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Overview

• Data Parallelism vs. Control Parallelism
– Data Parallelism: parallelism arises from executing essentially 

the same code on a large number of objects

– Control Parallelism: parallelism arises from executing 
different threads of control concurrently

• Hypothesis: applications that use massively parallel 
machines will mostly exploit data parallelism

– Common in the Scientific Computing domain

• DLP originally linked with SIMD machines; now SIMT is 
more common

– SIMD: Single Instruction Multiple Data

– SIMT: Single Instruction Multiple Threads
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Overview

• Many incarnations of DLP architectures over decades
– Old vector processors

• Cray processors: Cray-1, Cray-2, …, Cray X1

– SIMD extensions
• Intel SSE and AVX units

• Alpha Tarantula (didn’t see light of day )

– Old massively parallel computers
• Connection Machines

• MasPar machines

– Modern GPUs
• NVIDIA, AMD, Qualcomm, …

• Focus of throughput rather than latency



Vector Processors

 Scalar processors operate on single numbers (scalars)

 Vector processors operate on linear sequences of 
numbers (vectors)
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What’s in a Vector Processor?

 A scalar processor (e.g. a MIPS processor)

 Scalar register file (32 registers)

 Scalar functional units (arithmetic, load/store, etc)

 A vector register file (a 2D register array)

 Each register is an array of elements

 E.g. 32 registers with 32 64-bit elements per register

 MVL = maximum vector length = max # of elements per register

 A set of vector functional units

 Integer, FP, load/store, etc

 Some times vector and scalar units are combined (share ALUs)
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Example of Simple 

Vector Processor 6
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Basic Vector ISA

Instr. Operands Operation Comment

VADD.VV V1,V2,V3 V1=V2+V3 vector + vector

VADD.SV V1,R0,V2 V1=R0+V2 scalar + vector

VMUL.VV  V1,V2,V3 V1=V2*V3 vector x vector

VMUL.SV  V1,R0,V2 V1=R0*V2 scalar x vector

VLD V1,R1 V1=M[R1...R1+63]  load, stride=1

VLDS V1,R1,R2 V1=M[R1…R1+63*R2]  load, stride=R2

VLDX V1,R1,V2 V1=M[R1+V2i,i=0..63] indexed("gather")

VST V1,R1 M[R1...R1+63]=V1  store, stride=1

VSTS V1,R1,R2 V1=M[R1...R1+63*R2] store, stride=R2

VSTX V1,R1,V2 V1=M[R1+V2i,i=0..63] indexed(“scatter")

+ regular scalar instructions…
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Advantages of Vector ISAs

 Compact: single instruction defines N operations

 Amortizes the cost of instruction fetch/decode/issue

 Also reduces the frequency of branches

 Parallel: N operations are (data) parallel

 No dependencies  

 No need for complex hardware to detect parallelism (similar to VLIW)

 Can execute in parallel assuming N parallel datapaths

 Expressive: memory operations describe patterns

 Continuous or regular memory access pattern

 Can prefetch or accelerate using wide/multi-banked memory

 Can amortize high latency for 1st element over large sequential pattern
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Vector Length (VL)
9

 Basic: Fixed vector length (typical in narrow SIMD)

 Is this efficient for wide SIMD (e.g., 32-wide vectors)?

 Vector-length (VL) register: Control the length of any vector operation, 

including vector loads and stores

 e.g. vadd.vv with VL=10  for (i=0; i<10; i++) V1[i]=V2[i]+V3[i]

 VL can be set up to MVL (e.g., 32)

 How to do vectors > MVL?

 What if VL is unknown at compile time?
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Optimization 1: Chaining

 Suppose the following code with VL=32:

vmul.vv V1,V2,V3

vadd.vv V4,V1,V5 # very long RAW hazard

 Chaining

 V1 is not a single entity but a group of individual elements

 Pipeline forwarding can work on an element basis

 Flexible chaining: allow vector to chain to any other active vector 

operation => more read/write ports

vadd

vmul vadd

vmul

Unchained

Chained
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Optimization 2: Multiple Lanes

 Modular, scalable design 

 Elements for each vector register interleaved across the lanes

 Each lane receives identical control

 Multiple element operations executed per cycle

 No need for inter-lane communication for most vector instructions

To/From Memory System

Pipelined

Datapath

Functional

Unit

Lane

Vector Reg.

Partition
Elements Elements Elements Elements
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Chaining & Multi-lane Example

VL=16, 4 lanes,

2 FUs, 1 LSU

chaining -> 12 
ops/cycle

Just 1 new

instruction

issued per cycle

!!!! 

vld

vmul.vv

vadd.vv

addu

vld

vmul.vv

vadd.vv

addu

LSU FU0 FU1Scalar

Time

Element Operations: Instr. Issue:
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Optimization 3: Conditional Execution

 Suppose you want to vectorize this:

for (i=0; i<N; i++) if (A[i]!= B[i]) A[i] -= B[i];

 Solution: Vector conditional execution (predication)

 Add vector flag registers with single-bit elements (masks)

 Use a vector compare to set the a flag register

 Use flag register as mask control for the vector sub

 Add executed only for vector elements with corresponding flag element set

 Vector code

vld V1, Ra

vld V2, Rb

vcmp.neq.vv M0, V1, V2 # vector compare

vsub.vv V3, V2, V1, M0  # conditional vadd

vst V3, Ra
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SIMD: Intel Xeon Phi (Knights Corner)

 A multi-core chip with x86-based vector processors

 Ring interconnect, private L2 caches, coherent

 Targeting the HPC market

 Goal: high GFLOPS, GFLOPS/Watt
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Xeon Phi Core Design

 4-way threaded + vector processing

 In-order (why?), short pipeline

 Vector ISA: 32 vector registers (512b), 8 mask registers, 
scatter/gather
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L1 TLB 

and 32KB
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4 Threads
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TLB Miss
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Decode uCode
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To On-Die Interconnect

HWP

Core

512KB 

L2 Cache

PPF PF D0 D1 D2 E WB

15

6.888 Spring 2013 - Sanchez and Emer - L14



Fall 2015 :: CSE 610 – Parallel Computer Architectures

An Old Massively Parallel Computer:
Connection Machine

• Originally intended for AI applications, later used for 
scientific computing

• CM-2 major components
– Parallel Processing Unit (PPU)

• 16-64K bit-serial processing elements (PEs), each with 8KB of 
memory

• 20us for a 32-bit add → 3000 MIPS with 64K PEs

• Optional FPUs, 1 shared by 32 PEs

• Hypercube interconnect between PEs with support for combining 
operations

– 1-4 instruction sequencers
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The Connection Machine (CM-2)

• 1-4 Front-End Computers
– PPU was a peripheral

• Sophisticated I/O system
– 256-bit wide I/O channel for 

every 8K PEs
– Data vault (39 disks, data + 

ECC) for high-performance 
disk I/O

– Graphics support

• With 4 sequencers, a CM 
viewed as 4 independent 
smaller CMs
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CM-2 ISA
• Notion of virtual processors (VPs)

– VPs are independent of # of PEs in the machine
– If VPs > PEs, then multiple VPs mapped to each PE

• System transparently splits memory per PE, does routing, etc.

• Notion of current context
– A context flag in each PE identifies those participating in 

computation
• Used to execute conditional statements

• A very rich vector instruction set
– Instructions mostly memory-to-memory
– Standard set of scalar operations
– Intra-PE vector instructions (vector within each PE)
– Inter-PE vector instructions (each PE has one element of the vector)

• Global reductions, regular scans, segmented scans 
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Example of CM-2 Vector Insts

• global-s-add: reduction operator to return sum of 
all elements in a vector

• s-add-scan: parallel-prefix operation, replacing 
each vector item with sum of all items preceding it

• segmented-s-add-scan: parallel-prefix done on 
segments of an array
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Inter-PE Communication in CM-2

• Underlying topology is 2-ary 12-cube
– A general router: all  PEs may concurrently send/receive 

messages to/from other PEs

• Can impose a simpler grid (256-ary 2-cube or 16-ary 4-
cube) on top of it for fast local communication

• Global communication
– Fetch/store: assume only one PE storing to any given destn

– Get/send: multiple PEs may request from or send to a given 
dstn

• Network does combining

• E.g., send-with-s-max: only max value stored at destn
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Graphics Processing Unit (GPU)

• An architecture for compute-intensive, highly data-
parallel computation

– exactly what graphics rendering is about
– Transistors can be devoted to data processing rather than 

data caching and flow control

• The fast-growing video game industry exerts strong 
economic pressure that forces constant innovation

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU
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Data Parallelism in GPUs

• GPUs take advantage of massive DLP to provide very high 
FLOP rates

– More than 1 Tera DP FLOP in NVIDIA GK110

• “SIMT” execution model
– Single instruction multiple threads
– Trying to distinguish itself from both “vectors” and “SIMD”
– A key difference: better support for conditional control flow

• Program it with CUDA or OpenCL
– Extensions to C
– Perform a “shader task” (a snippet of scalar computation) over 

many elements
– Internally, GPU uses scatter/gather and vector-mask like 

operations
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Context: History of Programming GPUs

• “GPGPU”
– Originally could only perform “shader” computations on images
– So, programmers started using this framework for computation
– Puzzle to work around the limitations, unlock the raw potential

• As GPU designers notice this trend…
– Hardware provided more “hooks” for computation
– Provided some limited software tools

• GPU designs are now fully embracing compute
– More programmability features in each generation
– Industrial-strength tools, documentation, tutorials, etc.
– Can be used for in-game physics, etc.
– A major initiative to push GPUs beyond graphics (HPC)
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Latency Hiding with “Thread Warps”

• Warp: A set of threads that 
execute the same instruction 
(on different data elements)

• Fine-grained multithreading
– One instruction per thread in 

pipeline at a time (No branch 
prediction)

– Interleave warp execution to hide 
latencies

• Register values of all threads 
stay in register file

• No OS context switching

• Memory latency hiding
– Graphics has millions of pixels
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Slide credit: Tor Aamodt
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Warp-based SIMD vs. Traditional SIMD

• Traditional SIMD contains a single thread 
– Lock step

– Programming model is SIMD (no threads)  SW needs to know vector 
length

– ISA contains vector/SIMD instructions

• Warp-based SIMD consists of multiple scalar threads executing in 
a SIMD manner (i.e., same instruction executed by all threads)

– Does not have to be lock step

– Each thread can be treated individually (i.e., placed in a different 
warp)  programming model not SIMD

• SW does not need to know vector length

• Enables memory and branch latency tolerance

– ISA is scalar  vector instructions formed dynamically
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CUDA
• C-extension programming language

• Function types
– Device code (kernel) : run on the GPU
– Host code: run on the CPU and calls device programs

• Extensions / API
– Function type : __global__, __device__, __host__
– Variable type : __shared__, __constant__
– cudaMalloc(), cudaFree(), cudaMemcpy(),…
– __syncthread(), atomicAdd(),…

__global__ void saxpy(int n, float a, float *x, float *y) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

// Perform SAXPY on with 512 threads/block

int block_cnt = (N + 511) / 512;

saxpy<<<block_cnt,512>>>(N, 2.0, x, y);

Device

Code

Host

Code
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CUDA Software Model

• A kernel is executed as a grid of 
thread blocks

– Per-thread register and local-
memory space

– Per-block shared-memory space
– Shared global memory space

• Blocks are considered
cooperating arrays of threads

– Share memory
– Can synchronize

• Blocks within a grid are 
independent

– can execute concurrently
– No cooperation across blocks
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Compiling CUDA

• nvcc
– Compiler driver

– Invoke cudacc, g++, cl

• PTX
– Parallel Thread eXecution

NVCC

C/C++ CUDA

Application

PTX to Target

Compiler

G80 … GPU 

Target code

PTX Code

CPU Code

ld.global.v4.f32  {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32           $f1, $f5, $f3, $f1;

Courtesy NVIDIA



Fall 2015 :: CSE 610 – Parallel Computer Architectures

CUDA Hardware Model

• Follows the software model closely

• Each thread block executed by a single multiprocessor
– Synchronized using shared memory

• Many thread blocks assigned to a single multiprocessor
– Executed concurrently in a time-sharing fashion

– Keep GPU as busy as possible 

• Running many threads in parallel can hide DRAM 
memory latency

– Global memory access : 2~300 cycles
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Example: NVIDIA Kepler GK110

• 15 SMX processors, shared L2, 6 memory controllers
– 1 TFLOP dual-precision FP

• HW thread scheduling
– No OS involvement in scheduling

Source: NVIDIA’s Next Generation CUDA

Compute Architecture: Kepler GK110



Fall 2015 :: CSE 610 – Parallel Computer Architectures

Streaming Multiprocessor (SMX)

• Capabilities
– 64K registers

– 192 simple cores
• Int and SP FPU

– 64 DP FPUs

– 32 LD/ST Units (LSU)

– 32 Special Function Units 
(FSU)

• Warp Scheduling
– 4 independent warp 

schedulers

– 2 inst dispatch per warp Source: NVIDIA’s Next Generation CUDA Compute 

Architecture: Kepler GK110
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Warp Scheduling
• 64 warps per SMX

– 32 threads per warp
– 64K registers/SMX
– Up to 255 registers per thread

• Scheduling 
– 4 schedulers select 1 warp per cycle each
– 2 independent instructions issued per warp
– Total bandwidth = 4 * 2 * 32 = 256 ops/cycle

• Register scoreboarding
– To track ready instructions for long latency 

ops (texture and load)
– Simplified using static latencies

• Compiler handles scheduling for fixed-latency 
ops

– Binary incompatibility? 

Source: NVIDIA’s Next Generation CUDA Compute 

Architecture: Kepler GK110
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Memory Hierarchy
• Each SMX has 64KB of memory

– Split between shared mem and L1 cache
• 16/48, 32/32, 48/16

– 256B per access

• 48KB read-only data cache
– Compiler controlled

• 1.5MB shared L2

• Support for atomic operations
– atomicCAS, atomicADD, …

• Throughput-oriented main memory
– Memory coalescing
– GDDR standards

• Very wide channels: 256 bit vs. 64 bit for DDR
• Lower clock rate than  DDR

Source: NVIDIA’s Next Generation CUDA 

Compute Architecture: Kepler GK110


