scheduler, highly associative ROB and LSQ,
and many other complex on-chip structures.
The complexity of the cores limits core
count, leading to chip designs with several
cores that consume half the available on-chip
real estate and dissipate the vast majority of
the chip’s dynamic power budget. However,
our results indicate that scale-out workloads
exhibit low ILP and MLP, deriving benefit
only from a small degree of out-of-order exe-
cution. As a result, the nature of scale-out
workloads cannot effectively utilize the
available core resources. Both the die area
and the energy are wasted, leading to data-
center inefficiency.

The nature of scale-out workloads makes
them ideal candidates to exploit multi-
threaded multicore architectures. Modern
mainstream processors offer excessively com-
plex cores, resulting in inefficiency through
resource waste. At the same time, our results
indicate that niche processors offer excessively
simple (for example, in-order) cores that can-
not leverage the available ILP and MLP in
scale-out workloads. We find that scale-out
workloads match well with architectures
offering multiple independent threads per
core with a modest degree of superscalar
out-of-order execution and support for sev-
eral simultaneously outstanding memory
accesses. For example, rather than imple-
menting SMT on a four-way core, we could
use two independent two-way cores, which
would consume fewer resources while achiev-
ing higher aggregate performance. Further-
more, each narrower core would not require
a large instruction window, reducing the per-
core area and power consumption compared
to modern processors and enabling higher
computational density by integrating more
cores per chip.

Data-access inefficiencies
There are two major data-access ineffi-

ciencies:

� Large LLC consumes area, but does
not improve performance.

� Simple data prefetchers are ineffective.

More than half of commodity processor
die area is dedicated to the memory system.
Modern processors feature a three-level cache
hierarchy, where the LLC is a large-capacity
cache shared among all cores. To enable
high-bandwidth data fetch, each core can
have up to 16 L2 cache misses in flight. The
high-bandwidth on-chip interconnect ena-
bles cache-coherent communication between
the cores. To mitigate the capacity and
latency gap between the L2 caches and the
LLC, each L2 cache is equipped with pre-
fetchers that can issue prefetch requests into
the LLC and off-chip memory. Multiple
DDR3 memory channels provide high-band-
width access to off-chip memory.

The LLC is the largest on-chip structure;
its cache capacity has been increasing
with each processor generation, thanks to
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semiconductor manufacturing improve-
ments. We investigate the utility of growing
the LLC capacity for scale-out workloads in
Figure 4 through a cache sensitivity analysis
by dedicating two cores to cache-polluting
threads. The polluter threads traverse arrays
of predetermined size in a pseudorandom
sequence, ensuring that all accesses miss in
the upper-level caches and reach the LLC.
We use performance counters to confirm that

the polluter threads achieve nearly a 100 per-
cent hit ratio in the LLC, effectively reducing
the cache capacity available for the workload
running on the remaining cores of the same
processor.

We plot the average system performance
of scale-out workloads as a function of the
LLC capacity, normalized to a baseline sys-
tem with a 12-Mbyte LLC. Unlike in the
memory-intensive desktop applications (such
as SPEC2006 mcf), we find minimal per-
formance sensitivity to LLC size above 4 to 6
Mbytes in scale-out and traditional server
workloads. The LLC captures the instruction
working sets of scale-out workloads, which
are less than 2 Mbytes. Beyond this point,
small shared supporting structures may con-
sume another 1 to 2 Mbytes. Because scale-
out workloads operate on massive datasets
and service a large number of concurrent
requests, both the dataset and the per-client
data are orders of magnitude larger than the
available on-chip cache capacity. As a result,
an LLC that captures the instruction working
set and minor supporting data structures
achieves nearly the same performance as an
LLC with double or triple the capacity.

In addition to leveraging MLP to overlap
demand requests from the processor core,
modern processors use prefetching to specu-
latively increase MLP. Prefetching has been
shown effective at reducing cache miss rates
by predicting block addresses that will be ref-
erenced in the future and bringing these
blocks into the cache prior to the processor’s
demand, thereby hiding the access latency. In
Figure 5, we present the hit ratios of the L2
cache when all available prefetchers are
enabled (Baseline), as well as the hit ratios
after disabling the prefetchers. We observe a
noticeable degradation of the L2 hit ratios of
many desktop and parallel applications when
the adjacent-line prefetcher and L2 hardware
prefetcher are disabled. In contrast, only one
of the scale-out workloads (MapReduce) sig-
nificantly benefits from these prefetchers,
with the majority of the workloads experienc-
ing negligible changes in the cache hit rate.
Moreover, similar to traditional server work-
loads (TPC-C), disabling the prefetchers
results in an increase in the hit ratio for some
scale-out workloads (Data Caching, Media
Streaming, and SAT Solver). Finally, we note
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that the DCU streamer (not shown) provides
no benefit to scale-out workloads, and in
some cases marginally increases the L2 miss
rate because it pollutes the cache with
unnecessary blocks.

Our results show that the on-chip resour-
ces devoted to the LLC are one of the key
limiters of scale-out application computa-
tional density in modern processors. For tra-
ditional workloads, increasing the LLC
capacity captures the working set of a broader
range of applications, contributing to
improved performance, owing to a reduction
in average memory latency for those applica-
tions. However, because the LLC capacity
already exceeds the scale-out application
requirements by 2 to 3 times, whereas the
next working set exceeds any possible SRAM
cache capacity, the majority of the die area
and power currently dedicated to the LLC is
wasted. Moreover, prior research has shown
that increases in the LLC capacity that do not
capture a working set lead to an overall per-
formance degradation; LLC access latency is
high due to its large capacity, not only wast-
ing on-chip resources, but also penalizing all
L2 cache misses by slowing down LLC hits
and delaying off-chip accesses.

Although modern processors grossly over-
provision the memory system, we can
improve datacenter efficiency by matching
the processor design to the needs of the scale-
out workloads. Whereas modern processors
dedicate approximately half of the die area to
the LLC, scale-out workloads would likely
benefit from a different balance. A two-level
cache hierarchy with a modestly sized LLC
that makes a special provision for caching
instruction blocks would benefit perform-
ance. The reduced LLC capacity along with
the removal of the ineffective L2 cache would
offer access-latency benefits while also freeing
up die area and power. The die area and
power can be applied toward improving
computational density and efficiency by add-
ing more hardware contexts and more
advanced prefetchers. Additional hardware
contexts (more threads per core and more
cores) should linearly increase application
parallelism, and more advanced correlating
data prefetchers could accurately prefetch
complex access data patterns and increase the
performance of all cores.

Bandwidth inefficiencies
The major bandwidth inefficiencies are

� Lack of data sharing deprecates
coherence and connectivity.

� Off-chip bandwidth exceeds needs by
an order of magnitude.

Increasing core counts have brought par-
allel programming into the mainstream,
highlighting the need for fast and high-band-
width inter-core communication. Multi-
threaded applications comprise a collection
of threads that work in tandem to scale up
the application performance. To enable effec-
tive scale-up, each subsequent generation of
processors offers a larger core count and
improves the on-chip connectivity to support
faster and higher-bandwidth core-to-core
communication.

We investigate the utility of the on-chip
interconnect for scale-out workloads in
Figure 6. To measure the frequency of read-
write sharing, we execute the workloads on
cores split across two physical processors in
separate sockets. When reading a recently
modified block, this configuration forces
accesses to actively shared read-write blocks
to appear as off-chip accesses to a remote pro-
cessor cache. We plot the fraction of L2
misses that access data most recently written
by another thread running on a remote core,
breaking down each bar into Application and
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Figure 6. Percentage of LLC data references accessing cache blocks

modified by a remote core. In scale-out workloads, the majority of the

remotely accessed cache blocks are from the operating system code.
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OS components to offer insight into the
source of the data sharing.

In general, we observe limited read-write
sharing across the scale-out applications. We
find that the OS-level data sharing is domi-
nated by the network subsystem, seen most
prominently in the Data Caching workload,
which spends the majority of its time in the
OS. This observation highlights the need to
optimize the OS to reduce the amount of false
sharing and data movement in the scheduler
and network-related data structures. Multi-
threaded Java-based applications (Data Serv-
ing and Web Search) exhibit a small degree of
sharing due to the use of a parallel garbage
collector that may run a collection thread on
a remote core, artificially inducing applica-
tion-level communication. Additionally, we
found that the Media Streaming server
updates global counters to track the total
number of packets sent; reducing the amount
of communication by keeping per-thread sta-
tistics is trivial and would eliminate the mutex
lock and shared-object scalability bottle-
neck—an optimization that is already present
in the Data Caching server we use. The on-
chip application-level communication in
scale-out workloads is distinctly different
from traditional database server workloads
(TPC-C, TPC-E, and Web Backend), which
experience frequent interaction between threads

on actively shared data structures that are used
to service client requests.

The low degree of active sharing indicates
that wide and low-latency interconnects
available in modern processors are overprovi-
sioned for scale-out workloads. Although the
overhead with a small number of cores is lim-
ited, as the number of cores on chip increases,
the area and energy overhead of enforcing
coherence becomes significant. Likewise, the
area overheads and power consumption of an
overprovisioned high-bandwidth intercon-
nect further increase processor inefficiency.

Beyond the on-chip interconnect, we also
find off-chip bandwidth inefficiency. While
the off-chip memory latency has improved
slowly, off-chip bandwidth has been improv-
ing at a rapid pace. Over the course of two
decades, the memory bus speeds have in-
creased from 66 MHz to dual-data-rate at
over 1 GHz, raising the peak theoretical band-
width from 544 Mbytes/second to 17 Gbytes/
second per channel, with the latest server pro-
cessors having four independent memory
channels. In Figure 7, we plot the per-core
off-chip bandwidth utilization of our work-
loads as a fraction of the available per-core off-
chip bandwidth. Scale-out workloads experi-
ence nonnegligible off-chip miss rates, but the
MLP of the applications is low, owing to the
complex data structure dependencies. The
combination of low MLP and the small num-
ber of hardware threads on the chip leads to
low aggregate off-chip bandwidth utilization
even when all cores have outstanding off-chip
memory accesses. Among the scale-out work-
loads we examine, Media Streaming is the
only application that uses up to 15 percent of
the available off-chip bandwidth. However,
our applications are configured to stress the
processor, actually demonstrating the worst-
case behavior. Overall, modern processors are
not able to utilize the available memory band-
width, which is significantly over-provisioned
for scale-out workloads.

The on-chip interconnect and off-chip
memory buses can be scaled back to improve
processor efficiency. Because the scale-out
workloads perform only infrequent communi-
cation via the network, there is typically no
read-write sharing in the applications; pro-
cessors can therefore be designed as a collec-
tion of core islands using a low-bandwidth
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interconnect that does not enforce coherence
between the islands, eliminating the power
associated with the high-bandwidth intercon-
nect as well as the power and area overheads of
fine-grained coherence tracking.4 Off-chip
memory buses can be optimized for scale-out
workloads by scaling back unnecessary band-
width for systems with an insufficient number
of cores. Memory controllers consume a large
fraction of the chip area, and memory buses are
responsible for a large fraction of the system
power. Reducing the number of memory chan-
nels and the power draw of the memory buses
should improve scale-out workload efficiency
without affecting application performance.
However, instead of taking a step backward and
scaling back the memory bandwidth to match
the requirements and throughput of conven-
tional processors, a more effective solution
would be to increase the processor throughput
through specialization and thus utilize the avail-
able bandwidth resources.4

T he impending plateau of voltage levels
and a continued increase in chip den-

sity are forcing efficiency to be the primary
driver of future processor designs. Our
analysis shows that efficiently executing scale-
out workloads requires optimizing the
instruction-fetch path for multi-megabyte
instruction working sets; reducing the core
aggressiveness and LLC capacity to free area
and power resources in favor of more cores,
each with more hardware threads; and scaling
back the overprovisioned on-chip and off-
chip bandwidth. We demonstrate that mod-
ern processors, built to accommodate a broad
range of workloads, sacrifice efficiency, and
that current processor trends serve to further
exacerbate the problem. On the other hand,
we outline steps that can be taken to special-
ize processors for the key workloads of the
future, enabling efficient execution by closely
aligning the processor microarchitecture
with the microarchitectural needs of scale-
out workloads. Following these steps can
result in up to an order of magnitude im-
provement in throughput per processor chip,
and in the overall datacenter efficiency.5 MICRO
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