
Fall 2017 :: CSE 306

Introduction to

Virtual Memory

Nima Honarmand

(Based on slides by Prof. Andrea Arpaci-Dusseau)



Fall 2017 :: CSE 306

Motivating Virtual Memory
• (Very) old days: Uniprogramming — only one process existed at a time

• “OS” was little more than a library occupying the beginning of the memory

User 

Process

OS

Physical 

Memory

0

2n-1
Stack

Code

Heap

• Advantage:
• Simplicity — No virtualization needed

• Disadvantages:
• Only one process runs at a time

• Process can destroy OS



Fall 2017 :: CSE 306

Goals for Multiprogramming
• Transparency

• Processes are not aware that memory is shared

• Works regardless of number and/or location of processes

• Protection
• Cannot corrupt OS or other processes

• Privacy: Cannot read data of other processes

• Efficiency
• Low run-time overhead

• Do not waste memory resources

• Sharing
• Cooperating processes should be able to share portions of address space



Fall 2017 :: CSE 306

Abstraction: Address Space
• Address space: Each process’ view of 

its own memory range
• Set of addresses that map to bytes

• Problem: how can OS provide 
illusion of private address space to 
each process?

• Address space has static and 
dynamic components
• Static: Code and some global variables

• Dynamic: Stack and Heap

Stack

Code

Heap

0

2n-1



Fall 2017 :: CSE 306

How to Virtualize Memory?

• Problem: How to run multiple processes 
concurrently?

• Addresses are “hard-coded” into program binaries

• How to avoid collisions?



Fall 2017 :: CSE 306

How to Virtualize Memory?
• Possible Solutions for Mechanisms:

1) Time Sharing
2) Base register
3) Base + Bound registers
4) Segmentation
5) Paging

• We’ll first discuss the general ideas
• To motivate the historical progression
• Building insight/intuition into why things are the why they are

• Once familiar with the basic concepts, we’ll take a look 
at x86 idiosyncrasies
• Of which, there are a lot 



Fall 2017 :: CSE 306

1) Time Sharing of Memory

• Try similar approach to how OS virtualizes CPU

• Observation: OS gives illusion of many virtual CPUs 
by saving CPU registers to memory when a process 
isn’t running

• Could give illusion of many virtual memories by 
saving memory to disk when process isn’t running



Fall 2017 :: CSE 306

Problem w/ Time Sharing Memory

• Problem: Ridiculously poor performance

• Better Alternative: space sharing
• At same time, space of memory is divided across 

processes

• Remainder of solutions all use space sharing



Fall 2017 :: CSE 306

2) Per-Process Base Register
• Goal: Allow processes to space-share the physical memory

• Requires hardware support
• Memory Management Unit (MMU)

• MMU dynamically changes process-generated address at 
every memory reference
• Process generates virtual addresses (in their address space)
• Memory hardware uses physical addresses

CPU MMU
Physical

Memory

Process runs here

Virtual address
Physical address



Fall 2017 :: CSE 306

Hardware Support
Two operating modes:

• Privileged (protected, kernel) mode: OS runs
• When enter OS (trap, system calls, interrupts, exceptions)

• Allows certain instructions to be executed
• Can manipulate contents of MMU

• Allows OS to access all of physical memory

• User mode: User processes run
• Perform translation of virtual address to physical address

• Minimal MMU contains base register for translation
• Base: start location for current address space



Fall 2017 :: CSE 306

HW Implementation
• Translation on every memory access of user process

• MMU adds base register to virtual address to form physical 
address

• Each process has different value in base register
• Saved/restored on a context switch 

base moderegisters

32 bits 1 bit

mode 

==

user?

no

yes

+ 

base

virtual

address
physical

address

MMU



Fall 2017 :: CSE 306

Quiz: Who Controls Base Register?

• What entity should do the address translation with 
base register? 

1) User Process

2) OS

3) HW

• What entity should modify the base register?
1) User Process

2) OS

3) HW



Fall 2017 :: CSE 306

Advantages & Disadvantages
• Advantages:

• Supports Dynamic Relocation
• Can place process at different locations in memory everytime

• Can even move process address space around in memory 

• Simple, fast HW

• Simple OS support

• Disadvantages:
• Does not provide protection

• Does not enable sharing

• OS has to allocate the maximum address space up front
• Wastes a lot of memory space



Fall 2017 :: CSE 306

3) Per-Process Base+Bounds Regs

• Idea: limit the address space with a bounds register
• To provide protection

• Base register: smallest physical addr (or starting 
location)

• Bounds register: size of this process’s virtual address 
space
• Sometimes defined as largest physical address (base + size)

• OS kills process if process loads/stores beyond bounds



Fall 2017 :: CSE 306

HW Implementation
• Translation on every memory access of user process

• MMU compares virtual address to bounds register
• if virtual address is greater, then generate exception

• MMU adds base to virtual addr to form physical address

base moderegisters

32 bits 1 bit

mode 

==

user?

no

yes

+ 

base

virtual

address
physical

address

MMU

<

bounds?

bounds

32 bits

yesno

Exception



Fall 2017 :: CSE 306

Managing Processes w/ Base+Bounds

• Context-switch
• Add base and bounds registers to PCB

• Steps

• Change to privileged mode

• Save base and bounds registers of old process

• Load base and bounds registers of new process

• Change to user mode and jump to new process

• Protection requirement
• User process cannot change base and bounds registers

• User process cannot change to privileged mode



Fall 2017 :: CSE 306

Base+Bounds Advantages

• Provides protection across address spaces

• Supports dynamic relocation

• Simple, inexpensive, fast HW implementation
• Few registers, little logic in MMU

• Simple context switching logic
• Save and restore a couple of registers



Fall 2017 :: CSE 306

Base+Bounds Disadvantages

• Each process must be allocated 
contiguously in physical memory
• Must allocate memory that may not be 

used by process

• No partial sharing: Cannot share 
limited parts of address space

Stack

Code

Heap

0

2n-1



Fall 2017 :: CSE 306

4) Segmentation

• Divide address space into logical 
segments
• Each segment corresponds to logical 

entity in address space

• E.g., code, stack, heap

• Each segment can independently:
• be placed in physical memory

• grow and shrink

• be protected (separate 
read/write/execute protection bits)

Stack

Code

Heap

0

2n-1



Fall 2017 :: CSE 306

Segmented Addressing
• Code now specifies segment and offset within 

segment for every memory access

• How to designate a particular segment?
• Use part of virtual address

• Top bits of virtual address select segment
• Low bits of virtual address select offset within segment

• What if small address space, not enough bits?
• Implicitly by type of memory reference

• To fetch an instruction: user code segment
• To push/pop stack: use stack segment
• For everything else: use data segment

• Use special segment registers if you need to override the 
above

Mechanism

used in x86



Fall 2017 :: CSE 306

HW Implementation

• MMU contains Segment Table
• Each segment has own base, bounds, protection bits

• MMU sores the segment table (or has a special register 
pointing to the segment table stored in memory)

Segment

Table
moderegisters

1 bit

mode 

==

user?

no

yes

offset + 

seg base

virtual address

(segment:offset)
physical

address

MMU

segment in

the table?

yes

no

Exception offset

< bounds?

permission

okay?

yes yes



Fall 2017 :: CSE 306

Example
• 14 bit virtual address, 4 segments

• How many bits for segment? How many bits for offset?

• Translate virtual addresses (in hex) to physical addresses
• 0x0240:

• 0x1108:

• 0x265c:

• 0x3002:

Segment Base Bounds R W

0 0x2000 0x6ff 1 0

1 0x0000 0x4ff 1 1

2 0x3000 0xfff 1 1

3 0x0000 0x000 0 0

Seg 0; phys-addr: 0x2000 + 0x240 = 0x2240 

Seg 3: out of bounds — no translation 

Seg 1; phys-addr: 0x0000 + 0x108 = 0x108

Seg 2; phys-addr: 0x3000 + 0x65c = 0x365c



Fall 2017 :: CSE 306

Advantages of Segmentation
• Enables sparse allocation of address space

• Stack and heap can grow independently

• Heap: If no objects on free list, dynamic memory allocator 
requests more from OS (e.g., UNIX: malloc calls sbrk())

• Stack: OS recognizes reference outside legal segment, 
extends stack implicitly

• Different protection for different segments
• Read-only status for code

• Enables sharing of selected segments

• Supports dynamic relocation of each segment



Fall 2017 :: CSE 306

Disadvantages of Segmentation
• If only a few segments allowed per process: coarse-

grained segmentation
• Not very flexible

• Cannot easily accommodate sharing

• If many segments allowed per process: fine-grained
segmentation
• Has to save/restore a large segment table on every context 

switch
• Remember: each process has its own set of segments

• Makes physical memory management much more 
complex
• Causes fragmentation



Fall 2017 :: CSE 306

Conclusion

• HW & OS work together to virtualize memory
• Give illusion of private address space to each process

• Adding MMU registers for base+bounds so 
translation is fast 
• OS not involved with every address translation, only on 

context switch or errors

• Dynamic relocation w/ segments is good building 
block

• Next lecture: Solve fragmentation with paging


