
Fall 2015 :: CSE 610 – Parallel Computer Architectures

Data-Level
Parallelism

Nima Honarmand

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Overview

• Data Parallelism vs. Control Parallelism
– Data Parallelism: parallelism arises from executing essentially

the same code on a large number of objects

– Control Parallelism: parallelism arises from executing
different threads of control concurrently

• Hypothesis: applications that use massively parallel
machines will mostly exploit data parallelism

– Common in the Scientific Computing domain

• DLP originally linked with SIMD machines; now SIMT is
more common

– SIMD: Single Instruction Multiple Data

– SIMT: Single Instruction Multiple Threads

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Overview

• Many incarnations of DLP architectures over decades
– Old vector processors

• Cray processors: Cray-1, Cray-2, …, Cray X1

– SIMD extensions
• Intel SSE and AVX units

• Alpha Tarantula (didn’t see light of day )

– Old massively parallel computers
• Connection Machines

• MasPar machines

– Modern GPUs
• NVIDIA, AMD, Qualcomm, …

• Focus of throughput rather than latency

Vector Processors

 Scalar processors operate on single numbers (scalars)

 Vector processors operate on linear sequences of
numbers (vectors)

+

r1 r2

r3

add r3, r1, r2

SCALAR

(1 operation)

v1 v2

v3

+

vector

length

vadd.vv v3, v1, v2

VECTOR

(N operations)

4

6.888 Spring 2013 - Sanchez and Emer - L14

What’s in a Vector Processor?

 A scalar processor (e.g. a MIPS processor)

 Scalar register file (32 registers)

 Scalar functional units (arithmetic, load/store, etc)

 A vector register file (a 2D register array)

 Each register is an array of elements

 E.g. 32 registers with 32 64-bit elements per register

 MVL = maximum vector length = max # of elements per register

 A set of vector functional units

 Integer, FP, load/store, etc

 Some times vector and scalar units are combined (share ALUs)

5

6.888 Spring 2013 - Sanchez and Emer - L14

Example of Simple

Vector Processor 6

6.888 Spring 2013 - Sanchez and Emer - L14

Basic Vector ISA

Instr. Operands Operation Comment

VADD.VV V1,V2,V3 V1=V2+V3 vector + vector

VADD.SV V1,R0,V2 V1=R0+V2 scalar + vector

VMUL.VV V1,V2,V3 V1=V2*V3 vector x vector

VMUL.SV V1,R0,V2 V1=R0*V2 scalar x vector

VLD V1,R1 V1=M[R1...R1+63] load, stride=1

VLDS V1,R1,R2 V1=M[R1…R1+63*R2] load, stride=R2

VLDX V1,R1,V2 V1=M[R1+V2i,i=0..63] indexed("gather")

VST V1,R1 M[R1...R1+63]=V1 store, stride=1

VSTS V1,R1,R2 V1=M[R1...R1+63*R2] store, stride=R2

VSTX V1,R1,V2 V1=M[R1+V2i,i=0..63] indexed(“scatter")

+ regular scalar instructions…

7

6.888 Spring 2013 - Sanchez and Emer - L14

Advantages of Vector ISAs

 Compact: single instruction defines N operations

 Amortizes the cost of instruction fetch/decode/issue

 Also reduces the frequency of branches

 Parallel: N operations are (data) parallel

 No dependencies

 No need for complex hardware to detect parallelism (similar to VLIW)

 Can execute in parallel assuming N parallel datapaths

 Expressive: memory operations describe patterns

 Continuous or regular memory access pattern

 Can prefetch or accelerate using wide/multi-banked memory

 Can amortize high latency for 1st element over large sequential pattern

8

6.888 Spring 2013 - Sanchez and Emer - L14

Vector Length (VL)
9

 Basic: Fixed vector length (typical in narrow SIMD)

 Is this efficient for wide SIMD (e.g., 32-wide vectors)?

 Vector-length (VL) register: Control the length of any vector operation,

including vector loads and stores

 e.g. vadd.vv with VL=10  for (i=0; i<10; i++) V1[i]=V2[i]+V3[i]

 VL can be set up to MVL (e.g., 32)

 How to do vectors > MVL?

 What if VL is unknown at compile time?

6.888 Spring 2013 - Sanchez and Emer - L14

Optimization 1: Chaining

 Suppose the following code with VL=32:

vmul.vv V1,V2,V3

vadd.vv V4,V1,V5 # very long RAW hazard

 Chaining

 V1 is not a single entity but a group of individual elements

 Pipeline forwarding can work on an element basis

 Flexible chaining: allow vector to chain to any other active vector

operation => more read/write ports

vadd

vmul vadd

vmul

Unchained

Chained

10

6.888 Spring 2013 - Sanchez and Emer - L14

Optimization 2: Multiple Lanes

 Modular, scalable design

 Elements for each vector register interleaved across the lanes

 Each lane receives identical control

 Multiple element operations executed per cycle

 No need for inter-lane communication for most vector instructions

To/From Memory System

Pipelined

Datapath

Functional

Unit

Lane

Vector Reg.

Partition
Elements Elements Elements Elements

11

6.888 Spring 2013 - Sanchez and Emer - L14

Chaining & Multi-lane Example

VL=16, 4 lanes,

2 FUs, 1 LSU

chaining -> 12
ops/cycle

Just 1 new

instruction

issued per cycle

!!!!

vld

vmul.vv

vadd.vv

addu

vld

vmul.vv

vadd.vv

addu

LSU FU0 FU1Scalar

Time

Element Operations: Instr. Issue:

12

6.888 Spring 2013 - Sanchez and Emer - L14

Optimization 3: Conditional Execution

 Suppose you want to vectorize this:

for (i=0; i<N; i++) if (A[i]!= B[i]) A[i] -= B[i];

 Solution: Vector conditional execution (predication)

 Add vector flag registers with single-bit elements (masks)

 Use a vector compare to set the a flag register

 Use flag register as mask control for the vector sub

 Add executed only for vector elements with corresponding flag element set

 Vector code

vld V1, Ra

vld V2, Rb

vcmp.neq.vv M0, V1, V2 # vector compare

vsub.vv V3, V2, V1, M0 # conditional vadd

vst V3, Ra

13

6.888 Spring 2013 - Sanchez and Emer - L14

SIMD: Intel Xeon Phi (Knights Corner)

 A multi-core chip with x86-based vector processors

 Ring interconnect, private L2 caches, coherent

 Targeting the HPC market

 Goal: high GFLOPS, GFLOPS/Watt

PCIe

Client

Logic

Core

L2

Core

L2

Core

L2

Core

L2

TD TD TD TD

Core

L2

Core

L2

Core

L2

Core

L2

TDTDTDTD
GDDR MC

GDDR MC

GDDR MC

GDDR MC

14

6.888 Spring 2013 - Sanchez and Emer - L14

Xeon Phi Core Design

 4-way threaded + vector processing

 In-order (why?), short pipeline

 Vector ISA: 32 vector registers (512b), 8 mask registers,
scatter/gather

L2 Ctl

L1 TLB

and 32KB

Code Cache

T0 IP

4 Threads

In-Order

TLB Miss

Code Cache Miss

Decode uCode

16B/Cycle (2 IPC)

Pipe 0

X87 RF Scalar RF

X87 ALU 0 ALU 1

VPU RF

VPU

512b SIMD

Pipe 1

TLB Miss

Handler

L2 TLB

T1 IP

T2 IP

T3 IP

L1 TLB and 32KB Data Cache
DCache Miss

TLB Miss

To On-Die Interconnect

HWP

Core

512KB

L2 Cache

PPF PF D0 D1 D2 E WB

15

6.888 Spring 2013 - Sanchez and Emer - L14

Fall 2015 :: CSE 610 – Parallel Computer Architectures

An Old Massively Parallel Computer:
Connection Machine

• Originally intended for AI applications, later used for
scientific computing

• CM-2 major components
– Parallel Processing Unit (PPU)

• 16-64K bit-serial processing elements (PEs), each with 8KB of
memory

• 20us for a 32-bit add → 3000 MIPS with 64K PEs

• Optional FPUs, 1 shared by 32 PEs

• Hypercube interconnect between PEs with support for combining
operations

– 1-4 instruction sequencers

Fall 2015 :: CSE 610 – Parallel Computer Architectures

The Connection Machine (CM-2)

• 1-4 Front-End Computers
– PPU was a peripheral

• Sophisticated I/O system
– 256-bit wide I/O channel for

every 8K PEs
– Data vault (39 disks, data +

ECC) for high-performance
disk I/O

– Graphics support

• With 4 sequencers, a CM
viewed as 4 independent
smaller CMs

Fall 2015 :: CSE 610 – Parallel Computer Architectures

CM-2 ISA
• Notion of virtual processors (VPs)

– VPs are independent of # of PEs in the machine
– If VPs > PEs, then multiple VPs mapped to each PE

• System transparently splits memory per PE, does routing, etc.

• Notion of current context
– A context flag in each PE identifies those participating in

computation
• Used to execute conditional statements

• A very rich vector instruction set
– Instructions mostly memory-to-memory
– Standard set of scalar operations
– Intra-PE vector instructions (vector within each PE)
– Inter-PE vector instructions (each PE has one element of the vector)

• Global reductions, regular scans, segmented scans

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Example of CM-2 Vector Insts

• global-s-add: reduction operator to return sum of
all elements in a vector

• s-add-scan: parallel-prefix operation, replacing
each vector item with sum of all items preceding it

• segmented-s-add-scan: parallel-prefix done on
segments of an array

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Inter-PE Communication in CM-2

• Underlying topology is 2-ary 12-cube
– A general router: all PEs may concurrently send/receive

messages to/from other PEs

• Can impose a simpler grid (256-ary 2-cube or 16-ary 4-
cube) on top of it for fast local communication

• Global communication
– Fetch/store: assume only one PE storing to any given destn

– Get/send: multiple PEs may request from or send to a given
dstn

• Network does combining

• E.g., send-with-s-max: only max value stored at destn

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Graphics Processing Unit (GPU)

• An architecture for compute-intensive, highly data-
parallel computation

– exactly what graphics rendering is about
– Transistors can be devoted to data processing rather than

data caching and flow control

• The fast-growing video game industry exerts strong
economic pressure that forces constant innovation

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Data Parallelism in GPUs

• GPUs take advantage of massive DLP to provide very high
FLOP rates

– More than 1 Tera DP FLOP in NVIDIA GK110

• “SIMT” execution model
– Single instruction multiple threads
– Trying to distinguish itself from both “vectors” and “SIMD”
– A key difference: better support for conditional control flow

• Program it with CUDA or OpenCL
– Extensions to C
– Perform a “shader task” (a snippet of scalar computation) over

many elements
– Internally, GPU uses scatter/gather and vector-mask like

operations

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Context: History of Programming GPUs

• “GPGPU”
– Originally could only perform “shader” computations on images
– So, programmers started using this framework for computation
– Puzzle to work around the limitations, unlock the raw potential

• As GPU designers notice this trend…
– Hardware provided more “hooks” for computation
– Provided some limited software tools

• GPU designs are now fully embracing compute
– More programmability features in each generation
– Industrial-strength tools, documentation, tutorials, etc.
– Can be used for in-game physics, etc.
– A major initiative to push GPUs beyond graphics (HPC)

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Latency Hiding with “Thread Warps”

• Warp: A set of threads that
execute the same instruction
(on different data elements)

• Fine-grained multithreading
– One instruction per thread in

pipeline at a time (No branch
prediction)

– Interleave warp execution to hide
latencies

• Register values of all threads
stay in register file

• No OS context switching

• Memory latency hiding
– Graphics has millions of pixels

Decode

R
F

R
F

R
F

A
LU

A
LU

A
LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Warp-based SIMD vs. Traditional SIMD

• Traditional SIMD contains a single thread
– Lock step

– Programming model is SIMD (no threads)  SW needs to know vector
length

– ISA contains vector/SIMD instructions

• Warp-based SIMD consists of multiple scalar threads executing in
a SIMD manner (i.e., same instruction executed by all threads)

– Does not have to be lock step

– Each thread can be treated individually (i.e., placed in a different
warp)  programming model not SIMD

• SW does not need to know vector length

• Enables memory and branch latency tolerance

– ISA is scalar  vector instructions formed dynamically

Fall 2015 :: CSE 610 – Parallel Computer Architectures

CUDA
• C-extension programming language

• Function types
– Device code (kernel) : run on the GPU
– Host code: run on the CPU and calls device programs

• Extensions / API
– Function type : __global__, __device__, __host__
– Variable type : __shared__, __constant__
– cudaMalloc(), cudaFree(), cudaMemcpy(),…
– __syncthread(), atomicAdd(),…

__global__ void saxpy(int n, float a, float *x, float *y) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

// Perform SAXPY on with 512 threads/block

int block_cnt = (N + 511) / 512;

saxpy<<<block_cnt,512>>>(N, 2.0, x, y);

Device

Code

Host

Code

Fall 2015 :: CSE 610 – Parallel Computer Architectures

CUDA Software Model

• A kernel is executed as a grid of
thread blocks

– Per-thread register and local-
memory space

– Per-block shared-memory space
– Shared global memory space

• Blocks are considered
cooperating arrays of threads

– Share memory
– Can synchronize

• Blocks within a grid are
independent

– can execute concurrently
– No cooperation across blocks

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Compiling CUDA

• nvcc
– Compiler driver

– Invoke cudacc, g++, cl

• PTX
– Parallel Thread eXecution

NVCC

C/C++ CUDA

Application

PTX to Target

Compiler

G80 … GPU

Target code

PTX Code

CPU Code

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

Courtesy NVIDIA

Fall 2015 :: CSE 610 – Parallel Computer Architectures

CUDA Hardware Model

• Follows the software model closely

• Each thread block executed by a single multiprocessor
– Synchronized using shared memory

• Many thread blocks assigned to a single multiprocessor
– Executed concurrently in a time-sharing fashion

– Keep GPU as busy as possible

• Running many threads in parallel can hide DRAM
memory latency

– Global memory access : 2~300 cycles

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Example: NVIDIA Kepler GK110

• 15 SMX processors, shared L2, 6 memory controllers
– 1 TFLOP dual-precision FP

• HW thread scheduling
– No OS involvement in scheduling

Source: NVIDIA’s Next Generation CUDA

Compute Architecture: Kepler GK110

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Streaming Multiprocessor (SMX)

• Capabilities
– 64K registers

– 192 simple cores
• Int and SP FPU

– 64 DP FPUs

– 32 LD/ST Units (LSU)

– 32 Special Function Units
(FSU)

• Warp Scheduling
– 4 independent warp

schedulers

– 2 inst dispatch per warp Source: NVIDIA’s Next Generation CUDA Compute

Architecture: Kepler GK110

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Warp Scheduling
• 64 warps per SMX

– 32 threads per warp
– 64K registers/SMX
– Up to 255 registers per thread

• Scheduling
– 4 schedulers select 1 warp per cycle each
– 2 independent instructions issued per warp
– Total bandwidth = 4 * 2 * 32 = 256 ops/cycle

• Register scoreboarding
– To track ready instructions for long latency

ops (texture and load)
– Simplified using static latencies

• Compiler handles scheduling for fixed-latency
ops

– Binary incompatibility?

Source: NVIDIA’s Next Generation CUDA Compute

Architecture: Kepler GK110

Fall 2015 :: CSE 610 – Parallel Computer Architectures

Memory Hierarchy
• Each SMX has 64KB of memory

– Split between shared mem and L1 cache
• 16/48, 32/32, 48/16

– 256B per access

• 48KB read-only data cache
– Compiler controlled

• 1.5MB shared L2

• Support for atomic operations
– atomicCAS, atomicADD, …

• Throughput-oriented main memory
– Memory coalescing
– GDDR standards

• Very wide channels: 256 bit vs. 64 bit for DDR
• Lower clock rate than DDR

Source: NVIDIA’s Next Generation CUDA

Compute Architecture: Kepler GK110

