Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\\ Stony Brook University

Data-Level
Parallelism

Nima Honarmand



/IS — S SE————
Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\\ Stony Brook University

Overview

e Data Parallelism vs. Control Parallelism

— Data Parallelism: parallelism arises from executing essentially
the same code on a large number of objects

— Control Parallelism: parallelism arises from executing
different threads of control concurrently

* Hypothesis: applications that use massively parallel
machines will mostly exploit data parallelism

— Common in the Scientific Computing domain

* DLP originally linked with SIMD machines; now SIMT is
more common

— SIMD: Single Instruction Multiple Data
— SIMT: Single Instruction Multiple Threads



/IS — S SE————
Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\\ Stony Brook University

Overview

 Many incarnations of DLP architectures over decades
— Old vector processors
* Cray processors: Cray-1, Cray-2, ..., Cray X1
— SIMD extensions
* Intel SSE and AVX units
* Alpha Tarantula (didn’t see light of day ®)
— Old massively parallel computers
* Connection Machines
* MasPar machines

— Modern GPUs
 NVIDIA, AMD, Qualcomm, ...

* Focus of throughput rather than latency



Vector Processors

SCALAR VECTOR

(1 operation) (N operations)

rl| |r2
N/

?

r3

add r3, rl, r2 vadd.vv v3, vl, v2

Scalar processors operate on single numbers (scalars)

Vector processors operate on linear sequences of
numbers (vectors)

6.888 Spring 2013 - Sanchez and Emer - L14



What’s in a Vector Processor?

A scalar processor (e.g. a MIPS processor)
Scalar register file (32 registers)

Scalar functional units (arithmetic, load /store, etc)

A vector register file (a 2D register array)

Each register is an array of elements

E.g. 32 registers with 32 64-bit elements per register

MVL = maximum vector length = max # of elements per register

A set of vector functional units
Integer, FP, load/store, etc

Some times vector and scalar units are combined (share ALUs)

6.888 Spring 2013 - Sanchez and Emer - L14



Example of Simple
Vector Processor

Main memary

Vector __| FP add/subtract
load-store
. FP muiltiply '—b-
* | FP divide .——
E—
- I
Vector - Int
registers — meagy
————— -
| Logical .—'-

Scalar
registers

6.888 Spring 2013 - Sanchez and Emer - L14



Basic Vector ISA

Instr.
VADD

VADD.

VMUL

VLD
VLDS
VLDX
VST
VSTS
VSTX

.VV

SV

. VV
VMUL.

SV

Operands

v1,V2,V3
V1,R0, V2
v1,V2,V3
Vv1,R0, V2
V1, R1

v1,R1,R2
Vv1,R1,V2
V1, R1

v1,R1,R2
v1,R1,V2

Operation

V1=V2+V3
V1=RO+V2
V1i=V2*V3

V1=R0O*V2
VI=M[R1...R1+63]
VI1=M[R1...RT1+63*R2]
V1=M[RT1+V2,,i=0..63]
M[R1..R1+63]=V1
VI=M[RT1...R1+63*R2]
V1=M[RT1+V2,,i=0..63]

+ regular scalar instructions...

Comment

vector + vector
scalar + vector
vector x vector
scalar x vector
load, stride=1
load, stride=R2
indexed("gather")
store, stride=1
store, stride=R2

indexed(“scatter")

6.888 Spring 2013 - Sanchez and Emer - L14



Advantages of Vector [SAs

Compact: single instruction defines N operations
Amortizes the cost of instruction fetch/decode /issue

Also reduces the frequency of branches

Parallel: N operations are (data) parallel
No dependencies
No need for complex hardware to detect parallelism (similar to VLIW)

Can execute in parallel assuming N parallel datapaths

Expressive: memory operations describe patterns
Continuous or regular memory access pattern
Can prefetch or accelerate using wide /multi-banked memory

Can amortize high latency for 1st element over large sequential pattern



Vector Length (VL)

Basic: Fixed vector length (typical in narrow SIMD)
s this efficient for wide SIMD (e.g., 32-wide vectors)?

Vector-length (VL) register: Control the length of any vector operation,
including vector loads and stores

e.g. vadd.vv with VL=10 & for (i=0; i<10; i++) V1[i]=V2[i]+V3]i]

VL can be set up to MVL (e.g., 32)

How to do vectors > MVL?

What if VL is unknown at compile time?

6.888 Spring 2013 - Sanchez and Emer - L14



Optimization 1: Chaining

10

Suppose the following code with VL=32:
vmul .vv vli,v2,V3
vadd.vv v4,V1,V5 # very long RAW hazard
Chaining
V1 is not a single entity but a group of individual elements
Pipeline forwarding can work on an element basis

Flexible chaining: allow vector to chain to any other active vector
operation => more reqd/wri’re ports

Unchained
vmul vadd
vmul
Chained
vadd

6.888 Spring 2013 - Sanchez and Emer - L14



Optimization 2: Multiple Lanes

--------------------

i Pipelined
ﬁ_ / \ ] R \ Datapath
7 \ 7 . B
Vector Reg.
Partiti Elements Elements Elements Elements
artition T T ‘ ‘
%? A g 7 g 7
v v

To/From Memory System

Modular, scalable design
Elements for each vector register interleaved across the lanes
Each lane receives identical control
Multiple element operations executed per cycle

No need for inter-lane communication for most vector instructions



Chaining & Multi-lane Example

12
Scalar LSU FUO FUT

VL=16, 4 lanes,
vid = 2 FUs, T LSU
vmul . vv —)
vadd.vv =) chaining -> 12
addu =0 ops/cycle

Time +1d =)

Just 1 new
vmul . vv — . .

Instruction
vadd.vv —)

issued per cycle

addu = 1

Element Operations: Instr. Issue: —)



Optimization 3: Conditional Execution

13

Suppose you want to vectorize this:
for (i=0; i<N; i++) if (A[i]'= B[i]) A[i] -= B[i];
Solution: Vector conditional execution (predication)

Add vector flag registers with single-bit elements (masks)

Use a vector compare to set the a flag register

Use flag register as mask control for the vector sub

Add executed only for vector elements with corresponding flag element set

Vector code

vld V1, Ra

vld V2, Rb

vcmp.neq.vv MO, V1, V2 # vector compare
vsub.vv v3, v2, Vl, MO # conditional wvadd

vst V3, Ra



SIMD: Intel Xeon Phi (Knights Corner)

Core Core Core Core
PCle - -~ | — - — —
Client L2 L2 L2 L2
Logic
[ |’ |’ |’ |’
GDDR M | L.1od |iod--|l1od |1Dd GDDR M§

|
GDDR M |C|J_‘ |C|J_‘ ICU_‘ |C|J_‘ GDDRMQ}

¢l

210D

¢l

210D

¢l

210D

¢l

210D

A multi-core chip with x86-based vector processors
Ring interconnect, private L2 caches, coherent

Targeting the HPC market
Goal: high GFLOPS, GFLOPS /Watt

6.888 Spring 2013 - Sanchez and Emer - L14



Xeon Phi Core Design

P—T—
X87 RF Scalar RF
X87 ALU O ALU 1

0 4-way threaded + vector processing

- I 1

1 1

To On-Die Interconnect

7 In-order (why?), short pipeline

1 Vector ISA: 32 vector registers (512b), 8 mask registers,
scatter /gather

6.888 Spring 2013 - Sanchez and Emer - L14



Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\\ Stony Brook University

An Old Massively Parallel Computer:
Connection Machine

* Originally intended for Al applications, later used for
scientific computing

* CM-2 major components

— Parallel Processing Unit (PPU)

* 16-64K bit-serial processing elements (PEs), each with 8KB of
memory

e 20us for a 32-bit add - 3000 MIPS with 64K PEs
 Optional FPUs, 1 shared by 32 PEs

* Hypercube interconnect between PEs with support for combining
operations

— 1-4 instruction sequencers



Fall 2015 :: CSE 610 - Parallel Computer Architectures

The Connection Machine (CM-2)

Nexus

* 1-4 Front-End Computers
— PPU was a peripheral

 Sophisticated 1/0O system

— 256-bit wide 1/0O channel for
every 8K PEs

— Data vault (39 disks, data +

ECC) for high-performance
disk I/O

— Graphics support

* With 4 sequencers, a CM
viewed as 4 independent
smaller CMs

‘\\\\ Stony Brook University

Front end 0
(DEC VAR o1

Symbolics)

Connection Machine .

Parallel Processing Unit

Connection Machine Connection Machine

processors Processors
H" Sequencer Sequencer - T
1] 3
-—
Sequencer Sequencer

r_. 1 2

Connection Machine

processors

=

-

Connection Muchine IO System

| |
Data Dats Dais Craphic
Vault Vanll Vanlt Display

Bus interlace

Front end 1
(pEC VAX or
Symbolics)

Bus interface

“ Front end 3
[DRC YAX or
Symbolics)

|| Bas intertace

Froot end 3
[ome vAx or
Symbolics)

L Bus interface

]
Network



Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\\ Stony Brook University

CM-2 ISA

* Notion of virtual processors (VPs)
— VPs are independent of # of PEs in the machine
— If VPs > PEs, then multiple VPs mapped to each PE
e System transparently splits memory per PE, does routing, etc.

 Notion of current context

— A context flag in each PE identifies those participating in
computation

* Used to execute conditional statements

* A very rich vector instruction set
— Instructions mostly memory-to-memory
— Standard set of scalar operations
— Intra-PE vector instructions (vector within each PE)
— Inter-PE vector instructions (each PE has one element of the vector)
* Global reductions, regular scans, segmented scans



Fall 2015 :: CSE 610 - Parallel Computer Architectures

‘\\\\ Stony Brook University

Example of CM-2 Vector Insts

* global-s-add: reduction operator to return sum of
all elements in a vector

e s—add-scan: parallel-prefix operation, replacing
each vector item with sum of all items preceding it

X

3

5

2

3

1

4

2

7

3] 2]

scan-x:

3

8

10

13

14

18

20

27

30 | 32| 33}

* segmented-s—-add-scan: parallel-prefix done on
segments of an array

X

segment

seg-scan-X:

3

5

2

0

0

3

8

10




Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\\ Stony Brook University

Inter-PE Communication in CM-2

* Underlying topology is 2-ary 12-cube

— A general router: all PEs may concurrently send/receive
messages to/from other PEs

e Can impose a simpler grid (256-ary 2-cube or 16-ary 4-
cube) on top of it for fast local communication

* Global communication
— Fetch/store: assume only one PE storing to any given destn

— Get/send: multiple PEs may request from or send to a given
dstn

* Network does combining
e E.g., send-with-s-max: only max value stored at destn



oINS — S —
Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\\ Stony Brook University

Graphics Processing Unit (GPU)

e An architecture for compute-intensive, highly data-
parallel computation
— exactly what graphics rendering is about

— Transistors can be devoted to data processing rather than
data caching and flow control

l
l
l
l
L GPU
HEEEEEN
HEEEEEN
HEEEEEN

| O] Bf A1 B of Al & N

HEEEEEE
LTI
LTI
LT[ 1]
LTI
LTI
LT[ 1]
[ LTI T T1]

DRAM DRAM

* The fast-growing video game industry exerts strong
economic pressure that forces constant innovation



/IS — S SE————
Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\\ Stony Brook University

Data Parallelism in GPUs

* GPUs take advantage of massive DLP to provide very high
FLOP rates

— More than 1 Tera DP FLOP in NVIDIA GK110

e “SIMT” execution model
— Single instruction multiple threads
— Trying to distinguish itself from both “vectors” and “SIMD”
— A key difference: better support for conditional control flow

* Program it with CUDA or OpenCL
— Extensions to C

— Perform a “shader task” (a snippet of scalar computation) over
many elements

— Internally, GPU uses scatter/gather and vector-mask like
operations



/IS — S SE————
Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\\ Stony Brook University

Context: History of Programming GPUs

« “GPGPU”
— Originally could only perform “shader” computations on images
— So, programmers started using this framework for computation
— Puzzle to work around the limitations, unlock the raw potential

* As GPU designers notice this trend...
— Hardware provided more “hooks” for computation
— Provided some limited software tools

* GPU designs are now fully embracing compute
— More programmability features in each generation
— Industrial-strength tools, documentation, tutorials, etc.
— Can be used for in-game physics, etc.
— A major initiative to push GPUs beyond graphics (HPC)



Throughput Computing:
Hardware Basics




What does a modern graphics API do?

Geometry
Shader

Pixel
Shader




A Simple Program - Diffuse Shader

sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;
floatd4 diffuseShader (float3 norm, float2 uv)
{
float3 kd;
kd = myTex.Sample (mySamp, uv);
kd *= clamp( dot(lightDir, norm), 0.0, 1.0);
return floatd(kd, 1.0);

} Each invocation is independent, but no
explicitly exposed parallelism

!) SIGGRAPHASIA2008

NEW HORIZONS

10 adapted from Kayvon Fatahalian’s SIGGRAPH'0S tall



11

Shader is compiled

1 Unshaded fragment in

sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;

floatd4 diffuseShader (float3 norm, float2 uv)
{
float3 kd;
kd = myTex.Sample (mySamp, uv);
kd *= clamp( dot(lightDir, norm), 0.0, 1.0);

return floatd4(kd, 1.0);

<diffuseShader>:

sample r0, v4, t0, sO

mul r3, v0, cb0[0]

madd r3, vl, cbO[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, 1(0.0), 1(1.0)
mul o0, r0, r3

mul ol, rl, r3

mul o2, r2, r3

mov o3, 1(1.

1 Shaded fragment out

o

oi

SIGGRAPHASIA2008

NEW HORIZONS



Exploit data parallelism! - add two cores

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, vl, cb0[1l], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, 1(0.0), 1(1.0)
mul o0, r0, r3 Execute
mul o1, rl, r3 (AI.U)
mul o2, r2, r3
mov o3, 1(1.0)

<diffuseShader>:
sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, vl, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, 1(0.0), 1(1.0)
Execute mul o0, r0, r3

(AI.U) mul ol1l, rl, r3

mul o2, r2, r3
mov o3, 1(1.0)

\ 4

e
e

Each invocation is independent!

NEW HORIZONS

!) SIGGRAPHASIA2008

15 adapted from Kayvon Fatahalian’s SIGGRAPH'0S talk



Add even more cores - four cores

| «diffusamraders:

| azaple 20, vé, &2, =0

| sl 3, o, ebo{o]

| modd ¥, vi, <bO{l), £3

| modd £3, w2, <b0{2], 23

| clap £3, £1, 1¢0.0), 1(3.0)
|mul o0, £3, £

|ewl 03, £1, 13

|0l a2, 2, ©3

mov o3, 141.0)

| «diffuramtaders: |
| anaple z0, vé, w0, =0

|mul 3, v, ebofo0)

| madd e3, vi, <bO{l]), 23

| modd £¥, w2, <b0{2], 23

| clsp £3, £1, 1(0.0), 1(2.0}
|mul op, 2, 13

|eml o3, £1, 13

|mul o2, r2, r3

iuuv o}, 1{1.9)

| «diffusesraders:

| anaple 20, vd, t0, =0

| mol 3, we, <b0{0]

| madd 3, wi, <bO{l], 23

| modd e¥, w2, <b0[2), =3

| clap £3, £3, 1(0.0), 1(3.0}
|mul oo, £2, x3

| «diffusestaders: |
| anaple x0, vd, &0, =0

[mul 3, w0, <b0{0]

€3, wi, <bO{1), 23

€Y, w2, <b0]2], =3

£3, ¥3, 1(0.0), 1(3.0}
o,

|mul o3, £1, 13 (ALU) o1,
|eu1 a2, £2, 13 . s
|mov o, 1{1.0) o8,

SIGGRAPHASIA2008

NEW HORIZONS




How about even more cores - 16 cores

SIGGRAPHASIA2008

NEW HORIZONS




) I E B0 B
o I B0 B
o) W
il o B EW BN O BN Bl
a0 OO0 ON BN BN g BN O
o) ) ] N
i) ) )
o] B0 ) O
ail OO OO OO On oW Ea gl

° o S
(@]
% X M_
S /s J 10 b
H e ...O.. e < .
p.ﬂl (7)) nurum
o, o 2
G w m %“
) ey % -
N6 N5 N w Ol )
06 O N B = W;hl (
BE:0 ) B B A & 5 m
U A A e
— | S
O M S
, il o
BN BN BN EY x O =
OB oW EN Bl £ =
£3
= ((b)

“items

r

-

How do you feed all these cores?

128 cores

18



Back to the simple core...

‘How do you feed all these
cores?

*Share cost of fetch / decode
across many ALUs

*SIMD Processing Execute
(ALU)

il




Back to the simple core...

‘How do you feed all these
cores?

*Share cost of fetch / decode
across many ALUs

*SIMD Processing
Single
Instruction
*Multiple
‘Data

20 adapted from Kayvon Fatahalian’'s SIGGRAPH'0S talk

ALU

ALU

ALU

ﬂ'
i'

ALU '
ALU '

ALU




Back to the simple core...

‘How do you feed all these
cores?

*Share cost of fetch / decode
across many ALUs

*SIMD Processing
Single

SIMD Processing does not

imply SIMD instructions!

21 adapted from Kayvon Fatahalian’s SIGGRAPH'08 talk



Back to a single core...

3

<diffuseShader>:

sample r0, v4, t0, sO

mul r3, v0, cb0[0]

madd r3, vl, cb0O[1l], 3
madd r3, v2, cb0[2], 3
clmp r3, r3, 1(0.0), 1(1.0)
mul o0, r0, r3

mul ol, rl, r3 ALU ALU' ALU | | ALU
mul o2, r2, r3

mov o3, 1(1.0)

ALU ALU ALU ALU

SIGGRAPHASIA2008

NEW HORIZONS




llel

©
e
(©
Q.
=

Fragments i

128

NEW HORIZONS

SIGGRAPHASIA2008

\

(16 cores * 8 ALUs)

=» 16 independent instruction streams

16 cores =» 128 ALUs

23



128-things in parallel

X cores can work on primitives (triangles)
—“‘geometry shader”
*Y cores can work on vertices
—“vertex shader”
«Z cores can work on fragments
—“pixel shader”
*N cores can work on data/work/etc
—“compute kernels”/“compute shaders”
*Which cores working on what data changes over time




What about branching?

Time
(clocks)

JEEOOUUOGIE]

ALUT ALU2 ... ... ALUS

- ———

25 adapted from Kayvon Fatahalian’s SIGGRAPH'0S tall

<unconditional
shader code>

if (x > 9) {
y = pow(x, exp);
y *= Ks;
refl = y + Ka;

refl = Ka;

}

<resume unconditional
shader code>

NEW HORIZONS

!) SIGGRAPHASIA2008



What about branching?

) &)U G] ]

Time
(clocks) ALUT ALU2 ...

<unconditional
shader code>

f if (x > @) {

| y = pow(x, exp);
y *= Ks;
refl = y + Ka;

refl = Ka;

<resume unconditional
shader code>

26 adapted from Kayvon Fatahalian’s SIGGRAPH'0S talk



What about branching?

- DELO00®E]
(clocks) ALUT ALU2 ... oo ALUS
- - - - - <unconditional
. . . . . shader code>
E E ﬂ if (x > 0) {
R X X X y = pow(x, exp);
x X X X y *= Ks;
| efl = Ka;
_ * PN % N } el';e { L
x x | BB X = 0;
® X l l l - refl = Ka;
= s ety s

<resume unconditional

Not all ALUs do useful work! shader code>
Worst case: 1/8 performance




What about branching?

. LROO00EE

(clocks) ALUT ALU2 ... ... ALUS

<unconditional
shader code>

if (x > @) {

X = 0;

refl = Ka;

<resume unconditional
shader code>

NEW HORIZONS

CJ SIGGRAPHASIA2008

28 adapted from Kayvon Fatahalian’s SIGGRAPH'0S talk



How to handle stalls?

*‘Memory access latency = 100’s to 1000’s of cycles
—Stalls occur when a core cannot run the next instruction

*GPUs don'’t have the large / fancy caches and logic that
helps avoid stall because of a dependency on a previous
operation.

‘But we have LOTS of independent fragments.

—Interleave processing of many fragments on a single core
to avoid stalls caused by high latency operations.




Hiding Memory Stalls

Time Frag1...8
(clocks) o o T o o [

NEW HORIZONS

C) SIGGRAPHASIA2008

30 adapted from Kayvon Fatahalian’s SIGGRAPH'0S talk



Hiding Memory Stalls

Time Frag1...8 Frag 9...16 Frag17...24 Frag 25...32
(clocks) (Yo Yo P e L (L (o T [ L o L (Yo T [ o e o L |

© © )

NEW HORIZONS

!) SIGGRAPHASIA2008

31 adapted from Kayvon Fatahalian’s SIGGRAPH'0S tall



Hiding Memory Stalls

Time Frag1...8 Frag 9...16 Frag17...24 Frag 25...32
(clocks) 00000000 OO00O0O000 00000000 Do000000

(1 © e )

Stall -

4,’

Runnable

NEW HORIZONS

‘) SIGGRAPHASIA2008



Hiding Memory Stalls

Time Frag1...8 Frag 9...16 Frag17...24 Frag 25...32
(clocks) 00000000 OO00O0O000 00000000 Do000000

‘ ' & )

Runnable

NEW HORIZONS

C) SIGGRAPHASIA2008

33 adapted from Kayvon Fatahalian’s SIGGRAPH'0S talk



34

Hiding Memory Stalls

Time Frag1...8 Frag 9...16 Frag17...24 Frag 25...32
(clocks) 00000000 OO00O0O000 00000000 Do000000

2 & O

Runnable

Runnable II

Runnable

SIGGRAPHASIA2008

NEW HORIZONS



Throughput computing

Time Frag 1. Frag 9... 16 Frag17... 24 Frag 25...32
(clocks) DDDDDDDD 00000000 0O00O0000 DOo000000

© e )

Start

:ﬂ ’ Ll\“l'lllj Start

e
‘ n W ..

Runnable St;:; 3 Ll!ll‘llﬂ
i Stall -
I“I“" Runnable "

| 7
Dong |||||||| RunWable
' 1
b |||||||| RunWable

I ti f !
To sk shresghitof muarocs: IR

Done!

C) SIGGRAPHASIA2008

NEW HORIZONS

35 adapted from Kayvon Fatahalian’s SIGGRAPH'0S t



Fall 2015 :: CSE 610 - Parallel Computer Architectures

q\\\\ Stony Brook University

Latency Hiding with “Thread Warps”

* Warp: A set of threads that

L\ .

. ] W labl
execute the same instruction Tiuead Watp 3 for soheduling
(on different data elements) reac amp

: : : : Thread Warp 7 .
* Fine-grained multithreading _Thread Warp 7] | _ gy pipeline
— One instruction per thread in Y
pipeline at a time (No branch | I-Fetch |
prediction) | S |
— Interleave warp execution to hide Y Vv v
latencies T3 - 3
. 2 2 2 i
* Register values of all threads =1 2] ... [2] | memory hiorarchy
stay in register file = = = Miss?
* No OS context switchin L__D-Cache 1"/ Thread Warp 1
5 Al Hit’-’l | Data Thread Warp 2
* Memory latency hidin D 2 :
y Yy 8 Writeback ] | Thread Warp 6 |

— Graphics has millions of pixels |

Slide credit: Tor Aamodt



/IS — S SE————
Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\\ Stony Brook University

Warp-based SIMD vs. Traditional SIMD

* Traditional SIMD contains a single thread
— Lock step

— Programming model is SIMD (no threads) = SW needs to know vector
length

— |ISA contains vector/SIMD instructions

* Warp-based SIMD consists of multiple scalar threads executing in
a SIMD manner (i.e., same instruction executed by all threads)

— Does not have to be lock step

— Each thread can be treated individually (i.e., placed in a different
warp) =2 programming model not SIMD

 SW does not need to know vector length
* Enables memory and branch latency tolerance
— ISA is scalar = vector instructions formed dynamically



Fall 2015 :: CSE 610 - Parallel Computer Architectures

CUDA

e C-extension programming language

* Function types
— Device code (kernel) : run on the GPU

‘\\\\ Stony Brook University

— Host code: run on the CPU and calls device programs

* Extensions / API

Function type: _global , device , host
Variable type : __shared_, constant__
cudaMalloc(), cudaFree(), cudaMemcpy(),...
__syncthread(), atomicAdd(), ...

int i

void saxpy(int n, float a, float *x, float *y) ({

if (i < n) y[i] = a*x[i] + yI[il;

// Perform SAXPY on with 512 threads/block
int block cnt = (N + 511) / 512;

saxpy

(N, 2.0, x, y);



Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\\ Stony Brook University

CUDA Software Model

* A kernel is executed as a grid of

thread blocks Thread
— Per-thread register and local-
memory Space per-Threa d Lo cal M emory

— Per-block shared-memory space

Thread Block

— Shared global memory space
per-Block
* Blocks are considered §§§§§§§§ o redteney

cooperating arrays of threads
— Share memory Grido Seq uence
— Can synchronize =3 .

A
Y

® BIOCkS Within a grid are —G;c“— Inter-Grid S ynchronization — — — Globa | Memory
independent r F B
S || P || D ||+
— can execute concurrently S| S| o S I

— No cooperation across blocks



Heterogeneous Programming <3

nviDiA

Use the right processor for the right job

Serial Code

Parallel Kernel
foo<<< nBlk, nTid >>>(args).;

Serial Code

Parallel Kernel
bar<<< nBlk, nTid >>>(args) ;

D WAVIDA. Corporation 2008



Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\\ Stony Brook University

Compiling CUDA

C/C++ CUDA
Application
®* NVCC

— Compiler driver
— Invoke cudacc, g++, cl

* PTX

— Parallel Thread eXecution PTX Code

1d.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

CPU Code

PTX to Target
Compiler

(€128] Courtesy NVIDIA



Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\\ Stony Brook University

CUDA Hardware Model

* Follows the software model closely

e Each thread block executed by a single multiprocessor
— Synchronized using shared memory

 Many thread blocks assigned to a single multiprocessor
— Executed concurrently in a time-sharing fashion
— Keep GPU as busy as possible

* Running many threads in parallel can hide DRAM
memory latency
— Global memory access : 2~300 cycles



Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\\ Stony Brook University

Example: NVIDIA Kepler GK110

PCI Express 3.0 Host Interface

Source: NVIDIA’s Next Generation CUDA
Compute Architecture: Kepler GK110

e 15 SMX processors, shared L2, 6 memory controllers
— 1 TFLOP dual-precision FP

* HW thread scheduling

— No OS involvement in scheduling




Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\‘ Stony Brook University

Streaming Multiprocessor (SMX)

SMX

. L] L] L]
a p a I I I e S Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch
+ 4+ + 3+ : L 2 + 4+

.
64 K re I Ste rS Register File (65,536 x 32-bit)
g 4+ 4 & L2 4 4 3 . 2 4+ 32 4 3 3 . 2 4+ 3 3
Core Core Core - Core Core Core - LoisT SFU Core Core Core - Core Core
.

— 192 Slmple cores c“c.,r.c.,..-Cn..:mcm-Ls 570 Gore Core Core B o core :

Core Core Core - Core Core Core - tosT SFU Core Core Core - Core Core Core -
[ ] Int and SP FPl | cwcumCm-cumCmCm-L SFU cuncwcure.caucurecarb-

Tl LIl Bt [t B

— 64 DP FPl IS CWOCDNCW-CDNCWQCON-L SFU Comcofecm-cotecwecoro-
Core Core Core - Core Core Core - LoisT SFU Core Core Core - Core Core Core - LO/ST

— 32 LD/ST Units (LSV) I Y er

— 32 Special Function Units re ore e LoisT | SFU Cur-Cmcure-CnnCoreCore- !
LoisT SFU  Core Core Core - Core Core Core -
( FS U ) ore ore e LoisT SFU Core Core Core - Core Core Core - Lo/sT  SFU
LoisT SFU Core Core Core - Core Core Core -
Core Core Core - Core Core Core - toisT SFU Core Core Core - Core Core Cor
chanCm-CnCmCm-LDlSFU CmCoﬂCm-CcteCnre
sT

* Warp Scheduling __

— 4 independent warp 4810 Rent.0ny st ache

schedulers
- 2inst dispatch perwarp  Ziicoure: keperaio




Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\‘ Stony Brook University

Warp Scheduling

* 64 warps per SMX
— 32 threads per warp
— 64K registers/SMX
— Up to 255 registers per thread

e Scheduling
— 4 schedulers select 1 warp per cycle each

— 2 independent instructions issued per warp
— Total bandwidth =4 * 2 * 32 = 256 ops/cycle

* Register scoreboarding

Source: NVIDIA’s Next Generation CUDA Compute — To track ready instructions for long latency
Architecture: Kepler GK110 ops (textu re and |oad)

— Simplified using static latencies

* Compiler handles scheduling for fixed-latency
ops

— Binary incompatibility?




Fall 2015 :: CSE 610 - Parallel Computer Architectures ‘\\\\ Stony Brook University

Memory Hierarchy

Each SMX has 64KB of memory
— Split between shared mem and L1 cache
» 16/48,32/32,48/16
— 256B per access

" Shared l L1 Read-Only
Memory Cache Data Cache

ﬂ

48KB read-only data cache
— Compiler controlled

L2
L Cache

1.5MB shared L2

Support for atomic operations
— atomicCAS, atomicADD, ...

Throughput-oriented main memory

— Memory coalescing

— GDDR standards
* Very wide channels: 256 bit vs. 64 bit for DDR
* Lower clock rate than DDR

Source: NVIDIA’s Next Generation CUDA
Compute Architecture: Kepler GK110



