
Massively Parallel Server Processors

Varun Agrawal , Mina Abbasi Dinani , Yuxuan Shui ,
Michael Ferdman , and Nima Honarmand

Abstract—Modern data centers enjoy massive degrees of request-level

parallelism with significant cross-request similarity. Although similar requests

follow similar instruction sequences, conventional processors service them

individually and do not take full advantage of cross-request similarity. Single-

Instruction Multiple-Thread (SIMT) architectures can leverage this similarity,

however, existing SIMT processors—chief among them, GPUs—are ill-suited for

server applications, as they are specifically designed to maximize throughput at

the expense of latency, preventing them from meeting server QoS requirements.

We advocate a new approach to SIMT server processors, namely Massively

Parallel Server Processors (MPSPs), which we outline in this paper. To begin to

understand their architectural needs, we measure the degree of control-flow and

memory-access divergence encountered when running unmodified server

applications on MPSP-style processors. Our preliminary results indicate that a

software scheduler that bundles together similar requests can minimize control-

flow divergence, making SIMT execution of unmodified server code feasible.

Moreover, we find that memory-access divergence, although significant in raw

numbers, can be tackled with changes in stack and heap layouts. Overall, our

results encourage further consideration of MPSPs as a promising architecture for

server processors.

Index Terms—Parallel processing, Single Instruction Multiple Thread, servers,

data centers

Ç

1 INTRODUCTION

MODERN data centers enjoy massive degrees of request-level paral-
lelism. High-throughput servers routinely receive thousands of
requests per second. These independent requests often result in
repeated tasks, such as web servers serving the same pages or data-
bases processing the same queries, with identical or similar param-
eters. Such repetition results in the execution of many nearly-
identical instruction sequences [1], [2].

At the same time, reducing energy consumption is a major goal
for warehouse-scale data centers, as electricity and cooling com-
prise much of their total cost of ownership [3]. A significant portion
of this energy is used by the conventional super-scalar out-of-order
processors that constitute, almost exclusively, the processing
engines of modern data centers servers [4].

Conventional processors execute independent requests sepa-
rately and cannot take advantage of the similarity of their instruc-
tion streams. This is unfortunate because the majority of the energy
spent by modern processors is not in the functional units, but
in the logic responsible for fetching, decoding, and scheduling
instructions and memory accesses [5]. Cross-request instruction-
stream similarity can be leveraged to amortize this overhead over a
large number of similar independent requests to significantly
reduce processor energy.

A promising architectural style to leverage cross-request
similarity is Single-Instruction Multiple-Threads (SIMT). In particular,

a server can bundle together groups of similar requests and execute
them simultaneously and in lockstep on a SIMT processor. As long
as these threads of execution remain in lockstep, each instruction
needs to be fetched, decoded, renamed, scheduled, and issued only
once for the entire group of threads. This allows much of the com-
plex logic in the processor pipeline to be shared by all the threads in
a group.

The potential of SIMT servers has led researchers to investigate
using GPUs. Most notably, Rhythm [6] re-implemented server
software from scratch, including web server and network stack,
targeting the GPU programming model. Although its results dem-
onstrated that server requests can be processed in a SIMT fashion,
it also exposed the fundamental problem of GPUs in this domain:
GPUs cannot meet the stringent Quality of Service (QoS) require-
ments of server applications.

This finding is not surprising, as GPUs are fundamentally ill-
suited for server workloads. First, GPUs use throughput-oriented
architectures that rely on fine-grained context switching among mas-
sive numbers of threads to hide instruction latencies, greatly sacrific-
ing single-thread performance. High single-thread performance is
required to meet QoS targets. Therefore, effective SIMT server pro-
cessors must employ latency-hiding techniques—such as branch
prediction, out-of-order and speculative execution, and advanced
cache organizations—which are absent from GPUs. Moreover,

server workloads have far fewer threads compared to data-parallel
GPU workloads, ruling out fine-grained context switching for hid-
ing latency.

Second, GPU memory systems provide high bandwidth only
when accesses from different threads can be coalesced into large
blocks. However, server workloads are notorious for random
pointer-chasing memory access patterns [1] and are therefore not a
good match for a GPU memory system. Instead, they require large
instruction caches and support for many parallel small requests
from different threads.

Third, GPUs require compile-time static analysis of code writ-
ten for a GPU-specific programming model. Running server work-
loads on a GPU requires a complete re-implementation of the
software in environments like CUDA or OpenCL [6], which would
be a major barrier to adoption. Server software comprises millions
of lines of complex code, numerous third-party libraries, and fre-
quent interaction with the OS, rendering compilation and execu-
tion of traditional server software impossible on GPUs.

Massively Parallel Server Processors. Leveraging SIMT in the server
domain requires a de novo approach. We advocate a new class of
SIMT CPUs called Massively Parallel Server Processor (MPSP). The
goal of MPSP is to run server software with minimal source modifica-
tions while balancing SIMT efficiency with stringent server QoS
requirements. Fig. 1 depicts our vision for MPSP, coupling several
conventional cores with many SIMT cores optimized for server
workloads, with all cores sharing the LLC and memory interface.

The SIMT cores are responsible for processing server requests.
Each core consists of a shared frontend and replicated execution lanes
which execute groups of threads in lockstep.

The frontend fetches, decodes, renames, schedules, and issues
instructions from a single instruction stream shared by all the
threads in the group, amortizing the cost of these complex opera-
tions among the threads. To improve single-thread performance
and meet QoS requirements, MPSP can leverage conventional
latency-hiding techniques such as instruction prefetchers, branch
prediction, and out-of-order issue.

The SIMT execution lanes resemble conventional pipelines, rep-
licated for each thread in the group and executing the fetched
instructions in parallel for all thread contexts. The lanes can be
simple—without complex forwarding paths or wide super-scalar

� The authors are with the Stony Brook University, Stony Brook, NY 11794.
E-mail: {vagrawal, mabbasidinan, syuxuan, mferdman, nhonarmand}@cs.stonybrook.
edu.

Manuscript received 19 Dec. 2018; revised 23 Feb. 2019; accepted 21 Mar. 2019. Date of
publication 14 Apr. 2019; date of current version 12 June 2019.
(Corresponding author: Mina Abbasi Dinani.)
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/LCA.2019.2911287

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 18, NO. 1, JANUARY-JUNE 2019 75

1556-6056� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9867-6663
https://orcid.org/0000-0001-9867-6663
https://orcid.org/0000-0001-9867-6663
https://orcid.org/0000-0001-9867-6663
https://orcid.org/0000-0001-9867-6663
https://orcid.org/0000-0001-5541-0785
https://orcid.org/0000-0001-5541-0785
https://orcid.org/0000-0001-5541-0785
https://orcid.org/0000-0001-5541-0785
https://orcid.org/0000-0001-5541-0785
https://orcid.org/0000-0001-6805-3908
https://orcid.org/0000-0001-6805-3908
https://orcid.org/0000-0001-6805-3908
https://orcid.org/0000-0001-6805-3908
https://orcid.org/0000-0001-6805-3908
https://orcid.org/0000-0001-5808-1040
https://orcid.org/0000-0001-5808-1040
https://orcid.org/0000-0001-5808-1040
https://orcid.org/0000-0001-5808-1040
https://orcid.org/0000-0001-5808-1040
https://orcid.org/0000-0001-8634-1241
https://orcid.org/0000-0001-8634-1241
https://orcid.org/0000-0001-8634-1241
https://orcid.org/0000-0001-8634-1241
https://orcid.org/0000-0001-8634-1241
mailto:
mailto:

pipelines—while achieving high throughput due to large thread
groups (32-128 threads in our current thinking). We envision the
combined benefits of shared frontend and simplified backend to
dramatically reduce the energy-per-request of MPSP compared to
existing server processors.

In MPSP, the conventional cores are responsible for running the
request thread scheduler and handling I/O, system calls, and inter-
rupts. The scheduler is responsible for examining the incoming
requests, grouping them based on their similarity, and dispatching
the thread groups to the SIMT cores. In some cases, to form large
groups, the scheduler may introduce slight delays before dispatch-
ing requests. Introducing scheduling delays will have minimal
impact on the response latency, as they will be small compared to
the overall request processing time.

The MPSP memory system is distinct from both conventional
processors and GPUs. Unlike conventional processors, which see
limited memory-level parallelism (MLP) due to frequent pointer
chasing in server workloads, MPSP will have high bandwidth
demands due to concurrent accesses from a large number of SIMT
threads. However, unlike GPUs, which cater to a large number of
concurrent accesses by coalescing adjacent requests, MPSP must
support and track a large number of distinct in-flight memory
requests. Moreover, the MPSP memory system must carefully cater
to instruction fetch. Server workloads have large instruction work-
ing sets that cannot fit into L1-I caches [7], in contrast to GPUs
which run small kernels with tiny instruction working sets. The
MPSP memory pipeline must be optimized for instruction-fetch
access patterns and will likely include an L2-I cache for shared
instructions [8].

To prove the feasibility of the MPSP approach, and to inform
the details of its architectural design, the most fundamental ques-
tion one needs to address is the degree of control-flow and mem-
ory-access divergence that one can expect when running existing
server programs on an MPSP. An MPSP is only effective if threads
in a thread group remain in lockstep for long periods (i.e., show lit-
tle control-flow divergence) and if there is enough parallelism and
bandwidth in the memory system to accommodate the memory
accesses of the running threads.

Measuring control-flow and memory-access divergence in
server workloads is the subject of the rest of this paper. We conduct
a study using a functionally-simulated MPSP system, running an
Apache PHP server on Linux. Our results demonstrate that more
than 99% of the user space instructions of Apache and PHP can
run in lockstep. Moreover, despite abundant memory-access diver-
gence, we find that concurrent accesses across SIMT threads follow
rigid patterns that enable coordinated issue and tracking of the
large number of concurrent accesses required for MPSP. Overall,
these results underline the promise of MPSP as a breakthrough
paradigm in server architecture design and encourage further
research in this area.

2 METHODOLOGY AND EXPERIMENTAL SETUP

To explore the control-flow divergence and memory system behav-
ior of server workloads in a SIMT environment, we built a full-sys-
tem functional MPSP simulator based on Wind River Simics [9]. A
key feature of our simulator is that application, workload, and
compiler functionality need not be modified. We dynamically
schedule software threads for SIMT execution, requiring only
minor code annotations in the lock and unlock functions to schedule
threads during critical sections. To assist in analyzing the memory
accesses, we also add code hints to the memory allocator, which do
not alter application behavior.

Our simulator runs multi-threaded server applications in SIMT
fashion. To model SIMT behavior, our simulator executes instruc-
tions from the SIMT threads in a round-robin fashion. All SIMT
threads execute a common instruction simultaneously. One instruc-
tion on each MPSP thread completes before any of the threads pro-
ceed to the next instruction. For this study, all instructions execute
in one simulated cycle and there is no timingmodel of the processor
pipeline or thememory system.

We use the prototypical server application, Apache web server
under Linux, running the SPECweb2009 “Support Suite” reference
PHP implementation with its default opcode cache accelerator. The
workload simulates a vendor support website that serves dynamic
pages, such as pages that list, search, and extract product details.
Each server access requests one of six different dynamic PHP pages.
The system is instrumented to bundle together requests to similar
pages, simulating the behavior of the MPSP software thread
scheduler.

We configured Simics with nþ 1 simulated cores. One core is
simulated unconstrained to mimic a conventional core. We devel-
oped a Simics module to coerce the remaining cores to run in lock-
step, simulating an MPSP SIMT core with n hardware threads. We
sequester these n cores for SIMT execution using the Linux isolcpu
feature, allowing only explicitly-pinned threads to run on them.We
configure the Apache web server with n worker threads and pin
each thread to one of the sequestered cores, simulating the MPSP
SIMT core. To mimic the behavior of all interrupts and system calls
executing on the conventional core, we freeze the MPSP SIMT lock-
step execution when kernel code is invoked, resuming SIMT lock-
step executionwhen control-flow returns from the kernel.

Our configuration achieves functional correctness and is suffi-
cient to demonstrate the advantages of the MPSP hardware, so
long as the OS code running on the conventional cores does not
become a bottleneck. Although a noticeable fraction of the instruc-
tions in our system is currently in the OS (8.4 percent), the over-
whelming majority of these instructions belong to the TCP/IP
network stack, code that we plan to migrate to the SIMT cores
using user-space networking [10]. The remaining code (thread
scheduling, interrupts, and OS background management tasks) is
not amenable to SIMT execution, but constitutes a negligible frac-
tion of the instructions.

A major challenge in a SIMT system is handling control-flow
divergence in a SIMT thread group. The shared front-end of SIMT
architectures implies that all threads concurrently execute the
same instruction. Our Simics module mimics this behavior by exe-
cuting one instruction per cycle for all threads in the MPSP SIMT
core only if all of the cores are pointing to the same instruction in mem-
ory. However, real software threads can follow different paths after
encountering data-dependent conditional branches. As a result,
the thread group splits into smaller subgroups that no longer exe-
cute in lockstep; instead, the subgroups must be executed either
serially or in an interleaved fashion on the SIMT processor, signifi-
cantly degrading processor resource utilization. For SIMT to be
beneficial, it is crucial for the subgroups to re-converge at the earliest
possible rendezvous point. One common approach is to identify
the re-convergence point at compile time and pass this information

Fig. 1. MPSP architecture, a combination of conventional and SIMT cores that
share a last-level cache and memory interface.

76 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 18, NO. 1, JANUARY-JUNE 2019

to the hardware as part of the binary. The compiler analyzes the
static Control-Flow Graph of the program to identify the post-
dominator [11] of each divergence point, and uses this post-
dominator as the re-convergence point. The SIMT hardware
uses a branch synchronization stack to keep track of the divergen-
ces and their corresponding re-convergence points [12].

Compile-time static analysis can identify most of the re-conver-
gence points in the application source code, but would require
modifying the x86 toolchain, a costly undertaking for the purposes
of this study. Instead, we developed a dynamic technique to identify
the appropriate re-convergence points at runtime. Our simulator
dynamically constructs the CFG by monitoring the executed
instructions, identifying the appropriate rendezvous points for
each branch instruction through post-dominator analysis on the
generated CFG. We find that, although the threads diverge
frequently, the number of variant CFG paths is small in practice.
Our analysis indicates that all common paths are typically
observed after executing a small number of requests, after which
point the CFG is stable and can be used for post-dominator analy-
sis. When threads diverge, our simulator identifies the rendezvous
point based on the analysis results, and uses a branch synchroniza-
tion stack to re-converge the threads after they all reach the post-
dominator instruction.

3 CONTROL-FLOW DIVERGENCE

We used our MPSP simulator to study the control-flow divergence
of concurrent requests. Upon divergence, the threads are parti-
tioned into multiple subgroups between the divergence and re-
convergence points (when all threads cannot run in lockstep).
Threads in each subgroup follow the same path and continue to
execute in lockstep. While a subgroup executes, the other sub-
group(s) are stalled, waiting either at the divergence or re-conver-
gence point. Serially running the subgroups reduces the benefits of
MPSP, amortizing instruction overheads across fewer threads, and
decreases the potential efficiency and performance. For a SIMT
processor to be beneficial for servers, control-flow divergence must
be limited to allow maximum use of SIMT threads in the vast
majority of the time.

To establish the effectiveness of MPSP, we estimate its perfor-
mance for different numbers of hardware threads in the MPSP
SIMT core by calculating the fraction of cycles that the hardware
threads are occupied. We study the instructions that run in lock-
step compared to the serially-executing diverged threads.
Importantly, all divergences are not equal. In some cases, there
are two divergent paths, forming two groups and resulting in an
average of 1

2 MPSP utilization. However, in the worst case, each
thread may follow its own unique path, resulting in completely
separate serial execution of all threads and 1

n utilization. We

therefore estimate the impact of divergence on performance
by measuring the average number of instructions executing in
lockstep:

Performance ¼ Total number of instructions for all requests

Simulated cycles to process all requests
:

Fig. 2 shows MPSP performance for different PHP requests
when running 8, 16, 32, or 64 parallel threads. For contrast, dashed
lines show 100 percent instructions running in lockstep and 99 per-
cent running in lockstep. As expected, higher thread counts show
greater deviation from the ideal behavior. However, even with 64
threads, more than 99 percent of the instructions execute in lock-
step across all request types, indicating that MPSP can offer signifi-
cant performance and efficiency benefits.

To understand the cause of the opportunity loss for MPSP at
higher thread counts, we identified the serially-executed functions.
Most of the serialized execution is not due to thread divergence, but
arises from software locks in the PHP memory allocator. Moreover,
although the current PHP code forces serialization for the entire
allocator, the instructions executed inside the locked region are
actually the same across all threads. While we avoided functional
changes to the software for this study, we find that re-engineering
the memory allocator to use finer-granularity locks would increase
the fraction of instructions that can execute in lockstep to nearly
100 percent even at 64 threads.

4 MEMORY ACCESS DIVERGENCE

In addition to the limited control-flow divergence, SIMT execution
requires coordinated memory accesses. Frequent memory access
divergence—a large number of uncoordinated and independent
accesses—would necessitate a complex memory subsystem, cache,
and interconnect to prevent massive performance degradation due
to the serialization of memory accesses.

Fig. 3 presents the observed memory access divergence as the
number of unique addresses accessed simultaneously. The location
of the bubbles in the figure shows the number of unique addresses
accessed simultaneously by the corresponding number of threads.
The size of each bubble indicates the relative fraction of all memory
accesses. Memory accesses across all request types are dominated
by the utility functions that interpret PHP scripts and templates
(zendparse, lex_scan, and zendlex), therefore, the divergence behavior
is similar for all request types. Here, we present results for the
Search requests.

When running in lockstep, a significant fraction of the memory
accesses are to the same address, indicated by the bubble at ð64; 1Þ.
However, the vast majority of the accesses are to different
addresses, indicated by the bubble at ð64; 64Þ. Similarly, small

Fig. 2. Control-flow divergence for different request types. Fig. 3. Memory divergence of 64 threads for Search requests.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 18, NO. 1, JANUARY-JUNE 2019 77

bubbles along the diagonal also represent accesses to different
addresses, but, in these cases, control-flow divergence occurred
and fewer than 64 threads were running in lockstep. Taken in isola-
tion, these results would signal significant challenges in the design
of an MPSP memory system.

To better understand the memory access behavior in server
workloads, we concentrated on the relationship between simulta-
neous accesses. We used the Linux /proc/pid/maps facility to identify
the virtual memory region to which each access belongs: file-
backed (shared libraries and read-only data), heap, or stack. We
found that practically all accesses to the file-backed regions are to
the same address across all threads, while the stack and heap
accesses are to different, divergent, addresses.

We examined the heap and stack accesses further, treating them
as offsets from the allocation base address instead of as absolute
addresses. For the heap, we instrument the malloc() function to
pass the base address of each memory allocation to the simulator
and use the offset within the allocated object when comparing the
addresses across the simultaneously-executing memory access
instructions. For the stack, we calculate the offset from the base of
the stack of the respective thread.

Fig. 4 breaks down the simultaneous memory accesses with the
same and different offsets. We further separate accesses into loads
and stores to highlight their different distributions across the mem-
ory regions. To simplify the plots, file-backed accesses are shown
as same-offset, although, in reality, they are same-address accesses
(a special case of same-offset).

Although the vast majority of simultaneous accesses are to dis-
tinct addresses, practically all divergent memory accesses per-
formed by threads running in lockstep are to the same offset
within their allocation. The stack region accesses have identical off-
sets across all threads, for both loads and stores. Only a tiny frac-
tion of divergent accesses, all in the heap, are to different offsets.
These differences arise from reading and manipulating character
strings of different lengths, owing to the differences in the parame-
ters of the web requests being serviced.

Although the stack and heap accesses initially appeared diver-
gent, their offsets indicate that, across threads, they follow rigid
patterns and the majority of the accesses can be coordinated by
modifying the memory layout (e.g., interleaving the thread stacks).
Further indicating opportunity for software-assisted coordination
of accesses, we find that heap objects that are accessed in lockstep
are often allocated in lockstep and are almost always accessed
simultaneously. Vector memory allocation can be used to allocate
heap space for a group of such objects to avoid unnecessary alloca-
tion-time synchronization, and to help coordinate future memory
accesses to the objects.

5 CONCLUSIONS

Servers process similar requests, executing nearly identical instruc-
tion sequences. However, existing architectures execute indepen-
dent requests separately and do not take advantage of the cross-
request instruction sequence similarity. To leverage cross-request
similarity, we described a SIMT-based Massively Parallel Server
Processor (MPSP) architecture to significantly improve server sys-
tem efficiency. Using a functional simulation of an MPSP system
running an Apache PHP server on Linux, we found that more than

99% of the user space instructions can run in lockstep on such
an architecture. Furthermore, we find that although simultaneous
memory accesses are often to different addresses, they have
the same offset from a thread-specific address, suggesting that
accesses can be made “regular” by modifying the memory layout.
Together, these results demonstrate a significant opportunity for
the MPSP architecture that warrants further research toward its
development.

ACKNOWLEDGMENTS

Varun Agrawal and Mina Abbasi Dinani contributed equally to
this publication.

REFERENCES

[1] M. Ferdman, T. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Temporal instruction fetch streaming,” in Proc. 41st Int. Symp. Microarchi-
tecture, 2008, pp. 1–10.

[2] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction fetch,” in
Proc. 44th Int. Symp. Microarchitecture, 2011, pp. 152–162.

[3] L. Barroso and U. Hoelzle, The Datacenter As a Computer: An Introduction to
the Design of Warehouse-Scale Machines, 1st ed. San Rafael, CA, USA: Morgan
and Claypool Publishers, 2009.

[4] J. Hamilton, “Overall data center costs,” Sep. 2010: [Online]. Available:
https://perspectives.mvdirona.com/2010/09/overall-data-center-costs

[5] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding sources of
inefficiency in general-purpose chips,” in Proc. 37th Int. Symp. Comput.
Architecuture, 2010, pp. 37–47.

[6] S. Agrawal, V. Pistol, J. Pang, J. Tran, D. Tarjan, and A. Lebeck, “Rhythm:
Harnessing data parallel hardware for server workloads,” in Proc. 19th
Int. Architectural Support Program. Languages andOperating Syst., 2014, pp. 19–34.
[Online]. Available: http://doi.acm.org/10.1145/2541940.2541956

[7] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the clouds:
A study of emerging scale-out workloads on modern hardware,” in Proc.
17th Int. Conf. Architectural Support Program. Languages Operating Syst., 2012,
pp. 37–48.

[8] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive NUCA:
Near-optimal block placement and replication in distributed caches,” in
Proc. 36th Int. Symp. Comput. Archit., 2009, pp. 184–195.

[9] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full system
simulation platform,” Comput., vol. 35, no. 2, pp. 50–58, 2002.

[10] DPDK Project, “Data plane development kit,” 2018, https://www.dpdk.
org/

[11] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck, “Efficiently
computing static single assignment form and the control dependence
graph,” ACM Trans. Program. Languages Syst., vol. 13, no. 4, pp. 451–490,
1991.

[12] J. Hennessy and D. Patterson, Computer Architecture, Fifth Edition: A Quanti-
tative Approach, 5th ed. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2011.

Fig. 4. Access breakdown of 64 threads for Search requests.

78 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 18, NO. 1, JANUARY-JUNE 2019

https://perspectives.mvdirona.com/2010/09/overall-data-center-costs
http://doi.acm.org/10.1145/2541940.2541956

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

