
Fall 2015 :: CSE 610 ɀParallel Computer Architectures

Data-Level
Parallelism

Nima Honarmand

Fall 2015 :: CSE 610 ɀParallel Computer Architectures

Overview

ÅData Parallelism vs. Control Parallelism
ςData Parallelism: parallelism arises from executing essentially

the same code on a large number of objects

ςControl Parallelism: parallelism arises from executing
different threads of control concurrently

ÅHypothesis: applications that use massively parallel
machines will mostly exploit data parallelism
ςCommon in the Scientific Computing domain

ÅDLP originally linked with SIMD machines; now SIMT is
more common
ςSIMD: Single Instruction Multiple Data

ςSIMT: Single Instruction Multiple Threads

Fall 2015 :: CSE 610 ɀParallel Computer Architectures

Overview

ÅMany incarnations of DLP architectures over decades
ςOld vector processors
ÅCray processors: Cray-1, Cray-нΣ ΧΣ /Ǌŀȅ ·м

ςSIMD extensions
ÅIntel SSE and AVX units

Å!ƭǇƘŀ ¢ŀǊŀƴǘǳƭŀ όŘƛŘƴΩǘ ǎŜŜ ƭƛƎƘǘ ƻŦ Řŀȅ L)

ςOld massively parallel computers
ÅConnection Machines

ÅMasParmachines

ςModern GPUs
Åb±L5L!Σ !a5Σ vǳŀƭŎƻƳƳΣ Χ

ÅFocus of throughput rather than latency

Vector Processors

Ã Scalar processors operate on single numbers (scalars)

Ã Vector processors operate on linear sequences of
numbers (vectors)

+

r1 r2

r3

add r3, r1, r2

SCALAR

(1 operation)

v1 v2

v3

+

vector

length

vadd.vv v3, v1, v2

VECTOR

(N operations)

4

6.888 Spring 2013 - Sanchez and Emer - L14

Whatõs in a Vector Processor?

Ã A scalar processor (e.g. a MIPS processor)

Ä Scalar register file (32 registers)

Ä Scalar functional units (arithmetic, load/store, etc)

Ã A vector register file (a 2D register array)

Ä Each register is an array of elements

Â E.g. 32 registers with 32 64-bit elements per register

Ä MVL = maximum vector length = max # of elements per register

Ã A set of vector functional units

Ä Integer, FP, load/store, etc

Ä Some times vector and scalar units are combined (share ALUs)

5

6.888 Spring 2013 - Sanchez and Emer - L14

Example of Simple

Vector Processor 6

6.888 Spring 2013 - Sanchez and Emer - L14

Basic Vector ISA

Instr. Operands Operation Comment

VADD.VV V1,V2,V3 V1=V2+V3 vector + vector

VADD.SV V1, R0,V2 V1=R0+V2 scalar + vector

VMUL.VV V1,V2,V3 V1=V2*V3 vector x vector

VMUL.SV V1,R0,V2 V1=R0*V2 scalar x vector

VLD V1,R1 V1=M[R1...R1+63] load, stride=1

VLDS V1,R1, R2 V1=M[R1éR1+63*R2] load, stride=R2

VLDX V1,R1, V2 V1=M[R1+V2i,i=0..63] indexed("gather")

VST V1,R1 M[R1...R1+63]=V1 store, stride=1

VSTS V1,R1, R2 V1=M[R1...R1+63*R2] store, stride=R2

VSTX V1,R1, V2 V1=M[R1+V2i,i=0..63] indexed(òscatter")

+ regular scalar instructionsé

7

6.888 Spring 2013 - Sanchez and Emer - L14

Advantages of Vector ISAs

Ã Compact: single instruction defines N operations

Ä Amortizes the cost of instruction fetch/decode/issue

Ä Also reduces the frequency of branches

Ã Parallel: N operations are (data) parallel

Ä No dependencies

Ä No need for complex hardware to detect parallelism (similar to VLIW)

Ä Can execute in parallel assuming N parallel datapaths

Ã Expressive: memory operations describe patterns

Ä Continuous or regular memory access pattern

Ä Can prefetchor accelerate using wide/multi-banked memory

Ä Can amortize high latency for 1st element over large sequential pattern

8

6.888 Spring 2013 - Sanchez and Emer - L14

Vector Length (VL)
9

Ã Basic: Fixed vector length (typical in narrow SIMD)

Ä Is this efficient for wide SIMD (e.g., 32-wide vectors)?

Ã Vector-length (VL) register: Control the length of any vector operation,

including vector loads and stores

Ä e.g. vadd.vvwith VL=10 ăĄ for (i=0; i<10; i++) V1[i]=V2[i]+V3[i]

Ä VL can be set up to MVL (e.g., 32)

Ä How to do vectors > MVL?

Ä What if VL is unknown at compile time?

6.888 Spring 2013 - Sanchez and Emer - L14

Optimization 1: Chaining

Ã Suppose the following code with VL=32:

vmul.vv V1,V2,V3

vadd.vv V4,V1,V5 # very long RAW hazard

Ã Chaining

Ä V1 is not a single entity but a group of individual elements

Ä Pipeline forwarding can work on an element basis

Ã Flexible chaining: allow vector to chain to any other active vector

operation => more read/write ports

vadd

vmul vadd

vmul

Unchained

Chained

10

6.888 Spring 2013 - Sanchez and Emer - L14

Optimization 2:Multiple Lanes

Ã Modular, scalable design

Ä Elements for each vector register interleaved across the lanes

Ä Each lane receives identical control

Ä Multiple element operations executed per cycle

Ä No need for inter-lane communication for most vector instructions

To/From Memory System

Pipelined

Datapath

Functional

Unit

Lane

Vector Reg.

Partition
Elements Elements Elements Elements

11

6.888 Spring 2013 - Sanchez and Emer - L14

Chaining & Multi-lane Example

VL=16, 4 lanes,

2 FUs, 1 LSU

chaining -> 12
ops/cycle

Just 1 new

instruction

issued per cycle

!!!!

vld

vmul.vv

vadd.vv

addu

vld

vmul.vv

vadd.vv

addu

LSU FU0 FU1Scalar

Time

Element Operations: Instr. Issue:

12

6.888 Spring 2013 - Sanchez and Emer - L14

Optimization 3: Conditional Execution

Ã Suppose you want to vectorizethis:

for (i =0; i <N; i ++) if (A[i]!= B[i]) A[i] - = B[i];

Ã Solution: Vector conditional execution (predication)

Ä Add vector flag registers with single-bit elements (masks)

Ä Use a vector compare to set the a flag register

Ä Use flag register as mask control for the vector sub

Â Add executed only for vector elements with corresponding flag element set

Ã Vector code

vld V1, Ra

vld V2, Rb

vcmp.neq.vv M0, V1, V2 # vector compare

vsub.vv V3, V2, V1, M0 # conditional vadd

vst V3, Ra

13

6.888 Spring 2013 - Sanchez and Emer - L14

SIMD: Intel Xeon Phi (Knights Corner)

Ã A multi-core chip with x86-based vector processors

Ä Ring interconnect, private L2 caches, coherent

Ã Targeting the HPC market

Ä Goal: high GFLOPS, GFLOPS/Watt

PCIe

Client

Logic

Core

L2

Core

L2

Core

L2

Core

L2

TD TD TD TD

Core

L2

Core

L2

Core

L2

Core

L2

TDTDTDTD
GDDR MC

GDDR MC

GDDR MC

GDDR MC

14

6.888 Spring 2013 - Sanchez and Emer - L14

Xeon Phi Core Design

Ã 4-way threaded + vector processing

Ã In-order (why?), short pipeline

Ã Vector ISA: 32 vector registers (512b), 8 mask registers,
scatter/gather

L2 Ctl

L1 TLB

and 32KB

Code Cache

T0 IP

4 Threads

In-Order

TLB Miss

Code Cache Miss

Decode uCode

16B/Cycle (2 IPC)

Pipe 0

X87 RF Scalar RF

X87 ALU 0 ALU 1

VPU RF

VPU

512b SIMD

Pipe 1

TLB Miss

Handler

L2 TLB

T1 IP

T2 IP

T3 IP

L1 TLB and 32KB Data Cache
DCache Miss

TLB Miss

To On-Die Interconnect

HWP

Core

512KB

L2 Cache

PPF PF D0 D1 D2 E WB

15

6.888 Spring 2013 - Sanchez and Emer - L14

Fall 2015 :: CSE 610 ɀParallel Computer Architectures

An Old Massively Parallel Computer:
Connection Machine

ÅOriginally intended for AI applications, later used for
scientific computing

ÅCM-2 major components
ςParallel Processing Unit (PPU)
Å16-64K bit-serial processing elements (PEs), each with 8KB of

memory

Å20us for a 32-ōƛǘ ŀŘŘ Ҧ оллл aLt{ ǿƛǘƘ спY t9ǎ

Å Optional FPUs, 1 shared by 32 PEs

ÅHypercube interconnect between PEs with support for combining
operations

ς1-4 instruction sequencers

Fall 2015 :: CSE 610 ɀParallel Computer Architectures

The Connection Machine (CM-2)

Å1-4 Front-End Computers
ςPPU was a peripheral

ÅSophisticated I/O system
ς256-bit wide I/O channel for

every 8K PEs
ςData vault (39 disks, data +

ECC) for high-performance
disk I/O
ςGraphics support

ÅWith 4 sequencers, a CM
viewed as 4 independent
smaller CMs

Fall 2015 :: CSE 610 ɀParallel Computer Architectures

CM-2 ISA
ÅNotion of virtual processors (VPs)
ςVPs are independent of # of PEs in the machine
ςIf VPs > PEs, then multiple VPs mapped to each PE
ÅSystem transparently splits memory per PE, does routing, etc.

ÅNotion of current context
ςA context flag in each PE identifies those participating in

computation
ÅUsed to execute conditional statements

ÅA very rich vector instruction set
ςInstructions mostly memory-to-memory
ςStandard set of scalar operations
ςIntra-PE vector instructions (vector within each PE)
ςInter-PE vector instructions (each PE has one element of the vector)
ÅGlobal reductions, regular scans, segmented scans

Fall 2015 :: CSE 610 ɀParallel Computer Architectures

Example of CM-2 Vector Insts

Åglobal - s- add : reduction operator to return sum of
all elements in a vector

Ås- add - scan : parallel-prefix operation, replacing
each vector item with sum of all items preceding it

Åsegmented - s- add - scan : parallel-prefix done on
segments of an array

Fall 2015 :: CSE 610 ɀParallel Computer Architectures

Inter -PE Communication in CM-2

ÅUnderlying topology is 2-ary 12-cube
ςA general router: all PEs may concurrently send/receive

messages to/from other PEs

ÅCan impose a simpler grid (256-ary 2-cube or 16-ary 4-
cube) on top of it for fast local communication

ÅGlobal communication
ςFetch/store: assume only one PE storing to any given destn

ςGet/send: multiple PEs may request from or send to a given
dstn
ÅNetwork does combining

ÅE.g., send-with-s-max: only max value stored at destn

Fall 2015 :: CSE 610 ɀParallel Computer Architectures

Graphics Processing Unit (GPU)

ÅAn architecture for compute-intensive, highly data-
parallel computation
ςexactly what graphics rendering is about
ςTransistors can be devoted to data processing rather than

data caching and flow control

ÅThe fast-growing video game industry exerts strong
economic pressure that forces constant innovation

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

Fall 2015 :: CSE 610 ɀParallel Computer Architectures

Data Parallelism in GPUs

ÅGPUs take advantage of massive DLP to provide very high
FLOP rates
ςMore than 1 TeraDP FLOP in NVIDIA GK110

Åά{La¢έ ŜȄŜŎǳǘƛƻƴ ƳƻŘŜƭ
ςSingle instruction multiple threads
ς¢ǊȅƛƴƎ ǘƻ ŘƛǎǘƛƴƎǳƛǎƘ ƛǘǎŜƭŦ ŦǊƻƳ ōƻǘƘ άǾŜŎǘƻǊǎέ ŀƴŘ ά{La5έ
ςA key difference: better support for conditional control flow

ÅProgram it with CUDA or OpenCL
ςExtensions to C
ςtŜǊŦƻǊƳ ŀ άshaderǘŀǎƪέ όŀ ǎƴƛǇǇŜǘ ƻŦ ǎŎŀƭŀǊ ŎƻƳǇǳǘŀǘƛƻƴύ ƻǾŜǊ

many elements
ςInternally, GPU uses scatter/gather and vector-mask like

operations

Fall 2015 :: CSE 610 ɀParallel Computer Architectures

Context: History of Programming GPUs

ÅάDtDt¦έ
ςOriginally could only ǇŜǊŦƻǊƳ άshaderέ ŎƻƳǇǳǘŀǘƛƻƴǎ ƻƴ ƛƳŀƎŜǎ
ςSo, programmers started using this framework for computation
ςPuzzle to work around the limitations, unlock the raw potential

Å!ǎ Dt¦ ŘŜǎƛƎƴŜǊǎ ƴƻǘƛŎŜ ǘƘƛǎ ǘǊŜƴŘΧ
ςIŀǊŘǿŀǊŜ ǇǊƻǾƛŘŜŘ ƳƻǊŜ άƘƻƻƪǎέ ŦƻǊ ŎƻƳǇǳǘŀǘƛƻƴ
ςProvided some limited software tools

ÅGPU designs are now fully embracing compute
ςMore programmability features in each generation
ςIndustrial-strength tools, documentation, tutorials, etc.
ςCan be used for in-game physics, etc.
ςA major initiative to push GPUs beyond graphics (HPC)

