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Interconnection Networks

AWhat holds ourparallel machinesogether - at the core
of parallel computearchitecture

ASharedasic concept with LAN/WAN, but vetifferent
trade-offs due to very differentime
scale/requirements
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Different Scales of Networks (1/3)

AOn-Chip Networks
¢ Interconnect within a single chip

ADevices arenicro-architectural elements: caches
directories,processor cores

ACurrently, designs with 10s of devices are common
A Ex: IBM Cellntel multicores, Tile processors

AProjectedsystems with 100s of devices on the horizon

AProximity:millimeters
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Different Scales of Networks (2/3)

ASystemArea Networks
CLYUSND2YyySOUua oAUGKAY 2YyS a4yl
A Interconnect in a multprocessor system
A Interconnect in a supercomputer

AHundreds to thousands of devices interconnected

¢ IBM Blue Gene/L supercomput@dK nodes, each with 2
processory

AMaximum interconnect distance
¢ Fraction to ten®f meters(typical)

¢ a few hundred meters (some)
A InfiniBand 120Gbpsover a distance o800m
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Different Scales of Networks (3/3)

ALocalArea Networks
¢ Interconnect autonomous computesystems
¢ Machine room or throughout a building campus
¢ Hundreds of devices interconnected (1,000s with bridping
¢ Maximum interconnect distance
A few metres to tens okilometers
¢ Example (most popular): Ethernet, with Gbpsover 40Km

AWide-Area Networks
¢ Interconnect systems distributed across tijlebe
¢ Internetworking support isequired
¢ Many millions of devicesterconnected

¢ Maximum interconnect distance
A many thousands of kilometers

We are concerned witn-Chip and SysterArea Networks
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ICN Design Considerations (1/3)

A Application requirements
¢ Number of terminals or ports to support
¢ Peak bandwidth of each terminal
¢ Averagebandwidthof each terminal
¢ Latency requirements
¢ Message size distribution
¢ Expected traffic patterns
¢ Required quality of service
¢ Required reliability and availability

A Job of an interconnection network is twansfer information
from source node talest node Iin supporof network
transactions that realize thapplication

¢ latencyassmall as possible
¢ asmany concurrent transfers gmssible
¢ costas low as possible
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ICN DesignConsiderations (2/3)

AExample requirements for a coherent
processofmemory interconnect

¢ Processor ports 1-2048

¢ Memory ports 1-4096

¢ Peak BW 8 GB/s

¢ Average BW 400 MB/s

¢ Message Latency 100 ns

¢ Message size 64 or 576 bits

¢ Traffic pattern arbitrary

¢ Quality of service none

¢ Reliablility Nno message loss
¢ Availability 0.999 to 0.99999
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ICN DesignConsiderations (3/3)

ATechnology constraints
¢ Signaling rate
¢ Chip pin count (if of€hip networking)
¢ Area constraints (typically for echip networking)
¢ Chip cost
¢ Circuit board cost (if backplane boards needed)
¢ Signals per circuit board
¢ Signals per cable
¢ Cable cost
¢ Cable length
¢ Channel and switch power constraints
C X
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Performance and Cost

AMain Performance figures: latency and throughput
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AMain cost factors
¢ OnChip: area and power
¢ Off-Chip: wiring, pin count, chip count

",

Saturation
throughput
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Basic Definitions

AAN interconnection network is a graph mbdesinter-
connected usinghannels

ANode a vertex in the network graph
¢ Terminalnodes: where messages originate and terminate
¢ Switch(router) nodes forward messages from portsto out ports
¢ Switch degreenumber of in/out ports per switch

AChannelan edge in the graph
¢ I.e., an orderedpair (x,y) wherexandy arenodes
¢ Channel = link (transmission medium) + transmitter + receiver
¢ Channel widthw = number of bits transferred per cycle
¢ Phit(physicalunit or digit): dataransferred per cycle
¢ Signaling rate f = number of transfer cycles per second
¢ Channebandwidth: b=wl f



Fall 2015 :: CSE 61Q Parallel Computer Architectures ‘\\\\ Stony Brook University

Basic Definitions

APath (or route): a sequence of channels, connecting a
sourcenode to adestinationnode

AMinimal Path: a path with the minimum number of
channels between a source and a destination

¢ R, = set of all minimal paths fromto y

ANetwork Diameter. Longest minimal path over all
(source, destination) pairs
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Basic CommunicatiorLatency

ATime(n)sqes= OVErhead + routing delaychannel
occupancy+ contention delay

Aoccupancy=(n+ny) /b
C n=size ofdata
¢ n.= size of packetverhead
¢ b= channel bandwidth

ARouting delay
¢ function of routing distance and switctielay
¢ dependson topology, routing algorithnswitch design, etc.

A Contention
¢ Givenchannel can only be occupied by omessage
¢ Affectedby topology, switching strategy, routing algorithm
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Off-chip vs.On-chip ICNs

A Off-chip: 1/O bottlenecks
¢ Pinlimited bandwidth
¢ Inherent overheads of ofthip 1/O transmission

AOn-chip

¢ Wiring constraints
A Metal layer limitations
A Horizontal and vertical layout
A Short, fixed length
A Repeater insertion limits routing of wires
A Avoid routing over dense logic
A Impact wiring density
¢ Power
A Consume 1a5% or more of die power budget
¢ Latency
A Different order of magnitude
A Routers consume significant fraction of latency
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Main Aspects of an ICN
ATopology

¢ Static arrangement of channels and nodesa network

ARouting
¢ Determines the set of paths a message/packet can follow

AFlow control

¢ Allocating network resources (channels, buffers, etc.) to packets
and managing contention

A Switch microarchitecture
¢ Internal architecture of a network switch

ANetwork interface
¢ How to interface a terminal with switch

ALink architecture
¢ dgnaling technology and data representation on the channel
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Topology
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Types of Topologies

AWe focus on switched topologies
¢ Alternatives: bus and crossbar

ABus

¢ Connects a set of components to a single shared channel
¢ Effective broadcast medium

A Crossbar
¢ Directly connects inputs tom outputs without intermediate
stages
¢ Fully connected, single hop network ><
¢ Typically used as an internal component of switches

¢ Can be implemented using physical switches (in old telephone
networks) or multiplexers (far more common today)
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Types of Topologies

ADirect

¢ Each router is associated with a terminal node
¢ Allrouters are sources and destinations of traffic

Alndirect
¢ Routers are distinct from terminal nodes
¢ Terminal nodes can source/sink traffic
¢ Intermediate nodes switch traffic between terminal nodes
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Metrics for Comparing Topologies

A Switchdegree

¢ Proxy for switch complexity

AHop count(averageand worstcase)
¢ Proxy for network latency

AMaximum channel load
¢ A proxy for hotspot load

ABisectionbandwidth

¢ Proxyfor maximum traffic a network casupport under a uniform
traffic pattern

APath Diversity

¢ Provides routing flexibility fofoad balancingandfault tolerance
¢ Enables better congestion avoidance
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Detour: Cut and Bisection

ACut a set of channels that partitions the set of all
nodes into two disjoint setdy; andN,

ABisection a cut that partitions the network nearly in
half

¢ bisecting set of nodegN,|] N,0 N, Jpr1 |
¢ and, setof terminals:N, Z T| O N, 2| T| O N, Z| T|+ 1

ABisection bandwidth minimum bandwidth over all
bisections of the network
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Tori and Meshes

AExamples of direct networks

ATorus k-ary n-cube

¢ Ann-dimensional grid wittkk nodes in each
dimension

¢ k"nodes; degree 2n (n channels per dim) < N

¢ Each node is connected to its immediate 3-ary 2-cube
neighbors in the grid

¢ Edge nodes in each dimension are also

connected
¢ kis called theadix
AMesh: k-ary n-mesh ‘ ‘ ‘

¢ Like a torus with no channel between edge
nodes

3-ary 2-mesh
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Tori and Meshes

An-cubes can have different radices i
different dimensions

¢ Example: 2 irY, 3 inZ and 4 inX

AVery regular: can construct an
n+1-dim cube by taking
n-dim cubes, arranging them in an
array and connecting the
corresponding nodes afeghibors

q\\\\ Stony Brook University
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Tori and Meshes

A Famous topologies in this family
¢ Ring k-ary 1-cube
¢ 2D and 3[yrids
¢ Hypercube2-ary (binary)sn-cube

A 1D or 2Dmapwell to planar substrate for cghip
A 3Dis easyto build in 3D space®.g. a supercomputer)

A Tori are edge symmetric
n Goodfor load balancing

A Removing wragaround links for mesh loses edge symmetry
U More traffic concentrated on center channels

A Good path diversity

A Exploit locality for neaneighbortraffic
¢ Important for many scientific computations
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Tree

ADiameter and average distance
logarithmic

¢ k-arytree, height =log, N

¢ addressspecified dvector of
radixk coordinates describing
path down fromroot

ARouteup to common ancestor
and down O B O o B O

ABisectionBW?

oo
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Fat Tree

ABandwidth remains constant
at each level

¢ Bisection BW scales with
number of terminals

AUnlike tree in which
bandwidth decreases closer to
root

AFat links can be implemented
with increasing the BW L
(uncommon) or number of
channels (more common)
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Butterfly (1/3)

Alndirect network 0 1 0
Ak-ary n-fly: k"terminals \v
¢ k: input/output degree of \
each switch ‘ —
¢ n: number of stages

¢ Each stage hdg-! k-by-k
switches

AExample routing from 000
to 010

Al
¢ Destaddress used to directly

v
=

¢ J"bit used to select output )
port at stage) 2-ary 3fly

2 port switch, 3 stages
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Butterfly (2/3)

ANo path diversity |R| =

ACan add extra stages for dlversity
¢ Increases network diameter

o Yo

v
A-A‘A
D

‘\\\‘ Stony Brook University
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Butterfly (3/3)

AHop Count fog, N + 1

ADoesnot exploitlocality
¢ Hop count same regardless of location

ASwitch Degree 2k

ARequires long wires to implement
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Clos Network (1/2)

m=5rxr
A3- |
3 Stage C OS r=4nxm/ inr;(Lt \r:4mxn
C |npUt SWltCheS 1 nxm switch mxn
¢ Output switches — ] sueh itch |——
. . input
¢ Middle switches | switch e
sw?tch rxr swi'?ch
input
Aparameters — | nxm sw?tch mxn
] ) — input output [——
¢ m: # of middle switches  —{swich oo switch
C n:d in/out _iler?ree of ol Suiteh oot
e ge switches —— switch e switch f——
input
Cr. # of Input/OUtput \ switch /

switches 3-stage Clos network with

m=5n=3,r=4
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Clos Network (2/2)

AProvides path diversity
G |[Ryl = m (number of middle switches)
¢ One path through every middle switch

ACan increase # of stages (and diversity) by replacing the
middle stage with another clos network

e —

I((2,2,2) Clos

" o e
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Folding Clos Networks

ACan fold the networlalong the middle stag® share
Input/output switches

AThe righthand side is a fat tree
¢ Alternativeimpl. w/ more links instead of higBW links
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T A / OEAO 41 DBl I11TC

AMany other topologies with different properties
discussed in the literature
¢ Omega networks
¢ Benes networks
¢ Bitonicnetworks
¢ Flattened Butterfly
¢ Dragonfly
¢ Cubeconnectedcycles
¢ HyperX
cC X

AHowe_ver, these are typically special purpose and not
used in general purpose hardware
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Irregular Topologies

ACommon inMPSoGMultiprocessor Systeron-Chip)
designs

AMPSoQlesign leverages wide variety of IP blocks

¢ Regular topologies may not be appropriate given
heterogeneity

¢ Customized topology
A Often more power efficient and deliver better performance

ACustomize based on traffic characterization
¢ Often synthesized using automatic tools
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Irregular Topology Example

Run Run
VLD length inverse VLD H length — nverse
scan scan
decoder decoder|;
R} 1 R
AC/DC
_ . AC/DC iDCT iQuant :
IDCT IQuant oredict predict
o W m
VOP : VOP Stripe
up samp Stripe
P reconstr I\/Iemrc))ry 0 jjupsampy et Memory
s R B - R
ARM core ||| VOP' | |54 4ding ARM core | | VOP | |54
Memory Memory g
= L R
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Flow Control
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Flow Control Overview

AFlow Control: determinellocationof resources to messages
as they traverse network
¢ Buffers and links

¢ Significant impact on throughput and latency of network
Flow Control Units:

AMessage composed of one or more packets
¢ If message size is <= maximum packet size only one paeletéd

APacket composed of one or mor#its
AFlit: flow controldigit

APhit: physical digit
¢ Subdivides flit into chunks = to link width
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Flow Control Overview

Messagea

Protocol view

Packet | Route| Sedt

Flow Control (e s e
View l

Flit Type| VCID

Head, Body, Tall, Phit
Head & Talil

APacket contains destination/route information
¢ Flits may no#y, all flits of a packet must take same route
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Switching
ADifferent flow control techniques based on granularity

AMessagebased allocation made at message
granularity (circutswitching)

APacketbased allocation made to whole packets

AFlit-based allocation made on a flby-flit basis
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MessageBased Flow Control

A Coarsest granularity

A Circuit Switching
¢ Preallocatesresources acrossiultiple hops
A Source to destination
A Resources = links (buffers not necessary)
¢ Probe sent into network to reserve resources

¢ Message does not need phop routing orallocationonceprobe sets up
circuit

AGood for transferring large amounts déta

ANo other message can usesourceauntil transfer is complete
¢ Throughput can suffer due setup and hold time for circuits
¢ Links are idle until setup is complete
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Time-Space Diagram: CircuiSwitching
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Packetbased Flow Control

ABreak messages into packets

Alnterleavepackets on links
¢ Better utilization

ARequires penodebufferingto store inflight packets

ATwo types of packebased techniques
¢ Store & Forward
¢ Virtual CutThrough
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Store & Forward (S&F)

ALinks and buffers are allocated ¢mtire packet

AHead flitwaits at router until entire packet iseceived
(Store) before being forwarded to the next hop

(Forwarg

ANot suitable for orchip
¢ Requires buffering at each router to hold entire packet

A Packet cannot traverse link until buffering allocated to entire
packet

¢ Incurs high pehop latency (payserializationlatency at each
hop)
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Time-Space Diagram: S&F

Location
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Virtual Cut-Through (VCT)

ALinks and Buffers allocated &mtire packets

AFlits can proceed to next hop before tail flit has been
received by current router

¢ Only if next router has enough buffer space dottire packet

AReduces the latency significantly compared to
Store & Forward

AStill requiredargebuffers

¢ Unsuitable for orchip
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Time-Space Diagram: VCT

O HIBIB|B|T

1 HIB|B|B|T

2 HIB|B|B|T
c
S ¢
= HIB|  B|B|T
S
- g HIB|B|B|T

67 E Time
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Time-Space Diagram: VCT (2)

_x_9
ol ylelelelr 1111 -7
1 Cannot proceed because
HI B |B| BT only 2 flit buffers availabl
2 H|B|B|B|T
S
= B|B|B|T
3

1— 2
q} o 1 2 3 4 5 6 7 8 9 10 11

Time
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Flit-Level Flow Control

AFlit can proceed to next router when there is buffer
space available for thdht
¢ Improves over SAF and VCT by allocating buffers on a
flit-by-flit basis
¢ Help routers meet tight area/powearonstraints

AcCalledWormhole Flow Control

n More efficient buffer utilization (good for cghip)
n Low latency

U Poorlink utilization: if head flit becomes blocked, latks
spanningength of packet are idle

A Cannot be raallocated to different packet
A Suffers fromhead of line(HOL) blocking
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Wormhole Example

A6-flit Red holds this channe Channel idle but
=mm Channel remains idle red packet blocked
ﬁ]upflf,le’[rsoprter until red proceeds behind blue
A2 4flit
packets

C II;)Ied &  Buffer full: biue
ue cannot proceed
| |
Blocked by other
packets
|
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Time-Space Diagram: Wormhole

O |H|B B/ B|T
1 H| B B/ B|T
g2 HIB|B|B|T
< 5 H{B|B|B|T
S
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Virtual Channel Flow Control

AVirtual Channelsmultiple flit queues per input port
¢ Sharesamephysical link (channgl

AUsedto combatHOLblocking inwormhole
¢ Flitson different VC can pass blockeacket
¢ Link utilizationmproved

AVCs first proposed for deadlock avoidance
¢2SQff O2YS o6F0O1 G2 UO0KAZA
ACan be applied to any flow control
¢ First proposed with wormhole
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VC Flow Controlg Example 1

A (in)

B (in) Out
— —

A(n)| AH| A1| A2| A3 | A4| A5 AT
Occupancy 1 1 2 2 3 3 3 3 3 2 2 1 1 B (out)

B(in) BH| B1| B2| B3| B4 B5 BT
Occupancy 1. 2 2 3 3 3 3 3 3 3 2 2 1 1

Out AH|BH| Al1| Bl A2| B2| A3| B3| A4| B4| A5S| B5| AT| BT

A (out) AH Al A2 A3 Ad A5 AT

B (out) BH B1 B2 B3 B4 B5 BT
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VC Flow Controlkg Example?2

A6-flit
ouffers
ner input
oort

A3 flit
buffers
per VC :

—= 1_I
Blocked by
Bl other packets

L |
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Summary of techniques

‘\\\\ Stony Brook University

I L

Circuit Messages N/A (bufferless)
Switching

Store and Packet Packet

Forward

Virtual Cut Packet Packet
Through

Wormbhole Packet Flit

Virtual Flit Flit

Channel

Setup &Ack

Head flit waits for
tail
Head can procee

HOL

Interleaveflits of
different packets
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Buffer Backpressure
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Buffer Backpressure

ANeed mechanism to prevemniuffer overflow

¢ Avoid dropping packets

¢ Upstream routers need to know buffer availability at
downstream routers

ASignificant impact on throughput achieved by flow
control

ATwo common mechanisms
¢ Credits
¢ Onoff
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Credit-BasedFlow Control

AUpstream router stores credit counts for each
downstream VC

AUpstream router

¢ When flit forwarded
A Decrement credit count
¢ Count == 0, buffer full, stop sending

ADownstream router

¢ When flit forwarded and buffer freed
A Send credit to upstream router
A Upstream increments credit count
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Credit Timeline
Node 1 Node 2
t1 :
y Flit departs
router
t2 Process
3 J Credit round
: trip dela
W \ P y
t4
Process
t5 WV
ARoundtrip credit delay:

¢ Time between when buffer empties and when next flit can be
processed from that buffer entry

A Single entry buffer would result in significant throughput
degradation

¢ Important to size buffers to tolerate credit turaround
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Buffer Sizing

APrevent backpressure from limiting throughput
¢ Buffers must hold # of flits >= turnaround time

AAssume:
¢ 1 cycle propagation delay for data and credits
C 1 cycle credit processing delay
¢ 3 cycle router pipeline

AAt least 6 flit buffers
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Actual Buffer Usage & Turnaround Delay

1 1 3 1
Credit Credit flit
Actual buffer propagation pipeline propagation
usage delay delay flit pipeline delay delay
®o-------- @ @ @ —@- @
Flit leaves node 1 Node O processes New flit arrives at
and credit is sent credit, freed Node 1 and
to node O buffer reallocated reuses buffer
to new flit

Flit arrives at node 1 Node O receives New flit leaves
and uses buffer credit Node O for Node 1
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On-Off Flow Control

ACredit requires upstream signaling for every flit

AOn-Off: decreases upstream signaling

¢ Off signal: sent when number of free buffers falls below
thresholdF

¢ On signal: sent when number of free buffers rises above
thresholdF,,
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On-Off Timeglipe

FqSet to prevent\
flits arriving
before t4 from
overflowin
oy

A

et

F,,set so tha
Node 2 does
not run out of
flits between t5

< and t8 4

t2

s
t4

15

t6

< 17

18

‘\\\\ Stony Brook University

Node 2 ( Foﬁthreshold}
reached
Flit
Flit
off it
Process ’Eﬁf N

%

Oon

reached

%

Flit

@ ~ , threshold }
%

Process

Fljt

A Less signaling but more buffering
¢ On-chip buffers more expensive than wires
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Flow Control Summary

AOn-chip networks require techniques with lower
buffering requirements

¢ Wormhole or Virtual Channel flow control

AAvoid dropping packets in echip environment
¢ Requires buffer backpressure mechanism

AComplexity of flow control impacts router
micro-architecture
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Routing
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Routing Overview

ADiscussion of topologies assumed ideal routing

ALY LINJF OO0 A OSX
¢ Routing algorithms are not ideal

AGoal: distribute traffieevenlyamong paths
¢ Avoid hot spots, contention
¢ More balanced closer throughput is to ideal

AKeep complexity in mind

¢ Routing delay can become significant with complex routing
mechanisms
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Classifications of Routing Algorithms

A Adaptivity: does take network statee(g, congestion)
Into account?

¢ Oblivious
A Deterministic vs. nowleterministic

¢ Adaptive

A Hop count are all allowed routes minimal?
¢ Minimal
¢ Nonrminimal

A Routing decisionwhere is it made?
¢ Source routing
¢ Perhop routing

A Implementation
¢ Table
¢ Circuit
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Routing Deadlock

A B

D C

AEach packet is occupying a link and waiting for a link

AWithout routing restrictions, aesource cyclean occur
¢ Leads to deadlock

ATo general ways to avoid
¢ Deadlockiree routing limit the set of turns the routing algorithm allows
¢ Deadlockiree flow control use virtual channels wisely
A E.g., us&scape VCs
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Dimension Order Routing

A0 M
o J Jy

Turns in X-Y routing Turns in Y-X routing

ATraverse network dimension by dimension
¢ X-Y routing: can only turn to Y dimension after finished X
¢ Y-X routing:can only turn taXdimension after finished Y

ADeterministic and Minimal

¢ Being deterministic implies oblivion but not often called so
(term obliviousreserved for nordeterministic routing).
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6 Al E @dliviwas®outing Algorithm
A An oblivious algorithm

ATo route from s to d

¢ Randomly choose intermediate
nodedQ

cw2dziS FNRY & (2

ARandomizes any traffic pattern

¢ All patterns appear uniform
random

¢ Balances network load

ANorrminimal
ADestroys locality
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Minimal ODblivious

At Al yiQay
balancing but significant
Increase in hop count

AMinimal Oblivious:
some load balancing,
but use shortest paths

¢cdQ Ydzad fAS
guadrant

¢ 6 options fordQ

¢ Only 3 different paths

[ 2+ R

-
mp
|
|

‘\\\\ Stony Brook University
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Oblivious Routing
At f AFLYyGdQa YR aAyAYlf ! RI

¢ Deadlock free when used in conjunction witfy Xouting

AWhat if randomly choose between¥and ¥X routes?
¢ Oblivious but not deadlock free!

AHow to make it deadlock free?
¢ Need 2 virtual channels

AEither version can be generalized to more than two
phases
¢ Choose more than one intermediate points
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Adaptive
AExploits path diversity

AUses network state to make routing decisions

¢ Buffer occupancies often used
¢ Relies on flow control mechanisms, especially back pressure

ALocal information readily available
¢ Global information more costly to obtain

¢ Network state can change rapidly
A Use of local information can lead to naptimal choices

ACan be minimal or neminimal
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Minimal Adaptive Routing
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ALocal info can result in stdptimal choices
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Non-minimal adaptive

AFully adaptive
ANot restricted to take shortest path

AMisrouting: directing packet alongon-productive
channel

¢ Priority given to productive output
¢ Some algorithms forbid{turns

ALivelockpotential: traversing network without ever
reaching destination

¢ Mechanism to guarantee forward progress
A Limit number ofmisroutings
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Non-minimal routing example

Longer path with potentially Livelock continue routing in
lower latency cycle
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Adaptive Routing Example

A Should 3 route clockwise or counterclockwise to 77?
¢ 5 is using all the capacity of lInkA56

AQueue at node 5 will sense contention but not at node 3

ABackpressure: allows nodes to indirectly sense congestion
¢ Queue in one node fills up, it will stop receiving flits
¢ Previous queue will fill up

Alf each queue holds 4 packets
¢ 3 will send 8 packets before sensing congestion
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Adaptive Routing: Turn Model

A Successful adaptive routing requires path diversity

ARemoving too many turns limits flexibility in routing
¢ E.g., DOR eliminates 4 turns
ANtOE,NtoW,StoE, StoW

AQuestion: how to ensure deadlock freedom while removing a
minimum set of turns?

AExamples of valid turn models:

T 0
L LJ LJLJ Loy

West first North last Negative first
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Turn Model Routing Deadlock
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AWhat about eliminating turns NW and WN?

ANot a valid turn elimination
¢ Resource cycle results

M b 2 G-reolvds reault in valid turn models




