

Introduction

Nima Honarmand

What is an Operating System? (1)

All of the stuff between you/your application and

the hardware

Kernel

Device Drivers

API libraries

• UI

 Our focus is mostly on the kernel and some advanced API

What is an Operating System? (2)

- What are the main tasks of an OS?
 - Abstract the hardware for convenience and portability
 - Virtualize the hardware to share it among multiple applications
 - Multiplex the virtualized resources over physical resources
 - Provide services to applications and users
 - Process isolation
 - Inter-process communication
 - UI
 - ...

Why Operating Systems?

- Primary Goal: Demystify how computers work
 - Lots of abstractions and heuristics between your application and the hardware
 - A good computer scientist should understand what happens inside the system when one types a command
- Secondary: Learn how to write robust programs
 - OSes like Linux have many users and work on a wide range of hardware
 - Deal with subtle issues: concurrency, consistency, etc.

About This Course

- This course is being revised
 - After recent changes in CSE 320 and making it a prerequisite
- Bear with me as we try to finalize the course syllabus
- Some basic OS concepts and API already taught in CSE 320
 - We will review those quickly
 - We will cover more advanced API here
- More importantly, we will talk about internal design and implementation issues of Oses
 - Not covered in CSE 320

Course Format :: Lectures (1)

- Basic OS ideas: abstractions, interfaces and algorithms on core issues
 - Memory
 - CPU
 - Multi-threading and synchronization
 - Storage Disks (HDDs and SSDs) and File systems
 - Networking
 - Device programming
 - Inter-process communication and isolation issues
- Supplement background on hardware programming

Course Format :: Lectures (2)

- Several more recent topics (time permitting)
 - OS Security
 - Virtual machines
 - Advanced file systems
 - OS in data centers and cloud
 - Embedded OS issues
 - High performance networking
 - etc.

Course Format :: Lectures (3)

- Discuss and supplement reading material
- An important chance to clarify issues
 - Questions are encouraged!
- I expect you to arrive prepared to answer and ask questions about the reading material
- Everything in lectures may appear on the exams, even if not in the book

Course Format :: Labs (1)

- Learn by doing
- This course is coding intensive
 - You should know C, or be prepared to remediate quickly
 - You will learn basic, inline x86 assembly
 - You must learn to <u>learn on your own</u>/with lab partner
- You will make substantial modifications to xv6, a simple x86 Unix variant
 - Code is written to be easy to understand, but lacks many modern OS features
 - Challenging work, but a very marketable skill

Course Format :: Labs (2)

- We may have one or two advanced user-mode programming labs to use advanced OS API not covered in CSE 320
 - Unlike xv6 labs that will be kernel-mode programming
- One way or the other, there will be five labs in total
 - Combination of xv6 and user-mode programming
- The exact combination will be determined as we go

Course Format :: Labs (3)

- Each student will have a Linux virtual machine on a departmental cluster
 - Comes with basic development tool chain that you need for the course (GCC, GDB, Qemu, etc.)
 - You have sudo access and can install new software as you need
- You can also use your own laptops but the tech staff won't support them
- See
 https://compas.cs.stonybrook.edu/"nhonarmand/courses/fa17/cse306/labs.html for complete details

Lab Late Hours

- Each lab team gets 72 late hours
 - List how many you use in slack.txt
 - Each hour after these are gone costs 2% on the assignment
- It is your responsibility to use these to manage:
 - Holidays, weddings, research deadlines, conference travel, Buffy marathons, release of the next Zelda game, etc.
- 3 Exceptions: illness (need doctor's note), death in immediate family, accommodation for disability

Lab Teams

- Can work alone or as a pair
- Choose your own partners
- Remains the same for the entire course
 - Changes only with instructor permission

Readings & Books

Required Readings

- Assigned from the OSTEP book + maybe some papers
- Should be completed before the lecture
- Required reading material may appear on the exams, even if not discussed in lecture
- Highly recommended (optional) books
 - K&R for C programming
 - Understanding the Linux Kernel (3rd edition) for Linux internals
 - Advanced Programming in the UNIX Environment (3rd edition), the UNIX bible
- Many other references on the website

Other Course Information

- TA: TBD
- Course website:
 - compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306
 - Syllabus, schedule, homework, etc. posted here
- Course newsgroup
 - Blackboard → Discussions → "General Discussions" Forum
 - Main venue for all class-related discussions
 - Sign up ASAP to avoid missing anything
 - Goal: Everyone can learn from general questions
 - Do not post code or other solutions here

Prerequisites

- CSE 219 (CS III) or CSE 260 (CS B, Honors)
- CSE 320 (Systems Fundamentals II) or ESE 380 (Embedded Microprocessor Design I)
- The background courses are necessary
- In some cases, industry experience is ok
 - In-class quiz, due before you leave
 - If you can't answer 50% of these questions you are not prepared
- C programming
- Basic Unix command-line proficiency

C Programming

- You should have learned C in the prerequisite courses
- If you are not sure, you should read "The C Programming Language" by Kernighan and Ritchie (K&R) cover to cover this week
 - And complete all exercises in the book
- If you can do this in the next week or so, you will be prepared to complete this course on schedule

Other administrative notes

- Read syllabus completely
- Subscribe to the discussion forum on Blackboard
- The exams cover lectures, labs, assigned readings and blackboard discussions
- Lab VMs aren't ready yet
- Back up your lab work in a private repo
 - Department provides git repos to let you backup your work
 - Send an email to rt@cs.stonybrook.edu to have yours activated
 - Or use BitBucket or Github
- Do not make your repos publicly available

Grading

What?	Points
1 Quiz	0
Labs	60
Midterm exam	20
Final exam	20
Total	100

- Guaranteed grades: [A, A-, B+, ..., D, F] = [85, 80, 75, ..., 45, <45]
 - I may use a curve on top of this (but there is no guarantee)
- Midterm grade will be the max(midterm, final)
- Grades solely determined by your performance in the course
 - Not whether they are needed for graduation, qualifiers, etc.

Academic Integrity

- We take cheating very seriously. It can end your career.
- Share ideas but not code
 - Acknowledge students that give you good ideas
- In a gray area, it is your job to stay on right side of line
- Never show your code to anyone except course staff
- Never look at anyone else's code (including other universities)
 - Do not debug each other's code
- Fully read the Academic Integrity text on the website

Questions?

Remember:

- Hand in the survey
- VMs and Lab 1 coming out soon
- Reading assigned for next class (Thursday)
 - No class on Tuesday (Labor Day Observance)

Survey Quiz