
Argus: An End-to-End
Framework for
Accelerating CNNs
on FPGAs

Yongming Shen, Tianchu Ji,

Michael Ferdman, and Peter Milder

Stony Brook University

Abstract—In this article, we present Argus, an end-to-end framework for accelerating

convolutional neural networks (CNNs) on field-programmable gate arrays (FPGAs) with

minimum user effort. Argus uses state-of-the-art methods to auto-generate highly

optimized CNN accelerator designs for FPGAs, and includes software for running an FPGA-

backed CNN inferencemicroservice.

& THE MACHINE LEARNING revolution enabled by

deep neural networks has transformed the land-

scape of information technology in recent years. At

the forefront of this are convolutional neural net-

works (CNNs),1–4 deep learning networks that are

primarily used to solve computer vision challenges.

Unfortunately, the success of CNNs is accompa-

nied by immense computational costs. Central

processing units (CPUs) are neither fast nor

efficient enough for running modern CNNs. GPUs

offer impressive performance, but their power-

hungry nature limits their deployment. Application-

specific integrated circuits (ASICs) have the poten-

tial to achieve the best performance and energy effi-

ciency, but also have prohibitive development

costs. Moreover, given the pace at which CNNs

have evolved in recent years, ASIC development

risks becoming obsolete before turning profitable.

In contrast to these options, field-programmable

gate arrays (FPGAs) offer a unique balance between

performance, energy efficiency, and flexibility.

The main obstacle for using FPGAs to

accelerate CNNs is the effort required to

Digital Object Identifier 10.1109/MM.2019.2930607

Date of publication 23 July 2019; date of current version 10

September 2019.

Theme Article: Machine Learning AccelerationTheme Article: Machine Learning Acceleration

September/October 2019 Published by the IEEE Computer Society 0272-1732 � 2019 IEEE 17

develop RTL designs to run on an FPGA. The

majority of software developers and machine

learning practitioners do not have the exper-

tise necessary to program an FPGA, a skill set

that takes years to acquire. Even for an expe-

rienced RTL designer, implementing a high-

performance CNN accelerator on an FPGA can

take from months to more than a year. More-

over, when the target CNN and/or FPGA

changes, a major effort is needed to port the

RTL design to the new target. To address this

problem, we developed Argus, an end-to-end

framework for accelerating CNNs on FPGAs.

The end goal of Argus is for users with no

RTL design knowledge to take advantage of

FPGAs to accelerate CNNs. The key challenge

in achieving this goal is the automatic genera-

tion of CNN accelerator RTL designs. For this,

Argus follows the resource partitioning CNN

accelerator optimization strategy5 and takes

advantage of the Medusa memory intercon-

nect6 to make sure that the autogenerated

RTL designs make optimized use of an FPGA’s

compute, on-chip storage, and off-chip band-

width resources.

Figure 1 presents the workflow of the Argus

framework. Argus includes a CNN model parser,

an accelerator generator, a Linux device driver,

and a network-accessible CNN inferencemicroser-

vice. The model parser takes a target CNN model

from a supported deep learning framework as

input and produces a model description for the

accelerator generator. Additionally, the model

parser extracts model parameters (e.g., CNN filter

weights) from the target CNN model and packs

them into data files for the FPGA accelerator. The

accelerator generator takes a CNN

description and target FPGA spec-

ification as inputs, and generates

the RTL design of a CNN accelera-

tor as output. This is the core of

the Argus framework, as it is what

enables Argus to shield users

from the complexity of RTL devel-

opment, which is the key to a com-

plete end-to-end experience. The

device driver and the CNN infer-

ence microservice constitute

the software stack, which pro-

vides end-user applications easy

access to the FPGA-based autogenerated CNN

accelerator.

BACKGROUND
To establish common terminology and

notation for the remainder of this paper, we

consider an image classification CNN (e.g., the

work presented by Krizhevsky et al.1) that

passes images through a sequence of convolu-

tional layers. Each convolutional layer con-

volves input feature maps with filters to

produce output feature maps. The filters of a

convolutional layer contain weights that were

previously learned using an algorithm such as

stochastic gradient descent. Nonlinear layers,

which typically perform computations such as

subsampling or activation functions, inter-

leave convolutional layers. In the end, the net-

work includes one or more fully connected

layers, each of which performs dot products

across its entire input.

Listing 1 presents the pseudocode which com-

putes a convolutional layer. The shape of a convo-

lutional layer is defined by the number of input

feature maps (N) and output feature maps (M),

the output feature map height (R) and width (C),

the filter size (K), and the convolution stride (S). A

layer takes as inputN input featuremaps of dimen-

sions ððR� 1Þ � S þKÞ � ððC � 1Þ � S þKÞ and

convolves them with M sets of filters; by convolv-

ing one set of N filters (N �K �K weights) with

the input feature maps, one of the M output fea-

ture maps is obtained. Each of the M output fea-

ture maps is computed by repeating this process

with each of theM sets of filters. Although omitted

Figure 1. Overview of the Argus end-to-end CNN acceleration framework.

Machine Learning Acceleration

18 IEEE Micro

from Listing 1 for clarity, output feature maps are

initializedwith trainedbias values.

Listing 1. Pseudocode of a convolutional layer

I[N][(R-1)*S+K][(C-1)*S+K] //input maps
O[M][R][C] //output maps
W[M][N][K][K] //weights
for (m=0; m<M; m++)
for (n=0; n<N; n++)
for (r=0; r<R; r++)
for (c=0; c<C; c++)
for (i=0; i<K; i++)
for (j=0; j<K; j++)
wx=W[m][n][i][j]
ix=I[n][S*r+i][S*c+j]
O[m][r][c]+=wx*ix

FPGA-Based CNN Acceleration

Among the many different options for accel-

erating CNNs, FPGAs stand out due to their

energy efficiency and flexibility. The flexibility of

FPGAs also naturally presents multiple different

ways to accelerate CNNs.

The traditional approach to use an FPGA is

to manually craft a specialized RTL design for a

target CNN and FPGA pair. The advantage of

this approach is that the design can be finely

optimized for the target CNN and specific FPGA

hardware. However, creating an efficient RTL

design for a CNN requires advanced hardware

design skills that most CNN end users do not

have. Moreover, even after making the signifi-

cant investment in time and effort to produce

an RTL design, the result is extremely inflexible.

Supporting a different CNN or targeting a differ-

ent FPGA chip requires a major RTL redesign

effort.

An alternative approach is to develop an

ASIC-style RTL design of a specialized program-

mable CNN accelerator and implement it on an

FPGA. Because the accelerator is programmable,

the RTL design need not be changed to execute

different CNNs on the same system. Although

practical, this approach cannot take advantage

of the greatest strength of FPGAs while paying

all the costs of FPGA implementation. Instead of

being maximally efficient from specializing for

just one target CNN, the programmable accelera-

tor must accommodate a large variety of CNNs,

incurring performance and energy overheads. In

some sense, the cost of programmability is paid

twice: once in the FPGA fabric and again in the

accelerator design. At the same time, compared

to an ASIC implementation, the FPGA implemen-

tation pays a price in clock rate and compute

density. Furthermore, the RTL design must still

be manually updated and optimized for every

target FPGA chip. Without such changes, either

the accelerator design will not fit (if the new

FPGA target is smaller) or resources will be

wasted and performance sacrificed (if the new

FPGA is larger).

Another potential approach relies on high-

level synthesis (HLS) tools to generate a special-

ized RTL design for a target CNN and FPGA pair

from a high-level specification (e.g., C++ or

OpenCL). With the help of HLS tools, the effort

required to update an RTL design as the target

CNN and/or FPGA changes is smaller, and the

process of modifying the code is more accessible

to end users. However, based on our experience

with the currently available HLS tools, achieving

the performance of manually crafted RTL

designs requires the user of the HLS tools to pos-

sess a high level of hardware design knowledge,

and the process still consumes significant time

and effort.

Noting the challenges and drawbacks of the

above approaches, we take a different approach

for Argus. Our goal is to retain peak efficiency of

the resulting accelerators, provide rapid portabil-

ity across CNN models and FPGA chips, and

remove the burden of FPGA programming from

the end user.We do this by developing an acceler-

ator generator, which takes a CNN model and

FPGA specification as its inputs and produces an

accelerator RTL design specialized for the given

CNN and target FPGA. If the target CNN and/or

FPGA changes, the generator produces a new RTL

design, yielding a highly specialized implementa-

tion that matches the performance of manually

crafted designs, without manual RTL develop-

ment or porting effort.

ARGUS OVERVIEW
Argus is an end-to-end framework for acceler-

ating CNNs on FPGAs, centered around a flexible

CNN accelerator generator (see Figure 1). The

accelerator generator is implemented using a

September/October 2019 19

combination of Bluespec, C++, Python, and Veri-

log. The “Generating FPGA CNN Accelerators”

section highlights some of the key aspects of the

accelerator generator design.

To provide an end-to-end user experience,

Argus includes a model parser to import CNN

models from the PyTorch deep learning frame-

work. Internally, Argus uses a framework-agnostic

CNN representation that can be easily extended

to support other deep learning frameworks. As a

part of processing the target model description,

Argus performs a sequence of transformations

such as merging batch normalization layers into

convolutional layer weights and biases, grouping

chains of operations (e.g., convolution, max pool-

ing, summation, ReLU) into tasks that can be

assigned to a processing core in the accelerator,

and rewriting the filter weights and biases into a

form usable by the generated accelerator

hardware.

To facilitate interaction with the CNN acceler-

ators from a high-end host server system over

PCIe, Argus provides a streamlined Linux device

driver compatible with the generated CNN accel-

erators and a CNN inference microservice. Appli-

cations that use the accelerator send CNN

inputs to the inference microservice and receive

CNN outputs as replies. The inference microser-

vice interacts with clients using the ZeroMQ

library, servicing client requests over local IPC

or over the network.

GENERATING FPGA CNN
ACCELERATORS

The CNN accelerator generator forms the core

of Argus. Internally, the accelerator generator

includes a design optimizer and a library of hand-

crafted parameterized RTL components. The opti-

mizer uses the requirements and constraints of

the target CNN and FPGA platform to produce an

accelerator RTL design by mixing, matching, and

parameterizing the available library components.

To produce peak performance efficient

designs, the accelerator generator must take full

advantage of all available FPGA compute resour-

ces (DSP slices), usefully incorporating as many

DSP slices into the generated RTL design as pos-

sible; we refer to this as static utilization. Just as

critically, at runtime, the proportion of cycles

during which DSP slices perform useful work

must be maximized; we refer to this as dynamic

utilization. In addition to the FPGA compute

resources, the generator must optimize the use

of the on-chip storage capacity and off-chip

memory bandwidth to ensure that the system is

not bottlenecked by off-chip data transfer. Simul-

taneously achieving high static and dynamic uti-

lization requires Argus to explore a vast space of

candidate designs that integrate the latest devel-

opments in CNN hardware acceleration.

Multi-CLP Optimizer

CNNs comprise multiple computation layers,

whose inputs are arrays of various dimensions.

A traditional way to implement a CNN in an RTL

design is to build a single large processing core,

a convolutional layer processor (CLP), which

executes the CNN layers sequentially. Following

this approach, an accelerator generator can

combine a CLP template and an optimizer to

select the CLP template parameters for the tar-

get CNN and FPGA combination.

Critically, CLP parameters that are optimal for

one layer are often suboptimal for the other

layers of a CNN. As such, jointly optimizing one

CLP for all CNN layers leads to a dynamic under-

utilization of the FPGA resources, giving up per-

formance. Figure 2 (top) illustrates this scenario.

A single-CLP (white box) iteratively processes the

three layers (blue boxes). The dimensions of the

CLP and the layers are represented by the size

and shape of the boxes. L1 is smaller than the CLP

dimensions, resulting in low dynamic utilization

because some hardware remains unused when

computing this layer [see Figure 2(a)]. The dimen-

sions of L2 exactly match the CLP and the layer is

processed efficiently. However, L3 dimensions

exceed the CLP dimensions, requiring the CLP to

be used iteratively to compute different parts of

L3 (first, its top portion, then, its bottom portion),

again underutilizing the available hardware [see

Figure 2(b)].

To avoid this problem, Argus uses the multi-

CLP methodology.5 A multi-CLP design partitions

FPGA resources among multiple CLPs, which con-

currently operate on images in a pipelined fash-

ion. We illustrate the operation of multi-CLP in

Figure 2 (bottom), where the hardware resources

are partitioned among two smaller CLPs. The two

Machine Learning Acceleration

20 IEEE Micro

CLPs are specialized and have differ-

ent dimensions; this allows CLP1 to

work well for L1 and L3, while the

dimensions of CLP2 are compatible

with L2. The different CLP dimen-

sions match the layer requirements,

maximizing dynamic utilization, with

multi-CLP designs performing the

same amount of work in less time

compared to single-CLP [see Figure 2

(c)]. Using multiple CLPs, with each

CLP specialized for a subset of layers

instead of all the layers, a multi-CLP

design outperforms a single-CLP

design when using the same FPGA

resources.

Table 1 compares the dynamic

utilization of the DSP slices in single-

CLP and multi-CLP systems across 32

different designs, spanning two target FPGAs

(Xilinx Virtex-7 485T and 690T), two data types

(32-bit floating point and 16-bit fixed point), and

four target CNNs. All designs target an 80% static

utilization of the FPGAs (by providing the acceler-

ator generator with the corresponding budgets),

as some FPGA resources must remain unused to

allow for timing closure when using FPGA place-

and-route tools. The results indicate that multi-

CLP designs achieve better dynamic DSP slice uti-

lization than single-CLP designs in all

cases. The smallest improvement

(1.01�) is observed when targeting

VGGNet-E because the layers of

VGGNet-E have regular dimensions, lim-

iting opportunity for CLP specialization.

The best improvement (3.8�) is

observed when targeting AlexNet

because the layers of AlexNet have sig-

nificantly varying dimensions. Overall,

Table 1 shows that multi-CLP adapts

better to CNNs with irregular layer

dimensions.

Virtex-7 485T and 690T are represen-

tative of midsized FPGAs. In data center

environments, larger FPGAs are more

common. Figure 3 compares how well

single-CLP and multi-CLP designs scale

as the size of the target FPGA increases

(with DSP slice budgets ranging from

100 to 10,000). For this experiment, all

designs target AlexNet and use 32-bit floating

point as the data type. The x-axis shows the num-

ber of DSP slices used for each configuration.

Dashed vertical lines illustrate the total number

of DSP slices available on the Virtex-7 485T,

Virtex-7 690T, Virtex UltraScale+ 9P, and Virtex

UltraScale+ 11P FPGAs. As the number of avail-

able DSP slices increases, the throughput differ-

ence between the single- and multi-CLP designs

grows. For example, going from 2240 to 9600 DSP

Figure 2. Operation of CLPs on a three-layer CNN. Themulti-CLP approach

uses the same total hardware resources as the single-CLP. However, the

multi-CLP partitioned hardware closely matches the CNN layers, minimizing

idle hardware and improving performance.

Table 1. Dynamic utilization of DSP slices in competing designs.

AlexNet1 VGGNet-E2 SqueezeNet3 GoogLeNet4

485T (float)

Single-CLP 74.1% 96.8% 78.0% 81.9%

Multi-CLP 95.4% 97.5% 95.8% 96.9%

690T (float)

Single-CLP 65.4% 96.0% 76.4% 78.1%

Multi-CLP 99.0% 98.7% 96.7% 96.0%

485T (fixed)

Single-CLP 31.0% 89.7% 51.1% 50.2%

Multi-CLP 93.9% 97.3% 93.6% 93.8%

690T (fixed)

Single-CLP 23.7% 88.3% 42.0% 44.0%

Multi-CLP 90.6% 96.1% 93.1% 89.3%

September/October 2019 21

slices, the multi-CLP improvement over single-

CLP designs increases from 1.3� to 3.3�.

The benefit of multi-CLP over single-CLP

comes at the cost of design optimization complex-

ity, with the multi-CLP design space being orders

of magnitude larger than the single-CLP design

space. For single-CLP, only the parameters of one

CLP are determined by the optimizer. For multi-

CLP, the optimizer must generate candidate parti-

tioning schemes that decide on the number of

CLPs, the distribution of layers among these

CLPs, and the fraction of FPGA resources to

assign to each CLP. Then, for each candidate par-

titioning, every CLP must go through the single-

CLP optimization to determine the best CLP

parameters for running the layers assigned to it.

Fortunately, a combination of dynamic program-

ming techniques and design space pruning heu-

ristics bring the optimization time for multi-CLP

to under an hour for even the largest designs

(ResNet507 on Virtex UltraScale+ 9P).

Parameterized CLP Templates

The purpose of a CLP is to execute

the convolutional layer computation

presented in Listing 1. To leverage the

parallelism within a convolutional layer

and take advantage of the on-chip buf-

fers to reduce off-chip data transfer, the

Argus CLP template uses a computation

and data transfer schedule based on

the work of Zhang et al.,8 which applies

loop reordering, tiling, and unrolling to

yield the pseudocode shown in List-

ing 2, pictorially depicted in Figure 4.

In this CLP design, the Ibuf ,Obuf , and

Wbuf arrays correspond to on-chip buf-

fers for input, output, and weight data,

respectively. Copying data in or out of these

arrays corresponds to transferring data between

the on-chip buffers and the off-chip memory. Dou-

ble buffering is used to overlap data transfer with

computation. The R, C, M, and N loops are tiled

with factors Tr, Tc, Tm, and Tn, respectively. These

loop tiling factors, which are determined by the

Figure 3. Throughput at 100 MHz for AlexNet on multi-CLP and single-CLP

32-bit floating point designs as a function of available DSP slices.

Figure 4. Diagram of a CLP datapath. Each dot-product unit

takes Tn inputs and Tn weights and produces one output.

Listing 2. Pseudocode for loop tiling in a CLP

I[N][(R-1)*S+K][(C-1)*S+K] //input maps
O[M][R][C] //output maps
W[M][N][K][K] //weights
Ibuf[Tn][(Tr-1)*S+K][(Tc-1)*S+K]
Obuf[Tm][Tr][Tc]
Wbuf[Tm][Tn][K][K]
for (r=0; r<R; r+=Tr)
for (c=0; c<C; c+=Tc)
for (m=0; m<M; m+=Tm) {
for (n=0; n<N; n+=Tn) {
irx=r*S:(r+Tr-1)*S+K
icx=c*S:(c+Tc-1)*S+K
Ibuf=I[n:n+Tn][irx][icx]
Wbuf=W[m:m+Tm][n:n+Tn]
for (i=0; i<K; i++)
for (j=0; j<K; j++)
for(tr=0;tr+r<min(R,r+Tr);tr++)
for(tc=0;tc+c<min(C,c+Tc);tc++)
for (tm=0; tm<Tm; tm++) #UNROLL
for(tn=0; tn<Tn;tn++)#UNROLL
wx=Wbuf[tm][tn][i][j]
ix=Ibuf[tn][S*tr+i][S*tc+j]
Obuf[tm][tr][tc]+=wx*ix

}
O[m:m+Tm][r:r+Tr][c:c+Tc]=Obuf

}

Machine Learning Acceleration

22 IEEE Micro

optimizer, control the amount of data transferred

per buffer refill or write-out, and the order in

which the data are transferred. The inner-most

two loops are unrolled (based on Tm and Tn),

which represents Tm vector dot-product units,

each of width Tn, and each followed by an

accumulator.

In addition to the convolutional layers, a CLP

also needs to process a variety of other types of

layers. For state-of-the-art CNNs, these include

fully connected layers, max-pooling layers, sum-

mation layers, batch normalization layers, and

activation (ReLU) layers. Supporting fully con-

nected layers does not require hardware changes

because a fully connected layer can be seen as a

special case of a convolutional layer (R ¼ C ¼
K ¼ 1). Batch normalization layers can also be

supported without hardware changes because,

for inference, a batch normalization layer can be

absorbed into its adjacent convolutional layer. A

ReLU activation layer changes negative numbers

to zeros, which is trivially implemented as part of

transferring results from the on-chip output buf-

fers to off-chip memory. When max-pooling and

summation layers occur in a CNN, they always fol-

low convolutional layers. Correspondingly, Argus

supports both with small hardware units placed

adjacent to the CLPs. The Tm CLP output buffers

in Figure 4 are connected directly to Tm compara-

tors; the comparator results go to Tm adders,

which write into the max-pooling or summation

output buffers. Tm additional buffers are included

for the summation layers to provide input data.

Fusing convolutional layers with max-pooling

and summation layers eliminates the off-chip

data transfer of the intermediate data.

One noteworthy feature of Argus is that the

multi-CLP optimization method does not dictate

the design of the CLP template used. Additional

CLP templates can be incorporated into

Argus, selecting the best design based on the

characteristics of the target CNN. For example, if

the target CNN is bottlenecked by off-chip data

transfer, a CLP template like Escher9 can be

used. In Listing 2, the output buffer represented

by Obuf is partitioned into Tm banks, where

each bank holds data for one output channel.

Escher generalizes this to let each output buffer

bank hold data for more than one output chan-

nel. The data in the input buffers are reused to

compute more output channels before being

replaced, reducing the input retransfers from

off-chip memory. Escher buffer management

also includes support for batch processing,

which further reduces the bandwidth of off-chip

weight transfer. Given these additional degrees

of freedom in buffer use, Escher can reduce the

peak off-chip bandwidth requirements of a CLP

by 10:5� for some CNNs.

Moreover, Argus can simultaneously incor-

porate multiple CLP templates in a multi-CLP

design. For example, early convolutional layers

of a CNN generate far more intermediate data

than later layers. For CLPs responsible for the

early layers, more sophisticated CLP designs

such as layer fusion10 can reduce off-chip inter-

mediate data transfer. Due to the all-to-all con-

nection among the input and output channels

within the convolutional layers, na€ıvely chain-

ing multiple convolutional layers together

would be impractical, as it would require all

intermediate data to fit on-chip. Instead, layer

fusion considers a stack of convolutional layers

to be a single nested loop and applies loop

transformations to reorder the computation

and data transfer, drastically reducing the on-

chip storage requirements while entirely elimi-

nating the off-chip data transfer of intermediate

data.

Medusa Memory Interconnect

In addition to generating the CLPs, Argusmust

generate the interconnect between the CLPs and

off-chip memory. For maximum efficiency in the

allocation of memory bandwidth to each CLP and

for flexibility in the choice of Tn and Tm for each

CLP, multi-CLP designs require many indepen-

dent ports of word-width size, with each port

delivering data to one or more CLP input buffers,

or draining data from one or more CLP output

buffers. However, because FPGA clock frequen-

cies are lower than the frequency of modern

high-speed memory channels, FPGA memory

controllers use a wide bus to expose the full

DRAM bandwidth to the FPGA logic (e.g., a 12.8-

GB/s DDR3 channel is connected with a 512-bit

200-MHz bus). As a result, the CNN accelerator

interconnect must efficiently multiplex a wide

memory channel across many independent nar-

row CLP ports, where the aggregate bandwidth of

September/October 2019 23

the narrow ports equals the available off-chip

memory bandwidth.

Using a conventional approach, the FPGA

memory interconnect alone can account for

more than 20% of the LUTs and FFs of the entire

accelerator. Worse yet, the interconnect domi-

nates the critical path, severely limiting the over-

all accelerator clock frequency.

To overcome these limitations,

Argus includes Medusa,6 a spe-

cialized on-chip network gener-

ator specifically tailored for

high-performance interconnec-

tion between the wide off-chip

memory interface of the FPGA

and the large number of narrow

input, weight, and output ports

of the CLPs.

The efficiency of Medusa

comes from its unique data

transfer network design, illus-

trated in Figure 5. For memory

reads, each 512-bit word from

the DRAM controller is des-

tined to one of the 32 narrow

ports. Medusa buffers data

from the DRAM controller in an

input buffer which has the

same width as the DRAM con-

troller interface. The input buffer is divided

into banks, with one bank per narrow output

port. Each data word destined to a given output

port is spread across all input buffer banks. On

the output side, Medusa contains as many out-

put buffers as the number of narrow ports, with

each output buffer feeding data to one of the

narrow CLP ports. Using a data rotation unit,

Medusa transposes the data in transit from the

input buffer to the output buffers. In this way,

the data destined for an output port and spread

across all the input buffer banks all ends up, in

the correct order, in the

output buffer of the desti-

nation port.

Because all the buffers

in Medusa are deep and

narrow, they are efficiently

implemented with BRAMs.

The data rotation unit is

implemented using a bar-

rel shifter, which is resource efficient and scal-

able. For an example Argus CNN accelerator,

Medusa multiplexes a 512-bit DRAM controller

interface across 32 16-bit read ports and 32

16-bit write ports using 4.7� fewer LUTs and

6.0� fewer FFs than traditional interconnects,

while improving clock frequency by 1.8�. For a

similar accelerator with a 1024-bit

DRAM controller interface, Medusa

runs at 225 MHz, while routing con-

gestion limits a traditional intercon-

nect to under 25 MHz.

CONCLUSION
Although FPGAs are an excellent

fit for accelerating CNNs from the

performance and energy efficiency

perspectives, their use is limited by

the difficulty of FPGA programming.

To address this problem, we devel-

oped Argus, and end-to-end frame-

work for accelerating CNNs on

FPGAs. The core of Argus is an accel-

erator generator which takes a CNN

model and FPGA specification as

inputs and produces highly opti-

mized CNN accelerator RTL designs.

For a complete end-to-end user expe-

rience, Argus includes a model

parser to accept CNN models from popular deep

learning frameworks, a Linux device driver for

controlling the FPGA CNN accelerator, and a

microservice server for handling CNN inference

requests. The Argus accelerator generator lever-

ages the multi-CLP5 methodology to achieve

both high static and dynamic utilization of

FPGA compute resources. The modular design

of the system enables incorporating advanced

CLP designs such as Escher9 and layer fusion10

for some or all of the CLPs. To meet the memory

Figure 5.Medusa interconnect block diagram.

Although FPGAs are an

excellent fit for acceler-

ating CNNs from the

performance and

energy efficiency per-

spectives, their use is

limited by the difficulty

of FPGA programming.

To address this prob-

lem, we developed

Argus, and end-to-end

framework for acceler-

ating CNNs on FPGAs.

The core of Argus is an

accelerator generator

which takes a CNN

model and FPGA spec-

ification as inputs and

produces highly opti-

mized CNN accelerator

RTL designs.

Machine Learning Acceleration

24 IEEE Micro

access demands of the resulting high-

performance accelerators, Argus includes the

specialized Medusa6 memory interconnect that

efficiently multiplexes the wide FPGA memory

interface to many narrow independent memory

ports. By combining these techniques in an auto-

mated system, Argus enables users to efficiently

run CNNs on FPGAs without the complexity of

RTL development.

& REFERENCES

1. A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“ImageNet classification with deep convolutional

neural networks,” in Proc. 25th Int. Conf. Neural Inf.

Process. Syst., 2012, vol. 1, pp. 1097–1105.

2. K. Simonyan and A. Zisserman, “Very deep

convolutional networks for large-scale image

recognition,” in Proc. 3rd Int. Conf. Learn.

Representations, 2015.

3. F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han,

W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-

level accuracy with 50x fewer parameters and <1MB

model size,” arXiv:1602.07360.

4. C. Szegedy et al., “Going deeper with convolutions,” in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015,

pp. 1–9.

5. Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN

accelerator efficiency through resource partitioning,”

in Proc. 44th Annu. Int. Symp. Comput. Archit., 2017,

pp. 535–547.

6. Y. Shen, T. Ji, M. Ferdman, and P. Milder, “Medusa: A

scalable memory interconnect for many-port DNN

accelerators and wide DRAM controller interfaces,” in

Proc. 28th Int. Conf. Field Programmable Logic Appl.,

2018, pp. 101–105.

7. K. He, X. Zhang, S. Ren, and J. Sun, “Deep

residual learning for image recognition,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit., 2016,

pp. 770–778.

8. C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,

“Optimizing FPGA-based accelerator design for deep

convolutional neural networks,” in Proc. 23rd ACM/

SIGDA Int. Symp. Field-Programmable Gate Arrays,

2015, pp. 161–170.

9. Y. Shen, M. Ferdman, and P. A. Milder, “Escher: A

CNN accelerator with flexible buffering to minimize off-

chip transfer,” in Proc. 25th IEEE Annu. Int. Symp.

Field-Programmable Custom Comput. Mach., 2017,

pp. 93–100.

10. M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-

layer CNNaccelerators,” inProc. 49th Annu. IEEE/ACM

Int. Symp.Microarchitecture, 2016, pp. 22:1–22:12.

Yongming Shen is currently working toward a PhD

in computer science at Stony Brook University. His

research interests are in the area of computer archi-

tecture, with a focus on the design of hardware

accelerators for deep learning applications. He has

an MEng from the South China University of Technol-

ogy. He is a Student Member of the IEEE. Contact

him at yoshen@cs.stonybrook.edu.

Tianchu Ji is currently working toward a PhD in

electrical and computer engineering at Stony Brook

University. His research focuses on FPGA accelera-

tors for trending deep learning algorithms such as

CNN and RNN. He has a BEng from the Huazhong

University of Science and Technology, China. He is a

Student Member of the IEEE. Contact him at tianchu.

ji@stonybrook.edu.

Michael Ferdman is an associate professor of

computer science at Stony Brook University where he

directs the Computer Architecture Stony Brook

(COMPAS) Lab. His research interests are in the area

of computer architecture, with emphasis on the

design of server systems. He has a PhD from Carne-

gie Mellon University. His work has received multiple

best paper awards and nominations, with three of his

papers selected as IEEEMicro Top Picks in Computer

Architecture. He is a Senior Member of the IEEE. Con-

tact him at mferdman@cs.stonybrook.edu.

Peter Milder is an associate professor of electrical

and computer engineering at Stony Brook University.

His research focuses on domain-specific languages

and tools for automatic hardware generation, FPGA

accelerators, and hardware for machine learning

and signal processing. He has a PhD in electrical

and computer engineering from Carnegie Mellon

University. He is a Senior Member of the IEEE. Con-

tact him at peter.milder@stonybrook.edu.

September/October 2019 25

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

