Fall 2017 :: CSE 306

Process
Abstraction

Nima Honarmand



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Administrivia

e Course staff email: cse306ta at cs.stonybrook.edu

e Both Babak and | will be monitoring the account to ensure a
timely response

 What to use it for: any email that you would otherwise
send to my or the TA’s email

e Unless itis for my eyes only

e Remember to use the Blackboard forum for all
non-private questions or class/lab-related discussions

* Check your CS email account for your VM addr. and key
* Why not have all your emails forwarded to one account?


mailto:cse306ta@cs.stonybrook.edu

Fall 2017 :: CSE 306 q\\\\ Stony Brook University

What is a Process?

* Process: dynamic instance of a program
VS.
* Program: static code and data

* What does a process consist of?
e Abstraction of CPU: threads
* Abstraction of memory: address space

e Abstraction of devices: file handles (for storage), sockets
(for NIC), etc.



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

What is a Process?

* Process = Program (static code and data) + execution state

e Execution state consists of

* Thread context: General purpose registers, stack pointer, program
counter, etc.

* Address space content: code, stack, heap, memory-mapped files
* Open files, sockets, etc.

* Program is used to initialize the execution state which then
changes as program executes

* The OS keeps track of each process’ execution state in a data
structure called Process Control Block (PCB)



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Program to Process
* We write a program in, e.g., C++

* A compiler translates that program into a binary

containing
* Headers (e.g., address of first instruction to execute)
* Code section (.text, .init, .plt)
e Data sections (.data, .bss, .rodata, .got, etc.)
* And other sections we don’t care about now

* OS creates a new process and uses the program to
initialize its state



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

[nitializing Process State ...

Address Space

* |nitialize address space Code
* Load code and data into memory Static Data
* Setup a piece of memory for initial stack Initial Heap

(including space for command line arguments
and environment variables)

* Setup a piece of memory for the initial heap
* etc.

* |nitialize the first thread

* Initialize (zero-out) the general purpose
registers

e Set the program counter to the first instruction
* Set the stack pointer to the top of stack Initial Stack

* etc.



NN . ... e —
Fall 2017 :: CSE 306 \ Stony Brook University

U

Changing Process State e of Funning

Address Space

* As the process runs, this layout Code
Changes Static Data
. Heap
* Might need more heap space —
* Might become multi-threaded Code
]
and more need more stacks Heap
* Stacks might grow ]
* Might load more code and more m
static data Stack
1
. etc. Code

Stack




Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Virtualizing the CPU

* Many more threads (abstract CPUs) than physical CPUs

* Have to multiplex threads over CPUs

* Key technique: Context Switching

 Thread A runs for some time, then we switch to thread B,
and so on

* Temporal Multiplexing of CPU: different threads occupy
the same CPU at different points of time

* How to switch context? Save A’s register to its PCB, restore
B’s register from its PCB

e When to switch context? We'll see in future lectures



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Virtualizing the Memory

* Many process address spaces and only one physical
memory space

* Have to multiplex again

* Key technique: Virtual Memory

* Addresses generated by each process are relative to its
own address space

* They pass an OS-controlled translation layer before
being sent to memory

* Spatial Multiplexing of memory: different address
spaces reside at different parts of physical memory
simultaneously



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

[solation and High Performance

* Need for Isolation
* Processes should be isolated (protected) from each other
* OS kernel should be isolated (protected) from processes
* Hardware devices should be protected from processes

* We also want high performance
* Applications should execute directly on the processor

* |.e., the OS should not need to intervene and check the validity of
every single instruction the application wants to execute

* How to provide isolation and high performance
simultaneously?

e Answer: Limited Direct Execution (LDE)



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Limited Direct Execution (LDE)

 Two important hardware features to enable LDE:

1) Separate user/supervisor modes for the processor
2) Virtual Memory Hardware (a.k.a. Memory Management Unit or MIMU)

e User (non-privileged) mode
* Only a subset of “harmless” processor instructions are available

» Arithmetic and logic operations, branches, memory load/store
* Only a few general-purpose registers accessible

* Supervisor (privileged) mode
» All processor instructions are available including control instructions

* E.g., enable/disable interrupts, change the page table, performance counters, ...
* All general-purpose as well as control registers are accessible



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

LDE: Separate Modes

* Applications exclusively run in the non-privileged mode

e Can do whatever permitted in that mode without OS
intervention

* Change register values, read/write their own stack or heap, do ALU
operations, take branches, call functions in their code segment, etc.

* Anything else requires switching to privileged mode (i.e.,
making a syscall) at which point the kernel takes over

— Applications execute directly on the processor but are
limited to what’s available in the non-privileged mode

e But how is this mode transfer (user-to-supervisor and
vice versa) implemented?

* Answer: interrupts (next lecture)



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

LDE: Virtual Memory

* Someone has to make sure processes only access their
own memory. But who?

* OS cannot check every single memory access a process
performs. Would be too slow.

e Hardware (processor) has to do it directly

* But how does the processor know which memory
accesses are valid for a given process?

* The OS tells it by setting up the MMU when switching to a
process

* Review: Page Table, TLB (Translation Lookaside Buffer)

—> S0 a process can access its memory directly as long as
it respects the MMU limitations



e NN —, Ty, —,,,, R —
Fall 2017 :: CSE 306

Process API Recap



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Where New Processes Come From

* Parent/child model

* An existing program has to spawn a new one

* Most OSes have a special init program that launches
system services, logon daemons, etc.

 When you log in (via a terminal or SSH), the login
program spawns your shell



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Approach 1: Windows createProcess ()

* In Windows, when you create a new process, you
specify a new program

* And can optionally allow the child to inherit some
resources (e.g., an open file handle)




Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Approach 2: Unix fork/exec

* In Unix, a parent makes a copy of itself using fork ()
e Child inherits everything, runs same program
* Only difference is the return value from fork()

* A separate exec () system call loads a new program

* Major design trade-off:
 How easy to inherit

* vs. Security (accidentally inheriting something the parent
didn’t intend)

* Note that security is a newer concern, and Windows is a
newer design...



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Why Separate fork/exec

e Life with CreateProcess (filename);

* But | want to close a file in the child.
CreateProcess(filename, list of files);

e And | want to change the child’ s environment.
CreateProcess (filename, CLOSE FD, new envp);

* Etc. (a very ugly etc.)

BOOL WINAPI CreateProcess
_In opt LPCTSTR lpApplicationName,
_Inout opt LPTSTR lpCommandLine,
_In opt LPSECURITY ATTRIBUTES lpProcessAttributes,
_In opt LPSECURITY ATTRIBUTES lpThreadAttributes,
_In BOOL bInheritHandles,
_In_ DWORD dwCreationFlags,
_In opt LPVOID lpEnvironment,
_In opt LPCTSTR lpCurrentDirectory,
_In LPSTARTUPINFO lpStartupInfo,
_Out LPPROCESS INFORMATION lpProcessInformation
) 7




Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Why Separate fork/exec

 fork () = split this process into 2 (new PID)

e Returns 0 in child

e Returns pid of child in parent

* exec () = overlay this process with new program

* (PID does not change)




Fall 2017 :: CSE 306

q\\\\ Stony Brook University

Why Separate fork/exec

* Let you do anything to the child’s process environment without
adding it to the CreateProcess () APIL

int pid = fork(); // create a child

if (0 == pid) { // child continues here
// Do anything (unmap memory, close net
// connections..)

exec (“program’, argc, argv0, argvl, ..);

}

e fork () creates a child process that inherits:
 identical copy of all parent’s variables & memory

* identical copy of all parent’s CPU registers (except one)

* Parent and child execute at the same point after fork () returns:

* for the child, fork () returns O
» for the parent, fork () returns the process identifier of the child



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Program Loading: exec ()

* The exec () call allows a process to “load” a different
program and start execution at main (actually start).

* |t allows a process to specify the number of arguments
(argc) and the string argument array (argv).

* |f the call is successful
* itis the same process ...
* but it runs a different program !!

* Code, stack & heap is overwritten
* Sometimes memory mapped files are preserved.

e exec () does not return!



e 7 NSNS —— S SEE————
Fall 2017 :: CSE 306 q\\\\ Stony Brook University

General Purpose Process Creation

In the parent process:

main ()
int pid =fork(); // create a child
if (0 == pid) { // child continues here
exec status = exec (“calc’, argc, argv0, argvl, ..);
printf (“Something is horribly wrong\n’);
exlt (exec status);
} else { // parent gEMAtinues here

printf (“Who’ s your daddy?’);
child status = wailt (pid);
} exec () should

not return




Fall 2017 :: CSE 306

Exmpl: Shell forks & executes calc

q\\\\ Stony Brook University

int pid = fork();
if (pid == 0) {
close (“.history’);
exec (“/bin/calc’);

int pid = fork();
1f (p1d == 0) {

close (“.history’);
exec (“/bin/calc’) ;

} else { } else {
wait (pid) ; wait (pid) ;
USER | 7
05 Inid = 127
open files = “.history” Process Control
last cpu =0 Blocks (PCBs)
pid = 128

oien files =



Fall 2017 :: CSE 306

q\\\\ Stony Brook University

Exmpl: Shell forks & executes calc

int pid = fork();
if (pid == 0) {
close (“.history’);
exec (“/bin/calc’) ;

int calc main () {
int g = 7;
do init();
ln = get input();
exec 1n(ln);

} else {
walt (pid) ;
USER T

/

OS5 Ipid =127
open files = “.history’
last cpu =0

’

pid = 128
open files =

Process Control
Blocks (PCBs)



e 7 NSNS —— S SEE————
Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Costof fork ()

Simple implementation of fork ():
 allocate memory for the child process

 copy parent’ s memory and CPU registers to child’ s
* Expensive !

In 99% of the time, we call exec () after calling fork ()
* the memory copying during fork () operation is useless
* the child process will likely close the open files & connections
* overhead is therefore high

viork ()

* asystem call that creates a process “without” creating an identical memory image
e child process should call exec () almost immediately

* Unfortunate example of implementation influence on interface
* Current Linux & BSD 4.4 have it for backwards compatibility

Copy-on-write to implement fork avoids need for vfork ()



e 7 NSNS —— S SEE————
Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Orderly Termination: exit ()

* After the program finishes execution, it calls exit()

* This system call:

takes the “result” of the program as an argument

closes all open files, connections, etc.

deallocates memory

deallocates most of the OS structures supporting the process

checks if parent is alive:

* If so, it holds the result value until parent requests it; in this case, process
does not really die, but it enters the zombie/defunct state

* If not, it deallocates all data structures, the process is dead
cleans up all waiting zombies

* Process termination is the ultimate garbage collection
(resource reclamation).



Fall 2017 :: CSE 306 q\\\\ Stony Brook University

wait () System Call

* A child program returns a value to the parent, so the
parent must arrange to receive that value

* The wait () system call serves this purpose

e Puts the parent to sleep waiting for a child’s result

* When child calls exit (), OS unblocks the parent and
returns value passed by exit () along with the child pid

* If there are no children alive, wait () returnsimmediately

* If there are zombies waiting for their parents, wait ()
returns one of the values immediately (and deallocates the
zombie)



