
Fall 2017 :: CSE 306

Interrupts
&

System Calls
Nima Honarmand

Fall 2017 :: CSE 306

App

Previously on CSE306…

Hardware

Libraries

Kernel

User

Supervisor

App

Libraries

App

Libraries

System Call Table (350—1200)

Open file
“hw1.txt”

Ok, here’s
handle 4

Fall 2017 :: CSE 306

Regular Control Flow
• Regular instruction flow in a processor

• Fetch the instruction pointed to by ip (instruction
pointer) register

• Execute the current instruction

• Increment ip to point to the next instruction
• If current inst is a jump, branch or call, set ip to its target

instead of incrementing

• This is called regular control flow because the
program itself determines the next instruction at
any step
• Instruction flow logically follows the course code

Fall 2017 :: CSE 306

Regular Control Flow

x = 2, y = true

if (y) {

x /= 2;

printf(x);

} //...

void printf(va_args)

{

//...

}

Regular control flow: branches and calls

(logically follows source code)

ip

Fall 2017 :: CSE 306

Irregular Control Flow
• Some times, due to “special events”, control has to

be transferred to somewhere outside the program

• Since the program does not determine the target in
this case, we call it irregular control flow

• Three cases in an OS:
• External interrupt: caused by a hardware device, e.g.,

timer ticks, network card interrupts

• Trap: Explicitly caused by the current execution, e.g., a
system call

• Exception (or Fault): Implicitly caused by the current
execution, e.g., a page fault or a device-by-zero fault

Fall 2017 :: CSE 306

External Interrupt Example

User Kernel

Stack Stack

if (x) {

printf(“Boo”);

...

printf(va_args…){

...

Disk_handler (){

...

}

SP

IP

SP

IP

Disk
Interrupt!

Fall 2017 :: CSE 306

How to Handle?

• Five general steps
1) Transfer control to a pre-specified instruction in the

kernel code

• Who should specify this location?

2) Save current thread’s “context” on the kernel stack

• Why?

3) Execute a service routine to handle the situation

4) Restore the current thread context

5) Return to the interrupted code, right after the last
executed instruction

Fall 2017 :: CSE 306

How to Handle?

• External interrupts, traps and exceptions can all use
the same five-step procedure

• So they do: Intel provides a single mechanism to
handle all of them

• We use the general term interrupt to refer to all of
them, unless stated otherwise

Fall 2017 :: CSE 306

How it works: Hardware

Fall 2017 :: CSE 306

Interrupt Number (Vector)

• Each interrupt identified a number indicating its
type

• E.g., in x86, 14 is a page fault, 3 is a debug
breakpoint

• This number is the index into an Interrupt
Descriptor Table (IDT) stored in memory

Fall 2017 :: CSE 306

x86 Interrupt Overview

• Support 256 interrupts (assigned an index from 0-255)

• #0-31 are for processor interrupts; generally fixed by
Intel
• E.g., 14 is always for page faults

• 32-255 are software configured
• 32-47 are for device interrupts (IRQs) in xv6

• Most device’s IRQ line can be configured

• Look Chapter 4 of Bovet and Cesati for more details

• xv6 uses #64 (0x40) for its system call

• Linux uses #128 (0x80) for its system call

Fall 2017 :: CSE 306

x86/xv6 Interrupts

0 255

…

31

… …

47

Pre-defined by x86 OS Configurable

Device IRQs 64 = xv6 System
Call

128 = Linux
System Call

Fall 2017 :: CSE 306

Traps (Software Interrupts)
• In x86, the int <num> instruction allows

software to raise an interrupt
• So in an xv6 user-mode program, if you see int 0x40,

it’s a system call

• OS sets ring level required to raise an interrupt
• Generally, user programs can’t manually issue an
int 14 (page fault)

• An unauthorized int instruction causes a General
Protection (#GP) fault

• Interrupt #13

Fall 2017 :: CSE 306

How Is This Configured?

• Kernel creates an array of Interrupt Descriptors in
memory, called Interrupt Descriptor Table, or IDT
• Can be anywhere in memory

• Pointed to by special processor register (idtr)

• Entry 0 configures interrupt 0, and so on

0 255

…

31

… …

47

idtr

Fall 2017 :: CSE 306

Interrupt Descriptor

• Code segment selector
• Almost always the same (kernel code segment)

• Address of the code to run

• Privilege Level (Ring)
• What is the minimum privilege level that can invoke the

interrupt (using int instruction)

• Present bit – disable unused interrupts

• And a bunch of other stuff…

Fall 2017 :: CSE 306

IDT Example: Page Fault

0 255

…

31

… …

47

idtr

Code Segment: Kernel Code

Segment Offset: &page_fault_handler

Ring: 0 // user code may not raise this exception

Present: 1

14 (page fault)

Fall 2017 :: CSE 306

IDT Example: xv6 Syscall

0 255

…

31

… …

64

idtr

Code Segment: Kernel Code

Segment Offset: &syscall_handler

Ring: 3 // user code may raise this exception

Present: 1

64 (syscall)

Fall 2017 :: CSE 306

x86 Interrupt Descriptors

• x86 interrupt descriptors support many other
(legacy) features that are rarely used

• Makes their working and in-memory layout a bit
confusing

• Look at the architecture manual for more details

Fall 2017 :: CSE 306

xv6 code review

• Five general steps
1) Transfer control to a pre-specified instruction in the

kernel code

2) Save current thread’s “context” on the kernel stack

3) Execute a service routine to handle the situation

4) Restore the current thread context

5) Return to the interrupted code, right after the last
executed instruction

Read the xv6-book (chapter 3) for a detailed
review.

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/ref/xv6-book-rev10.pdf

Fall 2017 :: CSE 306

How it works: Software

Fall 2017 :: CSE 306

xv6 code review

• Five general steps
1) Transfer control to a pre-specified instruction in the

kernel code

2) Save current thread’s “context” on the kernel stack

3) Execute a service routine to handle the situation

4) Restore the current thread context

5) Return to the interrupted code, right after the last
executed instruction

Read the xv6-book (chapter 3) for a detailed
review.

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/ref/xv6-book-rev10.pdf

Fall 2017 :: CSE 306

System Calls

Fall 2017 :: CSE 306

System Call “Interrupt”
• System calls issued using int instruction

• int 0x40 in xv6

• int 0x80 in Linux

• Dispatch routine is just an interrupt handler

• System calls are arranged in a table
• See syscall.h and syscall.c in xv6

• Program selects the one it wants by placing index in
eax register before executing the int instruction
• Arguments go in the other registers or on the stack, as

specified by the OS

• Return value goes in eax

Fall 2017 :: CSE 306

How many system calls?

• Linux exports about 350 system calls

• Windows exports about 400 system calls for core
APIs, and another 800 for GUI methods

Fall 2017 :: CSE 306

xv6 code review

• System call table

• Remember, you will add your very own system call
in Lab 1!

Again, Read the xv6-book (chapter 3) for a
detailed review.

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa17/cse306/ref/xv6-book-rev10.pdf

Fall 2017 :: CSE 306

New System Call Instructions (1)

Around Pentium 4 era (2000):

• Processors got very deeply pipelined
• Pipeline stalls/flushes became very expensive

• Cache misses can cause pipeline stalls

• System calls took twice as long from Pentium 3 to
Pentium 4
• Why?

• IDT entry may not be in the cache

• Different permissions constrain instruction reordering

Fall 2017 :: CSE 306

New System Call Instructions (2)

• Idea: what if we cache the IDT entry for a system
call in a special CPU register?
• No more cache misses for the IDT!

• Maybe we can also do more optimizations

• Assumption: system calls are frequent enough to
be worth the transistor budget to implement this

Fall 2017 :: CSE 306

AMD: syscall & sysret

• These instructions uses an MSR (machine specific
registers) to store syscall entry point and code
segment

• A drop-in replacement for int 0x80

• Everyone loved it and adopted it wholesale
• Even Intel!

• Intel later added its own instructions
• sysenter and sysexit

