
Fall 2017 :: CSE 306

Applications
of 

Virtual Memory
in

OS Design

Nima Honarmand



Fall 2017 :: CSE 306

Introduction
• Virtual memory is a powerful level of indirection

• Indirection: IMO, the most powerful concept in 
Computer Science

• Fundamental Theorem of Software Engineering:
“All problems in computer science can be solved by 
another level of indirection”

-- David Wheeler

• Except (perhaps) the problem of already having too 
many levels of indirection 

• So, what can we do with such a powerful primitive 
as virtual memory?



Fall 2017 :: CSE 306

Some Ideas
• On-demand memory allocation

• Memory-mapped files

• Copy-on-Write (COW) fork

• Stack guards and automatic stack growth

• Virtual Dynamic Shared Object (VDSO)

• Interprocess communication

• Distributed Shared Memory

• Swapping (to use more virtual memory then physical RAM)

• Mapping kernel to same location in all address spaces

• …



Fall 2017 :: CSE 306

Process Address Space Layout

• To the above things, we need to keep some 
information about Process Address Space Layout

• Kernel always needs to know
• What is mapped to virtual address X of a process?

• What are the restrictions of that mapping?

• Kernel should somehow keep track of this 
information

• Question: is a page table versatile enough for this?

• Answer: Unlikely

→ We need a side data structure to store this info



Fall 2017 :: CSE 306

In-Kernel Tracking of 
Virtual Memory 
Mappings



Fall 2017 :: CSE 306

Simple Example

• “/bin/ls” binary specifies load address

• Optionally, specifies where it wants libc
• And other libraries it uses

• Dynamically asks kernel for “anonymous” pages for its 
heap and stack

• Anonymous = not from a file

Virtual Address Space (4GB)

0 0xffffffff

code
(from /bin/ls)

code
(from libc.so)

heap stk Kernel

0xc000000



Fall 2017 :: CSE 306

How to Represent in the Kernel?

• Linux represents portions of a process with a 
vm_area_struct, or VMA

• Includes:
• Start address (virtual)

• End address (first address after VMA) – why?

• Memory regions are page aligned

• Protection (read, write, execute, etc.) – implication?

• Different page protections means new VMA

• Pointer to file (if one)

• Other bookkeeping



Fall 2017 :: CSE 306

Simple VMA List Representation

vma

(/bin/ls)

start end

next

vma

anonymous

vma

(libc.so)

mm_struct
(one per 
process)

0 0xffffffff

code
(from /bin/ls)

code
(from libc.so)

heap stk

0xc000000

Kernel

vma

anonymous



Fall 2017 :: CSE 306

Process Address Space Layout

• Determined (mostly) by the application
• Partly determined at compile time

• Link directives can influence this 

• Application dynamically requests new mappings from the 
OS, or deletes existing mappings, or changes protection 
flags, etc.

• OS usually reserves part of the address space to map 
itself 

• E.g., upper 1GB on 32-bit x86 Linux



Fall 2017 :: CSE 306

Key Unix/Linux API: mmap()
• void * mmap(void *addr, size_t length, int
prot, int flags, int fd, off_t offset)

• Arguments:
• addr: virtual address where program wants the region (0 means 

anywhere is okay)
• length: size of the mapped region
• prot: protection flags
• flags: field or’ing a bunch of flag (future slides)
• fd: file descriptor for memory-mapped file regions
• offset: offset of the region within the file

• Return value:
• Beginning address of the mapped region (>= 0)
• Error (< 0)



Fall 2017 :: CSE 306

Anonymous Mappings with mmap()

• To ask for memory that is not backed by any file —
hence “anonymous”

• flags should contain MAP_ANONYMOUS

• OS will create a new VMA of the right size at the 
appropriate location

• Based on addr if not zero, otherwise wherever there is 
a big-enough hole in the address space

• Information related to flags and prot are stored 
in VMA for the OS to know how to treat this VMA



Fall 2017 :: CSE 306

Memory-Mapped Files and mmap()

• mmap() can be used to map part of a file in the 
address space

• If flags contain MAP_FILE, then kernel looks at fd
and offset fields

• Another way of accessing files in addition to 
read()/write()

• After mem-mapping a part of a file, you can use 
regular load/store instructions to access that part



Fall 2017 :: CSE 306

Memory-Mapped Files and mmap()

• OS allocates a big-enough region of the address space, 
copies that part of the file to the region, and returns 
region’s beginning address

• Again, returned addr. depends on whether addr is 0 or not

• This is the main mechanism used for loading .text and 
.data from binary files and shared libraries

• Also, data bases use it to access their data

• Windows API: CreateFileMapping()



Fall 2017 :: CSE 306

Other important mmap() Flags
• MAP_FIXED

• Do not treat addr as a hint; mmap() should fail if it cannot 
allocate at addr

• MAP_HUGETLB/MAP_HUGE_2MB/MAP_HUGE_1GB
• Use huge pages for this part of the address space

• MAP_SHARED/MAP_PRIVATE (for mem-mapped 
files) 

• Should my writes to this file be visible to other processes
mem-mapping it?

• Should my writes carry through to the file itself?



Fall 2017 :: CSE 306

Memory-Mapped File Example
char *p; int fd; struct stat sb; 

fd = open("/my_file.txt", O_RDONLY);

fstat(fd, &sb);

p = mmap(0, sb.st_size, PROT_READ, MAP_SHARED, fd, 0);

close (fd);

for (len = 0; len < sb.st_size; len++)

putchar(p[len]);

munmap(p, sb.st_size);

Open the file (in the 
right mode)

Get its size (and other 
stats)

mmap the part that 
you need (doesn’t 
have to be all of it)

Can close the file 
descriptor now.

Unmap the file from 
address space

• DISCLAIMER: This code is over-simplified. 
In reality, there should be quite a bit of 
error checking after each system call.

Access the mmaped
memory.



Fall 2017 :: CSE 306

Other Related Syscalls
• munmap(void *addr, size_t length)

• Removes the given region from VMAs, potentially 
truncating/splitting existing VMAs

• mremap(void *old_address, size_t old_size, 

size_t new_size, int flags, ... /* void 

*new_address */)

• Expands (or shrinks) an existing region, potentially moving it to a 
new address (depends on flags)

• mprotect(void *addr, size_t len, int prot)

• Changes the access protection for the given range of virtual 
memory addresses



Fall 2017 :: CSE 306

OS is Lazy
• On mmap(), most OSes just find a big enough hole in 

address space, create a VMA and keep mmap() 
arguments in it

• No physical memory is allocated initially

• No file access is performed (if mem-mapped file)

• Even the page table is not modified at that point

• A page fault happens upon the first access to an 
address in that range

• Because there is no mapping in the page table

• Based on VMA info, OS determines if the access should 
be allowed



Fall 2017 :: CSE 306

OS is Lazy (cont’d)

• If VMA is anonymous, OS allocates a physical page 
and adds it to page table at the accessed address

• The page is typically zeroed out for security reasons

• If VMA is file-backed, OS allocates a page and 
copies corresponding file data to it

→ OS only allocates physical memory on-demand, 
when a valid virtual address is accessed for the 
first time



Fall 2017 :: CSE 306

Laziness Rules in OS

• As a general rule, OSes try to be as lazy as possible
• Postpone doing something until it is absolutely 

necessary (OS; not you!)

• On-demand physical page allocation is one example

• Second example: file writes are not sent 
immediately to disk

• Kept in memory and written back in the background 
when system load is low

• Third example: copy-on-write fork()



Fall 2017 :: CSE 306

Laziness Rules in OS (cont’d)
• Laziness generally makes OS more responsive

• System calls can return more quickly than otherwise
• Acknowledge program’s request, and do the work later when it is 

really necessary

• Laziness often eliminates unnecessary work, e.g.
• Will not allocate memory if user never touches it

• Program might link with many libraries but not use most of 
them (or parts of them) in a given run

• Why write to disk immediately if the same file data will be 
written again soon

• Why write to a disk file at all if it is going to be deleted?
• Happens a lot with temp files

• And numerous other examples…



Fall 2017 :: CSE 306

Applications of Virtual 
Memory



Fall 2017 :: CSE 306

1) On-Demand Paging

• Discussed previously in slides on “OS Laziness”



Fall 2017 :: CSE 306

2) Memory-Mapped Files
• Makes file content accessible using simple load/store instructions

• No need to pay the cost of read()/write() system calls

• Combined with demand paging, allows mapping large portions of 
file in the address space with little cost

• Read a file page from disk and allocate physical page for it upon first 
access (on-demand)

• Allows OS to share same file pages between multiple processes
• If mappings are read-only or MAP_SHARED
• OS only keeps one copy in physical memory and map it to multiple 

address spaces
• We’ll discuss this more in the context of page caches

• Very useful in dealing with shared libraries



Fall 2017 :: CSE 306

3) Copy-On-Write (COW) fork()
• Recall: fork() creates and starts a copy of the 

process; identical except for the return value

• Example:
int pid = fork();

if (pid == 0) {

// child code

} else if (pid > 0) { 

// parent code

} else {

// error

}



Fall 2017 :: CSE 306

Copy-On-Write (COW) fork()

• Naïve fork() would march through address 
space and copy each page

• As xv6 does

• But most processes immediately exec() a new 
binary without using any of these pages

• Even if not followed by an exec(), much of 
parent’s pages may never be touched

→ Being lazy is better!



Fall 2017 :: CSE 306

How does COW work?
• Memory regions:

• New copies of all VMAs are allocated for child during fork

• As are page tables

• Pages in memory:
• In page table (and in-memory representation), clear write bit, set 

COW bit
• Is the COW bit hardware specified?

• No, OS uses one of the available bits in the PTE
• But it does not have to; can just keep the info in the VMA like other meta 

data

• Make a new, writeable copy on a write page fault

• You will add COW fork to xv6 in Lab2!



Fall 2017 :: CSE 306

4) Automatic Stack Growth

• Recall: in x86, as you add call frames to a stack, 
they decrease in virtual address order

• Example:

Stack “bottom”: 0x13000

0x12600

0x12300

0x11900

Exceeds stack 
page

main()

foo()

bar()
End of stack: 0x12000



Fall 2017 :: CSE 306

Guard Page

How to Do This?
• How to support automatic stack 

growth?

• OS allocates a guard page in the 
address space below the stack and 
marks it as not-accessible

• Just a virtual mapping, no physical 
page frame

• On a page fault in the guard page, 
OS knows it needs to grow the stack

• Allocates a physical page and moves 
the guard page up (i.e., lower 
address)

Stack Page

New Guard 
Page

New Stack 
Page

main()

foo()

bar()

Page 
Fault! 

Allocate 
a new 
stack 
page



Fall 2017 :: CSE 306

5) Interprocess Communication

• OS maps physical pages of memory into multiple 
process address spaces

• Enables shared-memory communication between 
processes

• Of course, processes should be careful about concurrency 
issues when accessing such memory

• See shm...() family of system calls in Unix/Linux



Fall 2017 :: CSE 306

6) VDSO: Virtual Dynamic Shared Object

• A small shared library mapped automatically (by kernel) into 
the address space of each process

• Used to reduce the cost of some frequent system calls even 
further

• E.g., getpid(), gettimeofday()

• Goal: turn the system call into a simple function call
• No need to save/restore context, switch privilege levels, jump to 

kernel, etc.

• Done by mapping the data needed to serve the system call 
and (maybe) the code to access that data into the process 
address space

• You will implement this in Lab 3!



Fall 2017 :: CSE 306

7) Distributed Shared Memory
• Motivation: allow a virtual address space to span 

multiple physical computers processes
• Gives your program a lot more memory or processing 

power than can be had on a single computer

• Gives the illusion of physical shared memory, across 
a network

• E.g., can be used in scientific computing languages 
using a Partitioned Global Address Space (PGAS) 
model

• UPC (Unified Parallel C), X10, etc.



Fall 2017 :: CSE 306

Distributed Shared Memory (cont’d)

• A virtual address in a process may be “logically” 
mapped to a physical page that resides on another 
computer

• In such a case, on a page fault on that address, you need 
to get a copy of that page from the machine where it 
resides

• How?
• Replicate pages that are read-only

• Invalidate copies on write

• How to know if a page is only read or also written?



Fall 2017 :: CSE 306

8) Swapping
• Transparently (i.e., w/o programmer involvement), use 

more virtual memory than available physical memory
• One very large process

• Multiple processes whose combined virtual memory size is 
more than available physical memory

• Idea: when out of physical memory, swap one physical 
memory page out to disk and use its space

• Problem 1: how to select the victim page to be swapped out?

• Problem 2: how to find which page tables have a mapping for 
this victim?

• Will cover in detail in conjunction with disks and file 
systems



Fall 2017 :: CSE 306

Summary

• Virtual memory is a very powerful indirection layer 
with many application is OS design

• Whenever you see a level of indirection (or, similar 
concepts such as “virtual”, “abstract”, etc.), ask 
yourself “what else can I do with it?”


