
Fall 2017 :: CSE 306

Basic Concepts
& OS History

Nima Honarmand

Fall 2017 :: CSE 306

Administrivia

• TA: Babak Amin Azad
• Office hours: Monday & Wednesday, 5:30-7:00 PM

• Location: 2217 old CS building

• VMs ready; SSH Keys will be emailed today

• Lab1 released
• Due date: 09/24 (11:59 PM)

• Send me your group composition (if working as a pair)
by the lab deadline

Fall 2017 :: CSE 306

Background

• CPUs have 2 modes: user and supervisor
• Sometimes more (4 in Intel) but 2 is all we need

• Supervisor mode:
• Issue commands to hardware devices

• Power off, Reboot, Suspend

• Launch missiles, Do awesome stuff

• User mode:
• Run other code, hardware tattles if you try anything

reserved for the supervisor

Fall 2017 :: CSE 306

A Simple View of an OS

Hardware

OS

App App App App

Fall 2017 :: CSE 306

OS Architecture

Hardware

Libraries

App App App App

Kernel

User

Super-

visor

Fall 2017 :: CSE 306

App

OS Architecture

Hardware

Libraries

Kernel

User

Super-

visor

App

Libraries

App

Libraries

Win32
API

Fall 2017 :: CSE 306

Famous libraries, anyone?

• Windows: ntdll.dll, kernel32.dll, user32.dll,
gdi32.dll

• Linux/Unix: libc.so, ld.so, libpthread.so, libm.so

Fall 2017 :: CSE 306

Caveat 1

• Libraries include a lot of code for common
functions
• Why bother re-implementing sqrt?

• They also give high-level abstractions of hardware
• Files, printer, etc.

• How does this work?

Fall 2017 :: CSE 306

System Call

• Special instruction to switch from user to
supervisor mode

• Transfers CPU control to the kernel
• One of a small-ish number of well-defined functions

• How many system calls does Windows or Linux
have?
• Windows ~1200

• Linux ~350

Fall 2017 :: CSE 306

App

OS Architecture

Hardware

Libraries

Kernel

User

Supervisor

App

Libraries

App

Libraries

System Call Table (350—1200)

Open file
“hw1.txt”

Ok, here’s
handle 4

Fall 2017 :: CSE 306

Caveat 2

• Some libraries also call special apps provided by the
OS, called a daemon (or service)
• Communicate through kernel-provided API

• Example: Print spooler
• App sends pdf to spooler

• Spooler checks quotas, etc.

• Turns pdf into printer-specific format

• Sends reformatted document to device via OS kernel

Fall 2017 :: CSE 306

App

OS Architecture

Hardware

Libraries

Kernel

User

Supervisor

App

Libraries

Daemon

Libraries

System Call Table (350—1200)

OS = Kernel + System Libraries + System Daemons

Fall 2017 :: CSE 306

In-Kernel Hardware Abstractions

• Kernels are programmed at a higher level of abstraction
• Block devices (in-kernel abstraction) vs. specific types of disks

(real hardware)

• For most types of hardware, the kernel has a “lowest
common denominator” interface
• E.g., Disks, video cards, network cards, keyboard

• Think Java abstract class

• Each specific device (Nvidia GeForce 600) needs to
implement the abstract class
• Each implementation is called a device driver

Fall 2017 :: CSE 306

App

OS Architecture

Hardware

Libraries

Kernel

User

Super-

visor

App

Libraries

Daemon

Libraries

System Call Table (350—1200)

In-Kernel Hardware Abstraction

Driver Driver Driver

Fall 2017 :: CSE 306

So what is Linux?

• Really just an OS kernel
• Including lots of device drivers

• Conflated with environment consisting of:
• Linux kernel

• Gnu libc

• X window manager daemon

• CUPS printer manager

• Etc.

Fall 2017 :: CSE 306

So what is Ubuntu? Centos?

• A distribution: bundles all of that stuff together
• Pick versions that are tested to work together

• Usually also includes a software update system

Fall 2017 :: CSE 306

OSX vs iOS?

• Same basic kernel (a few different compile options)

• Different window manager and libraries

Fall 2017 :: CSE 306

What is Unix?

• A very old OS (1970s), innovative, still in use

• Innovations:
• Kernel written in C (first one not in assembly)

• Co-designed C language with Unix

• Several nice API abstractions

• Fork, pipes, everything a file

• Several implementations: *BSDs, Solaris, etc.
• Linux is a Unix-like kernel

Fall 2017 :: CSE 306

What is POSIX?

• A standard for Unix compatibility

• Even Windows is POSIX compliant!

Fall 2017 :: CSE 306

OS History

Fall 2017 :: CSE 306

1940’s – First Computers

• One user/programmer at a time

• Program loaded manually using switches
• Debug using the console lights

• ENIAC
• 1st gen purpose machine

• Calculations for Army

• Each panel had specific

function
ENIAC (Electronic Number Integrator

and Computer)

Fall 2017 :: CSE 306

1940’s – First Computers

Pros:
• Interactive – immediate

response on lights
• Programmers were

women 

Cons:

• Lots of Idle time
• Expensive computation

• Error-prone/tedious

• Each program needs all driver

code

• Vacuum Tubes and Plugboards
• Single group of people designed, built,

programmed, operated and maintained
each machine

• No Programming language, only absolute
machine language (101010)

• O/S? What is an O/S?
• All programs basically did numerical

calculations

Fall 2017 :: CSE 306

1950’s – Batch Processing

• Deck of cards to describe job

• Jobs submitted by multiple users are
sequenced automatically by a resident
monitor

• Resident monitor was a basic O/S
• S/W controls sequence of events

• Command processor

• Protection from bugs (eventually)

• Device drivers

Fall 2017 :: CSE 306

Monitor’s Perspective

• Monitor controls the sequence of
events

• Resident Monitor is software always
in memory

• Monitor reads in job and gives
control

• Job returns control to monitor

Fall 2017 :: CSE 306

1950’s – Batch Processing

Pros:
• CPU kept busy, less idle time

• Monitor could provide I/O services

Cons:
• No longer interactive – longer turnaround time

• Debugging more difficult

• CPU still idle for I/O-bound jobs

• Buggy jobs could require operator intervention

IBM 7090

Fall 2017 :: CSE 306

Multiprogrammed Batch Systems

• CPU is often idle
• Even with automatic job sequencing.

• I/O devices are slow compared to processor

Fall 2017 :: CSE 306

Uniprogramming

• Processor must wait for I/O instruction to complete
before preceding

Fall 2017 :: CSE 306

Multiprogramming

• When one job needs to wait for I/O, the processor
can switch to the other job

Fall 2017 :: CSE 306

Multiprogramming

Fall 2017 :: CSE 306

1960’s – Multiprogramming
(time-sharing)
• CPU and I/O devices are multiplexed (shared)

between a number of jobs
• While one job is waiting for I/O another can use the CPU

• SPOOLing: Simultaneous Peripheral Operation OnLine
• 1st and simplest multiprogramming system

• Monitor (resembles O/S)
• Starts job, spools operations, I/O,

switch jobs, protection between memory

Fall 2017 :: CSE 306

1960’s – Multiprogramming
(time-sharing)

Pros:

• Paging and swapping (RAM)

• Interactiveness

• Output available at completion

• CPU kept busy, less idle time

Cons:

• H/W more complex

• O/S complexity?

IBM System 360

Fall 2017 :: CSE 306

1970’s - Minicomputers and
Microprocessors

• Trend toward many small personal computers or
workstations, rather than a single mainframe.
• Advancement of Integrated circuits

• Timesharing
• Each user has a terminal and shares a single machine (Unix)

Fall 2017 :: CSE 306

1980’s – Personal Computers &
Networking

• Microcomputers = PC (size and $)

• MS-DOS, GUI, Apple, Windows

• Networking: Decentralization of computing
required communication
• Not cost-effective for every user to have printer, full

copy of software, etc.

• Rise of cheap, local area networks (Ethernet), and access
to wide area networks (Arpanet)

Fall 2017 :: CSE 306

1980’s – Personal Computers &
Networking

• OS issues:
• Communication protocols, client/server paradigm

• Data security, encryption, protection

• Reliability, consistency, availability of distributed data

• Heterogeneity

• Reducing Complexity

• Ex: Byte Ordering

Fall 2017 :: CSE 306

1990’s – Global Computing
• Dawn of the Internet

• Global computing system

• Powerful CPUs cheap! Multicore systems

• High speed links

• Standard protocols (HTTP, FTP, HTML, XML, etc)

• OS Issues:
• Communication costs dominate

• CPU/RAM/disk speed mismatch

• Send data to program vs. sending program to data

• QoS (Quality of Service) guarantees
• Security

Fall 2017 :: CSE 306

2000’s – Embedded and Ubiquitous
Computing
• Mobile and wearable computers

• Networked household devices

• Absorption of telephony, entertainment functions
into computing systems

• OS issues:
• Security, privacy

• Mobility, ad-hoc networks, power management

• Reliability, service guarantees

Fall 2017 :: CSE 306

2000’s – Embedded and Ubiquitous
Computing

• Real-time computing
• Guaranteed upper bound on task completion

• Dedicated computers/Embedded systems
• Application specific, designed to complete particular

tasks

• Distributed systems
• Redundant resources, transparent to user

Fall 2017 :: CSE 306

Multi-core

• New hotness in CPU design. Not going away.
• Why?

• Being able to program with threads and concurrent
algorithms will be a crucial job skill going forward
• Don’t leave SBU without mastering these skills

• We will do some advanced multi-threaded programming
in the labs

Fall 2017 :: CSE 306

OS History Summary
• OS’s began with big expensive computers used

interactively by one user at a time.

• Batch systems sequences jobs to keep computer busier.
Interactivity sacrificed.

• Multiprogramming developed to make more efficient
use of expensive hardware and restore interactivity.

• Cheap CPU/memory/storage make communication the
dominant cost.

• Multiprogramming still central for handling concurrent
interaction with environment.

