
Fall 2017 :: CSE 306

Process
Abstraction

Nima Honarmand

Fall 2017 :: CSE 306

Administrivia
• Course staff email: cse306ta __at__cs.stonybrook.edu

• Both Babak and I will be monitoring the account to ensure a
timely response

• What to use it for: any email that you would otherwise
send to my or the TA’s email
• Unless it is for my eyes only

• Remember to use the Blackboard forum for all
non-private questions or class/lab-related discussions

• Check your CS email account for your VM addr. and key
• Why not have all your emails forwarded to one account?

mailto:cse306ta@cs.stonybrook.edu

Fall 2017 :: CSE 306

What is a Process?

• Process: dynamic instance of a program

vs.

• Program: static code and data

• What does a process consist of?
• Abstraction of CPU: threads

• Abstraction of memory: address space

• Abstraction of devices: file handles (for storage), sockets
(for NIC), etc.

Fall 2017 :: CSE 306

What is a Process?
• Process = Program (static code and data) + execution state

• Execution state consists of
• Thread context: General purpose registers, stack pointer, program

counter, etc.

• Address space content: code, stack, heap, memory-mapped files

• Open files, sockets, etc.

• Program is used to initialize the execution state which then
changes as program executes

• The OS keeps track of each process’ execution state in a data
structure called Process Control Block (PCB)

Fall 2017 :: CSE 306

Program to Process

• We write a program in, e.g., C++

• A compiler translates that program into a binary
containing
• Headers (e.g., address of first instruction to execute)

• Code section (.text, .init, .plt)

• Data sections (.data, .bss, .rodata, .got, etc.)

• And other sections we don’t care about now

• OS creates a new process and uses the program to
initialize its state

Fall 2017 :: CSE 306

Initializing Process State
• Initialize address space

• Load code and data into memory

• Setup a piece of memory for initial stack
(including space for command line arguments
and environment variables)

• Setup a piece of memory for the initial heap

• etc.

• Initialize the first thread
• Initialize (zero-out) the general purpose

registers

• Set the program counter to the first instruction

• Set the stack pointer to the top of stack

• etc.

Code

Static Data

Initial Heap

Initial Stack

Empty Space

Example of Initial

Address Space

Fall 2017 :: CSE 306

Changing Process State

• As the process runs, this layout
changes
• Might need more heap space

• Might become multi-threaded
and more need more stacks

• Stacks might grow

• Might load more code and more
static data

• etc.

Code

Static Data

Heap

Stack

Example of Running

Address Space

Heap

Stack

Code

Code

Static Data

Fall 2017 :: CSE 306

Virtualizing the CPU
• Many more threads (abstract CPUs) than physical CPUs

• Have to multiplex threads over CPUs

• Key technique: Context Switching
• Thread A runs for some time, then we switch to thread B,

and so on

• Temporal Multiplexing of CPU: different threads occupy
the same CPU at different points of time

• How to switch context? Save A’s register to its PCB, restore
B’s register from its PCB

• When to switch context? We’ll see in future lectures

Fall 2017 :: CSE 306

Virtualizing the Memory
• Many process address spaces and only one physical

memory space

• Have to multiplex again

• Key technique: Virtual Memory
• Addresses generated by each process are relative to its

own address space

• They pass an OS-controlled translation layer before
being sent to memory

• Spatial Multiplexing of memory: different address
spaces reside at different parts of physical memory
simultaneously

Fall 2017 :: CSE 306

Isolation and High Performance
• Need for Isolation

• Processes should be isolated (protected) from each other
• OS kernel should be isolated (protected) from processes
• Hardware devices should be protected from processes

• We also want high performance
• Applications should execute directly on the processor
• I.e., the OS should not need to intervene and check the validity of

every single instruction the application wants to execute

• How to provide isolation and high performance
simultaneously?

• Answer: Limited Direct Execution (LDE)

Fall 2017 :: CSE 306

Limited Direct Execution (LDE)
• Two important hardware features to enable LDE:

1) Separate user/supervisor modes for the processor

2) Virtual Memory Hardware (a.k.a. Memory Management Unit or MMU)

• User (non-privileged) mode
• Only a subset of “harmless” processor instructions are available

• Arithmetic and logic operations, branches, memory load/store

• Only a few general-purpose registers accessible

• Supervisor (privileged) mode
• All processor instructions are available including control instructions

• E.g., enable/disable interrupts, change the page table, performance counters, …

• All general-purpose as well as control registers are accessible

Fall 2017 :: CSE 306

LDE: Separate Modes
• Applications exclusively run in the non-privileged mode

• Can do whatever permitted in that mode without OS
intervention
• Change register values, read/write their own stack or heap, do ALU

operations, take branches, call functions in their code segment, etc.

• Anything else requires switching to privileged mode (i.e.,
making a syscall) at which point the kernel takes over

→ Applications execute directly on the processor but are
limited to what’s available in the non-privileged mode

• But how is this mode transfer (user-to-supervisor and
vice versa) implemented?
• Answer: interrupts (next lecture)

Fall 2017 :: CSE 306

LDE: Virtual Memory
• Someone has to make sure processes only access their

own memory. But who?
• OS cannot check every single memory access a process

performs. Would be too slow.

• Hardware (processor) has to do it directly

• But how does the processor know which memory
accesses are valid for a given process?
• The OS tells it by setting up the MMU when switching to a

process

• Review: Page Table, TLB (Translation Lookaside Buffer)

→ So a process can access its memory directly as long as
it respects the MMU limitations

Fall 2017 :: CSE 306

Process API Recap

Fall 2017 :: CSE 306

Where New Processes Come From

• Parent/child model

• An existing program has to spawn a new one
• Most OSes have a special init program that launches

system services, logon daemons, etc.

• When you log in (via a terminal or SSH), the login
program spawns your shell

Fall 2017 :: CSE 306

Approach 1: Windows CreateProcess()

• In Windows, when you create a new process, you
specify a new program
• And can optionally allow the child to inherit some

resources (e.g., an open file handle)

Fall 2017 :: CSE 306

Approach 2: Unix fork/exec
• In Unix, a parent makes a copy of itself using fork()

• Child inherits everything, runs same program

• Only difference is the return value from fork()

• A separate exec() system call loads a new program

• Major design trade-off:
• How easy to inherit

• vs. Security (accidentally inheriting something the parent
didn’t intend)

• Note that security is a newer concern, and Windows is a
newer design…

Fall 2017 :: CSE 306

• Life with CreateProcess(filename);
• But I want to close a file in the child.
CreateProcess(filename, list of files);

• And I want to change the child’s environment.
CreateProcess(filename, CLOSE_FD, new_envp);

• Etc. (a very ugly etc.)

Why Separate fork/exec

BOOL WINAPI CreateProcess(

_In_opt_ LPCTSTR lpApplicationName,

_Inout_opt_ LPTSTR lpCommandLine,

_In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,

_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,

In BOOL bInheritHandles,

In DWORD dwCreationFlags,

_In_opt_ LPVOID lpEnvironment,

_In_opt_ LPCTSTR lpCurrentDirectory,

In LPSTARTUPINFO lpStartupInfo,

Out LPPROCESS_INFORMATION lpProcessInformation

);

Fall 2017 :: CSE 306

• fork()= split this process into 2 (new PID)

• Returns 0 in child

• Returns pid of child in parent

• exec()= overlay this process with new program

• (PID does not change)

Why Separate fork/exec

Fall 2017 :: CSE 306

• Let you do anything to the child’s process environment without
adding it to the CreateProcess() API.

int pid = fork(); // create a child

if (0 == pid) { // child continues here

// Do anything (unmap memory, close net

// connections…)

exec(“program”, argc, argv0, argv1, …);

}

Why Separate fork/exec

• fork() creates a child process that inherits:
• identical copy of all parent’s variables & memory
• identical copy of all parent’s CPU registers (except one)

• Parent and child execute at the same point after fork() returns:
• for the child, fork() returns 0
• for the parent, fork() returns the process identifier of the child

Fall 2017 :: CSE 306

Program Loading: exec()
• The exec() call allows a process to “load” a different

program and start execution at main (actually _start).

• It allows a process to specify the number of arguments
(argc) and the string argument array (argv).

• If the call is successful
• it is the same process …
• but it runs a different program !!

• Code, stack & heap is overwritten
• Sometimes memory mapped files are preserved.

• exec() does not return!

Fall 2017 :: CSE 306

In the parent process:

main()

…

int pid =fork(); // create a child

if (0 == pid) { // child continues here

exec_status = exec(“calc”, argc, argv0, argv1, …);

printf(“Something is horribly wrong\n”);

exit(exec_status);

} else { // parent continues here

printf(“Who’s your daddy?”);

child_status = wait(pid);

}
exec() should

not return

General Purpose Process Creation

Fall 2017 :: CSE 306

pid = 127

open files = “.history”
last_cpu = 0

Exmpl: Shell forks & executes calc
int pid = fork();

if(pid == 0) {

close(“.history”);
exec(“/bin/calc”);

} else {

wait(pid);

int pid = fork();

if(pid == 0) {

close(“.history”);
exec(“/bin/calc”);

} else {

wait(pid);

Process Control

Blocks (PCBs)

OS

USER

int pid = fork();

if(pid == 0) {

close(“.history”);
exec(“/bin/calc”);

} else {

wait(pid);

pid = 128

open files = “.history”
last_cpu = 0

int pid = fork();

if(pid == 0) {

close(“.history”);
exec(“/bin/calc”);

} else {

wait(pid);

Fall 2017 :: CSE 306

pid = 127

open files = “.history”
last_cpu = 0

Exmpl: Shell forks & executes calc
int pid = fork();

if(pid == 0) {

close(“.history”);
exec(“/bin/calc”);

} else {

wait(pid);

int pid = fork();

if(pid == 0) {

close(“.history”);
exec(“/bin/calc”);

} else {

wait(pid);

Process Control

Blocks (PCBs)

OS

USER

pid = 128

open files =

last_cpu = 0

int calc_main(){

int q = 7;

do_init();

ln = get_input();

exec_in(ln);

Fall 2017 :: CSE 306

Cost of fork()
• Simple implementation of fork():

• allocate memory for the child process

• copy parent’s memory and CPU registers to child’s

• Expensive !!

• In 99% of the time, we call exec() after calling fork()

• the memory copying during fork() operation is useless

• the child process will likely close the open files & connections

• overhead is therefore high

• vfork()

• a system call that creates a process “without” creating an identical memory image

• child process should call exec() almost immediately

• Unfortunate example of implementation influence on interface

• Current Linux & BSD 4.4 have it for backwards compatibility

• Copy-on-write to implement fork avoids need for vfork()

Fall 2017 :: CSE 306

Orderly Termination: exit()
• After the program finishes execution, it calls exit()

• This system call:
• takes the “result” of the program as an argument
• closes all open files, connections, etc.
• deallocates memory
• deallocates most of the OS structures supporting the process
• checks if parent is alive:

• If so, it holds the result value until parent requests it; in this case, process
does not really die, but it enters the zombie/defunct state

• If not, it deallocates all data structures, the process is dead

• cleans up all waiting zombies

• Process termination is the ultimate garbage collection
(resource reclamation).

Fall 2017 :: CSE 306

wait() System Call

• A child program returns a value to the parent, so the
parent must arrange to receive that value

• The wait() system call serves this purpose

• Puts the parent to sleep waiting for a child’s result

• When child calls exit(), OS unblocks the parent and
returns value passed by exit() along with the child pid

• If there are no children alive, wait() returns immediately

• If there are zombies waiting for their parents, wait()
returns one of the values immediately (and deallocates the
zombie)

