Fall 2015 :: CSE 61Q Parallel Computer Architectures ‘\\\\ Stony Brook University

Data-Level
Parallelism

Nima Honarmand

Fall 2015 :: CSE 61Q Parallel Computer Architectures q\\\\ Stony Brook University

Overview

AData Parallelism vs. Control Parallelism

¢ Data Parallelism: parallelism arises from executing essentially
the same code on a large number of objects

¢ Control Parallelism: parallelism arises from executing
different threads of control concurrently

AHypothesis: applications that use massively parallel
machines will mostly exploit data parallelism

¢ Common in the Scientific Computing domain

ADLP originally linked with SIMD machines; now SIMT is
more common

¢ SIMD: Single Instruction Multiple Data
¢ SIMT: Single Instruction Multiple Threads

Fall 2015 :: CSE 61Q Parallel Computer Architectures ‘\\\\ Stony Brook University

Overview

AMany incarnations of DLP architectures over decades
¢ Oldvector processors
A Cray processors: CrdyCrayH = XX / NI} & - ™
¢ SIMD extensions
A Intel SSE and AVX units
Al €t LIKF ¢l N> yadzZ I BRARY QO &aSsS f
¢ Old massively parallel computers
A Connection Machines
A MasPamachines

¢ Modern GPUs
Ab+L5L!>Y a5y vdzrf O2YY3X X

AFocus of throughput rather than latency

VectorProcessors

SCALAR VECTOR
(1 operation) (N operations)
rl| (r2
\ﬁ")/
r3
length
add r3,rl, r2 vadd.vv v3, v1, v2

Scalar processors operate on single numbers (scale

Vector processors operate lbmearsequences of
numbers (vectors)

6.888 Spring 2013 - Sanchez and Emer - L14

What 0s | RrocessoN?’e ct «

A scalar processor (e.g. a MIPS processor)
Scalar register file (32 registers)
Scalar functional units (arithmetic, load/store, etc)

A vector register file (a 2D register array)

Each register is an array of elements
E.g. 32 registers with 32 édit elements per register

MVL = maximum vector length = max # of elements per register

A setof vectorfunctional units
Integer, FP, load/store, etc
Some times vector and scalar units are combined (Ahbke

Example of Simple
VectorProcessor

Main memary

Vector __| FP add/subtract
load-store
. FP muiltiply '_-
* | FP divide .—-
E—
- I
Vector - Int
registers — meagy
————— -
| Logical .—'-

Scalar
registers

6.888 Spring 2013 - Sanchez and Emer - L14

Basic VectoiSA

Instr Operands
VADD.VV V1,V2,\V3
VADD.SV V1, RO,V2
VMUL.VV V1V2V3
VMUL.SV V1,R0,V2

VLD V1,R1
VLDS V1,R1,
VLDX V1,R1,
VST V1,R1
VSTS V1,R1,
VSTX V1,R1,

R2
V2

R2
V2

Operation
V1=Vv2+V3
V1=R0O+V2
V1=V2*V3
V1=R0O*V2
V1=M[R1...R1+63]
V1=M[R1I68*R]
V1=M[R}kV2,,i=0..63]
M[R1...R1+63]=V1
V1=M[R1...R163*R2]
V1=M[R}®V2,,i=0..63]

+ regularscalari nstructi onseée

Comment

vector + vector

scalar + vector

vectorx vector

scalarx vector

load, stride=1

load, stride=R2
indexed("gathel)

store, stride=1

store, stride=R2

|l ndexed(Y osca

Advantages of Vector ISAs

Compact: single instruction defines N operations
Amortizes the cost of instruction fetch/decode/issue
Also reduces the frequency of branches

Parallel: N operations are (data) parallel
No dependencies
No need for complex hardware to detect parallelism (similar to VLIW)
Can execute in parallel assuming N parallelapaths

Expressive: memory operations describe patterns
Continuous or regular memory access pattern
Canprefetchor accelerate using wide/multenked memory
Can amortize high latency for 1st element over large sequential patter:

Vector Length (VL)

Basic: Fixed vector length (typical in narrow SIMD)
Is this efficient for wide SIMD (e.g.;\8Rle vectors)?

Vectorlength (VL) register: Control the length of any vector opere
Including vector loads and stores

e.g.vadd.vvwith VL=10a A for (i=0; i<10; i++) V1[i]=V2[i]+V3]i]

VL can be set up to MVL (e.g., 32)

How to do vectors > MVL?

What if VL is unknown at compile time?

6.888 Spring 2013 - Sanchez and Emer - L14

Optimizationl: Chaining

10

Suppose the following code with VL=32:

vmul.vv V1,v2,V3
vadd.vv V4,V1,V5 # very long RAW hazard
Chaining

V1 is not a single entity but a group of individual elements
Pipeline forwarding can work on an element basis

Flexible chaining: allow vector to chain to any other active vect
operation => more read/write ports

Unchained
vmul vadd

_ vmul
Chained

vadd

Optimization 2MultipleLanes

—— i Pipelined
ﬁ_ 7 . |7 Y_{ Datapath
L 3 L d | oo)
Vector Reg.
Partition Elemlents Elemlents Elements Elements
v v

To/From Memory System

Modular, scalable design
Element®r each vector register interleaved across the lanes
Each lane receives identical control
Multiple element operations executed per cycle
No need for intelane communication for most veatstructions

Chaining & MuHliane Example

Scalar LSU FUO FU1
vid =)
vmul.vv =
l vadd.vv

addu =0

Time y|d —)
vmul.vv =
vadd.vv
addu —

Element Operai:ions: Instr. Issuef;

12

VL=16, 4 lanes,
2 FUs1 LSU

chaining> 12
ops/cycle

Just 1 new
instruction

iIssued per cycle
111

Optimization 3: Condition&xecution

3

Suppose you want weectorizethis:
for (i =0; i<N; i++)if(Ali I'= B[i]) Al] -= B[]
SolutionVectorconditionakxecution (predication)

Add vector flag registers with singbi elements (masks)

Use a vector compare to set the a flag register

Use flag register as mask control for the vector sub
Add executed only for vector elements with corresponding flag elesetent

Vector code

vid V1, Ra

vid V2, Rb

vcmp.neq.vv MO, V1, V2 # vector compare
vsub.vv V3, V2, V1, MO # conditional vadd

VSt V3, Ra

SIMD: InteXeonPhi (KnightSorner)

Core Core Core Core
PCle
Client L2 L2 L2 L2
Logic
[_
GDDR M L.ipd |aod--|1od [1od | GDDRM@
GDDR M |C|J_‘ |C|J_‘ |cu_‘ |C|J_‘ GDDRMQ}

¢l ¢l ¢l ¢l

210D 210D 210D 210D

A multicorechipwithx86-based vector processors
Ring interconnect, private L2 caches, coherent
Targetingthe HPC market

Goal: high GFLOP&FLOPS/Watt

6.888 Spring 2013 - Sanchez and Emer - L14

Xeon Phi Core Design

3 3

- l
S —

1 1

To On-Die Interconnect

Scalar RF

4-way threaded + vector processing
Inorder (why?), short pipeline

Vector ISA: 32 vector registers (512b), 8 mask registers,
scatter/gather

6.888 Spring 2013 - Sanchez and Emer - L14

15

Fall 2015 :: CSE 61Q Parallel Computer Architectures ‘\\\\ Stony Brook University

An Old Massively Parallel Computer:
Connection Machine

AOriginally intended for Al applications, later used for
scientific computing

ACM2 major components

¢ Parallel Processing Unit (PPU)

A 16-64K bitserial processing elements (PEs), each with 8KB of
memory

A20usfora3® Ad I RR h onnn alLt{ 6AGK
A Optional FPUs, 1 shared by 32 PEs

A Hypercube interconnect between PEs with support for combining
operations

¢ 1-4 instruction sequencers

Fall 2015 :: CSE 61Q Parallel Computer Architectures

The ConnectionMachine(CM-2)

A1-4 FrontEnd Computers
¢ PPU was peripheral

ASophisticated 1/0 system

¢ 256-bit wide 1/0O channel for

every 8K PEs

¢ Data vault (39 disks, data +

ECC) for higherformance
disk I/O

¢ Graphicsupport

AWith 4 sequencers, a CM
viewed as 4 independent
smaller CMs

Nexus

‘\\\\ Stony Brook University

Front end 0
(0BG VAX of
Symbolics)

Bus interlace

Front end 1
(pEC VAX or
Symbolics)

Bus interface

1

Connectios Machine .
Parallel Processing Unit
Connection Machine Connection Machine
processors processors
Sequencer Sequencer
1] 3
-—
Sequencer Sequencer

Front end 3
[DRC YAX or
Symbolics)

Bus interface

Connection Machine
procesors

Connection Machine

-

Connection Muchine IO System

Froot end 3
[ome vAx or
Symbolics)

Bus interface

I

Dats
Vanlt

Dain

Yanlt

]
Network

Fall 2015 :: CSE 61Q Parallel Computer Architectures ‘\\\\ Stony Brook University

CM2 ISA

ANotion of virtual processors (VPS)
¢ VPs are independent of # of PEs in the machine
¢ If VPs > PEs, then multiple VPs mapped to each PE
A System transparently splits memory per PE, does routing, etc.

A Notion of current context

¢ A context flag in each PE identifies those participating in
computation

A Used to execute conditional statements

AA very rich vector instructioset
¢ Instructions mostly memoro-memory
¢ Standard set of scalar operations
¢ Intra-PE vector instructions (vector within each PE)
¢ Inter-PE vector instructions (each PE has one element of the vector)
A Global reductions, regular scans, segmented scans

Fall 2015 :: CSE 61Q Parallel Computer Architectures ‘\\\\ Stony Brook University

Example of CM2 Vectorinsts

Aglobal - s- add: reduction operator to return sum of
all elements in a vector

As- add- scan : parallelprefix operation, replacing
each vector item with sum of all items preceding it

x 3] slaf 31} al2]7]3]2]|>

scan-X:| 3| 8] 10| 13 14] 18] 20| 27} 30| 32] 33]

Asegmented - s- add- scan : parallelprefix done on
segments of an array

x |3l slafp 3]} al2]7)[3}2]

segment | o] O] O 11 © 0l 0 ol 1 0 0

segscanx: | 3 | 810 3] a] 8] w0} 17| 3|5 | 6]

Fall 2015 :: CSE 61Q Parallel Computer Architectures ‘\\\\ Stony Brook University

Inter -PE Communication in CN2

AUnderlying topology is-ary 12cube

¢ A general router: all PEs may concurrently send/receive
messages to/from othelPEs

ACan impose a simpler grid (286y 2cube or 16ary 4
cube) on top of it for fast local communication

AGlobal communication

¢ Fetch/store: assume only one PE storing to any goestn

¢ Get/send: multiple PEs may request from or send to a given
dstn

A Network does combining
A E.g., sendvith-s-max: only max value stored déstn

Fall 2015 :: CSE 61Q Parallel Computer Architectures q\\\\ Stony Brook University

Graphics Processing Unit (GPU)

AAn architecture for computéntensive, highly data
parallel computation
¢ exactly what graphics renderingabout

¢ Transistorsan be devoted to data processing rather than
data caching and flow control

mal [T [T T TTTTTTITTITT]
e [T T T T TTTTTTITTT]
e [T T T T TTTTTTITTT]
m [T T T T T TTTITTTITTT]
= ov
e [T T T T TTTITTTITITIT]

AThe fastgrowing video game industry exerts strong
economic pressure that forces constant innovation

/IS — S SE————
Fall 2015 :: CSE 61Q Parallel Computer Architectures ‘\\\\ Stony Brook University

Data Parallelism in GPUs

AGPUs take advantage of massive DLP to provide very high
FLOP rates

¢ More than 1TeraDP FLOP in NVIDIA GK110

Ad{Lac¢cé¢ SESOdziA2y Y2RSH
¢ Single instruction multiple threads
CENBAY3I (2 RAAUAYIdzZAEAK A0AaStET T
¢ A key difference: better support for conditional control flow

AProgram it with CUDA @penCL
¢ Extensions to C
Ct SNF 29Kaderd | &1 ¢ o6F ayALILISG 2F aol
many elements

¢ Internally, GPU uses scatter/gather avettormasklike
operations

/IS — S SE————
Fall 2015 :: CSE 61Q Parallel Computer Architectures ‘\\\\ Stony Brook University

Context: History of Programming GPUs

AGdDt Dt ! €
¢ Originally couldbnly LIS NJF 8hbldég ¢ O2 Y LJdzi | G A 2 y &
¢ So, programmers started using this framework for computation
¢ Puzzle to work around the limitations, unlock the raw potential

Al'a Dt! RS&GAIYSNE y20A0S (KA
¢l F NRgoIFINBE LINPJARSR Y2NB aK2214a¢é
¢ Provided some limited software tools

AGPU designs are now fully embracing compute
¢ More programmabilityfeaturesin eachgeneration
¢ Industrialstrength tools, documentation, tutorials, etc.
¢ Can be used for tgame physics, etc.
¢ A major initiative to push GPUs beyond graphics (HPC)

Throughput Computing:
Hardware Basics

What does a modern graphics API do?

Geometry
Shader

Pixel
Shader

A Simple Program - Diffuse Shader

sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;
floatd4 diffuseShader (float3 norm, float2 uv)
{
float3 kd;
kd = myTex.Sample (mySamp, uv);
kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
return floatd(kd, 1.0);

} Each invocation is independent, but no
explicitly exposed parallelism

!) SIGGRAPHASIA2008

NEW HORIZONS

10 adapted from Kayvon Fatahalian’s SIGGRAPH'0S tall

11

Shader is compiled

1 Unshaded fragment in

sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;

floatd4 diffuseShader (float3 norm, float2 uv)
{
float3 kd;
kd = myTex.Sample (mySamp, uv);
kd *= clamp(dot(lightDir, norm), 0.0, 1.0);

return floatd4(kd, 1.0);

<diffuseShader>:

sample r0, v4, t0, sO

mul r3, v0, cb0[0]

madd r3, vl, cbO[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, 1(0.0), 1(1.0)
mul o0, r0, r3

mul ol, rl, r3

mul o2, r2, r3

mov o3, 1(1.

1 Shaded fragment out

o

oi

SIGGRAPHASIA2008

NEW HORIZONS

Exploit data parallelism! - add two cores

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, vl, cb0[1l], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, 1(0.0), 1(1.0)
mul o0, r0, r3 Execute
mul o1, rl, r3 (AI.U)
mul o2, r2, r3
mov o3, 1(1.0)

<diffuseShader>:
sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, vl, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, 1(0.0), 1(1.0)
Execute mul o0, r0, r3

(AI.U) mul ol1l, rl, r3

mul o2, r2, r3
mov o3, 1(1.0)

\ 4

e
e

Each invocation is independent!

NEW HORIZONS

!) SIGGRAPHASIA2008

15 adapted from Kayvon Fatahalian’s SIGGRAPH'0S talk

Add even more cores - four cores

| «diffusamraders:

| azaple 20, vé, &2, =0

| sl 3, o, ebo{o]

| modd ¥, vi, <bO{l), £3

| modd £3, w2, <b0{2], 23

| clap £3, £1, 1¢0.0), 1(3.0)
|mul o0, £3, £

|ewl 03, £1, 13

|0l a2, 2, ©3

mov o3, 141.0)

| «diffuramtaders: |
| anaple z0, vé, w0, =0

|mul 3, v, ebofo0)

| madd e3, vi, <bO{l]), 23

| modd £¥, w2, <b0{2], 23

| clsp £3, £1, 1(0.0), 1(2.0}
|mul op, 2, 13

|eml o3, £1, 13

|mul o2, r2, r3

iuuv o}, 1{1.9)

| «diffusesraders:

| anaple 20, vd, t0, =0

| mol 3, we, <b0{0]

| madd 3, wi, <bO{l], 23

| modd e¥, w2, <b0[2), =3

| clap £3, £3, 1(0.0), 1(3.0}
|mul oo, £2, x3

| «diffusestaders: |
| anaple x0, vd, &0, =0

[mul 3, w0, <b0{0]

€3, wi, <bO{1), 23

€Y, w2, <b0]2], =3

£3, ¥3, 1(0.0), 1(3.0}
o,

|mul o3, £1, 13 (ALU) o1,
|eu1 a2, £2, 13 . s
|mov o, 1{1.0) o8,

SIGGRAPHASIA2008

NEW HORIZONS

How about even more cores - 16 cores

SIGGRAPHASIA2008

NEW HORIZONS

) I E B0 B
o I B0 B
o) W
il o B EW BN O BN Bl
a0 OO0 ON BN BN g BN O
o))] N
i)))
o] B0) O
ail OO OO OO On oW Ea gl

° o S
(@]
% X M_
S /s J 10 b
H e ...O.. e < .
p.ﬂl (7)) nurum
o, o 2
G w m %“
) ey % -
N6 N5 N w Ol)
06 O N B = W;hl (
BE:0) B B A & 5 m
U A A e
— | S
O M S
, il o
BN BN BN EY x O =
OB oW EN Bl £ =
£3
= ((b)

“items

r

-

How do you feed all these cores?

128 cores

18

Back to the simple core...

‘How do you feed all these
cores?

*Share cost of fetch / decode
across many ALUs

*SIMD Processing Execute
(ALU)

il

