
Fall 2017 :: CSE 306

Context Switching
& CPU Scheduling

Nima Honarmand

Fall 2017 :: CSE 306

Administrivia

• Midterm: next Tuesday, 10/17, in class

• Will include everything discussed until then

• Will cover:
• Class lectures, slides and discussions

• All required readings (as listed on the course schedule
page)

• All blackboard discussions

• Labs 1 and 2 and relevant xv6 code

Fall 2017 :: CSE 306

Thread as CPU Abstraction

• Thread: OS abstraction of a CPU as exposed to
programs

• Each process needs at least one thread
• Can’t run a program without a CPU, right?

• Multi-threaded programs can have multiple threads
which share the same process address space (i.e.,
page table and segments)

• Analogy: multiple physical CPUs share the same physical
memory

Fall 2017 :: CSE 306

Thread States
• Running: the thread is scheduled and running on a CPU (either in

user or kernel mode)

• Ready (Runnable): the thread is not currently running because it
does not have a CPU to run on; otherwise, it is ready to execute

• Waiting (Blocked): the thread cannot be run (even if there are
idle CPUs) because it is waiting for the completion of an I/O
operation (e.g., disk access)

• Terminated: the thread has exited; waiting for its state to be
cleaned up

Ready Running Terminated

Waiting

Fall 2017 :: CSE 306

Thread State Transitions
• Ready → Running: a ready thread is selected by the CPU

scheduler and is switched in

• Running → Waiting: a running thread performing a blocking
operation (e.g., requests disk read) and cannot run until the
request is complete

• Running → Ready: a running thread is descheduled to give the
CPU to another thread (not because it made a blocking request);
it is ready to re-run as soon as CPU becomes available again

• Waiting → Ready: thread’s blocking request is complete and it is
ready to run again

• Running → Terminated: running thread calls an exit function (or
terminates otherwise) and sticks around for some final book-
keeping but does not need to run anymore

Fall 2017 :: CSE 306

Run and Wait Queues
• Kernel keeps Ready threads in one or more Ready

(Run) Queue data structures
• CPU scheduler checks the run queue to pick the next thread

• Kernel puts a thread on a wait queue when it blocks,
and transfers it to a run queue when it is ready to run
again

• Usually, there are separate wait queues for different causes of
blocking (disk access, network, locks, etc.)

→ Each thread is either running, or ready in some run
queue, or sleeping in some wait queue
• CPU Scheduler only looks among Ready threads for the next

thread to run

Fall 2017 :: CSE 306

Thread State Transitions

• How to transition? (Mechanism)

• When to transition? (Policy)

Ready Running Terminated

Waiting

Thread

created

Scheduled

De-scheduled

Exited

Blocked (e.g., on disk IO)
Blocked request

completed

Fall 2017 :: CSE 306

Mechanism: Context
Switching

Fall 2017 :: CSE 306

Thread’s Are Like Icebergs

• You might think of a thread as a user-mode-only
concept

• Time to correct that conception!

• In general, a thread has both user-mode and
kernel-mode lives

• Like an iceberg that is partly above pater and partly
below.

Fall 2017 :: CSE 306

Thread’s Are Like Icebergs (cont’d)

• When CPU is in user-mode, it is executing the
current thread in user-mode

• Code that thread executes comes from program
instructions

• When CPU transitions to supervisor mode and
starts running kernel code (because of a syscall,
exception or interrupt) it is still in the context of the
current thread

• Code that thread executes comes from kernel
instructions

Decouple notion of thread from user-mode code!

Fall 2017 :: CSE 306

Thread’s Life in Kernel & User Modes
Program Code

int x = getpid();

printf(“my pid is %d\n”, x);

(thread is using user-mode stack)
…
Call getpid() library function

…
int 0x80 (Linux system call)

(use user-mode stack)
return from getpid() library call
Call printf() library call

…
int 0x80 (Linux system call)

(use user-mode stack)
return from printf() library call

…

(use kernel-mode stack)
Save all registers on the kernel-mode stack
call sys_getpid()

Restore registers from kernel-mode stack
iret (to return to user-mode)

(use kernel-mode stack)
Save all registers on the kernel-mode stack
…
iret (to return to user-mode)

Execution

Kernel-mode execution

(code from kernel binary)

User-mode execution

(code from program ELF)

Fall 2017 :: CSE 306

Context Switching

• Context Switch: saving the context of the current
thread, restore that of the next one, and start
executing the next thread

• When can OS run the code to do a context switch?
• When execution is in kernel

• Because of a system call (e.g., read), exception (e.g., page

fault) or an interrupt (e.g., timer interrupt)

• …and only when execution is in kernel
• When in user-mode, kernel code is not running, is it?

Fall 2017 :: CSE 306

Thread Context

• Now that thread can have both user-mode and
kernel-mode lives…

• It would also have separate user-mode and kernel-
mode contexts

• User-mode context: register values when running in
user mode + user-mode stack

• Kernel-mode context: register values when running in
kernel mode + kernel-mode stack

Fall 2017 :: CSE 306

Saving and Restoring Thread Context

• Again: context switching only happens when kernel
code is running

• We have already saved current thread’s user-mode
context when switching to the kernel

• So no need to worry about that

• We just need to save current thread’s kernel mode
context before switching

• Where? Can save it on the kernel-mode stack of current
thread

Fall 2017 :: CSE 306

Context Switch Timeline
Operating System Hardware Program

Handle the trap
Call switch() routine
- save kernel regs(A) to k-stack(A)
- switch to k-stack(B)
- restore kernel regs(B) from k-stack(B)
return-from-trap (into B)

timer interrupt
save user regs(A) to k-stack(A)
witch to kernel mode
jump to trap handler

restore user regs(B) from k-stack(B)
switch to user mode
jump to B’s IP

Thread A in
user mode

Thread B in
user mode

In A’s

Context

In B’s

Context

Fall 2017 :: CSE 306

xv6 Code Review
• swtch() function

Fall 2017 :: CSE 306

When to Call swtch()?
• Can only happen when in kernel mode

1) Cooperative multi-tasking: only when current
thread voluntarily relinquishes the CPU
• I.e., when it makes system calls like yield(), sleep(), exit()

or when it performs a blocking system call (such as disk
read)

2) Preemptive multi-tasking: take the CPU away by
force, even if the thread has made no system calls
• Use timer interrupts to force a transition to kernel

• Once in the kernel, we can call swtch() if we want to

Fall 2017 :: CSE 306

Role of CPU Scheduler
• swtch() just switches between two threads; it

doesn’t decide which thread should be next

• Who makes that decision?
• Answer: CPU scheduler

• CPU Scheduler is the piece of logic that decides who should
run next and for how long

• xv6 code review
• In xv6, scheduler runs on

its own thread (which runs
totally in kernel mode)

• In Linux, it runs in the
context of current thread

Fall 2017 :: CSE 306

Policy: Scheduling
Discipline

Fall 2017 :: CSE 306

Vocabulary

• Workload: set of jobs
• Each job described by (arrival_time, run_time)

• Job: view as current CPU burst of a thread until it
blocks again

• Thread alternates between CPU and blocking
operations (I/O, sleep, etc.)

• Scheduler: logic that decides which ready job to run

• Metric: measurement of scheduling quality

Fall 2017 :: CSE 306

Workload Assumptions and Policy Goals

• (Simplistic) workload assumptions
1) Each job runs for the same amount of time

2) All jobs arrive at the same time

3) Run-time of each job is known

• Metric: Turnaround Time
• Job Turnaround Time: completion_time − arrival_time

• Goal: minimize average job turnaround time

Fall 2017 :: CSE 306

Simple Scheduler: FIFO

• FIFO: First In, First Out
• also called FCFS (first come, first served)

• run jobs in arrival_time order until completion

• What is the average turnaround time?

JOB arrival_time (s) run_time

A ~0 10

B ~0 10

C ~0 10

Fall 2017 :: CSE 306

FIFO (Identical Jobs)

JOB arrival_time (s) run_time

A ~0 10

B ~0 10

C ~0 10

A B C

0 20 40 60 80

Avg. turnaround
= (10 + 20 + 30) /3
= 20

Fall 2017 :: CSE 306

More Realistic Workload Assumptions

• Workload Assumptions
1) Each job runs for the same amount of time

2) All jobs arrive at the same time

3) Run-time of each job is known

• Any problematic workload for FIFO with new
assumptions?

• Hint: something resulting in non-optimal (i.e., high)
turnaround time

Fall 2017 :: CSE 306

FIFO: Big First Job

JOB arrival_time (s) run_time

A ~0 60

B ~0 10

C ~0 10

A CB

0 20 40 60 80

A: 60

B: 70

C: 80 Avg. turnaround
= (60 + 70 + 80) /3
= 70

Fall 2017 :: CSE 306

Convoy Effect

Fall 2017 :: CSE 306

Passing the Tractor

• Problem with Previous Scheduler:
• FIFO: Turnaround time can suffer when short jobs must

wait for long jobs

• New scheduler:
• SJF (Shortest Job First)

• Choose job with smallest run_time to run first

Fall 2017 :: CSE 306

SJF Turnaround Time

JOB arrival_time (s) run_time

A ~0 60

B ~0 10

C ~0 10

ACB

0 20 40 60 80

A: 80

B: 10

C: 20 Avg. turnaround
= (10 + 20 + 80) /3
= 36.7

Fall 2017 :: CSE 306

SJF Turnaround Time

• SJF is provably optimal to minimize avg. turnaround
time

• Under current workload assumptions

• Without preemption

• Intuition: moving shorter job before longer job
improves turnaround time of short job more than it
harms turnaround time of long job

Fall 2017 :: CSE 306

More Realistic Workload Assumptions

• Workload Assumptions
1) Each job runs for the same amount of time

2) All jobs arrive at the same time

3) Run-time of each job is known

• Any problematic workload for SJF with new
assumptions?

Fall 2017 :: CSE 306

SJF: Different Arrival Times

JOB arrival_time (s) run_time

A ~0 60

B ~10 10

C ~10 10

A CB

0 20 40 60 80

[B,C arrive] Avg. turnaround
= (60 + (70-10) + (80-10)) /3
= 63.3

Can we do better than
this?

Fall 2017 :: CSE 306

Preemptive Scheduling

• Previous schedulers:
• FIFO and SJF are cooperative schedulers

• Only schedule new job when previous job voluntarily
relinquishes CPU (performs I/O or exits)

• New scheduler:
• Preemptive: potentially schedule different job at any

point by taking CPU away from running job

• STCF (Shortest Time-to-Completion First)
• Always run job that will complete the quickest

Fall 2017 :: CSE 306

Preemptive: STCF

JOB arrival_time (s) run_time

A ~0 60

B ~10 10

C ~10 10

A CB

0 20 40 60 80

A

A: 80

B: 10

C: 20

[B,C arrive]

Avg. turnaround
= (80 + (20-10) + (30-10)) /3
= 36.6
vs.
SJF’s time of 63.3

Fall 2017 :: CSE 306

How about Other Metrics?
• Is turnaround time the only metric we care about?

• What about responsiveness?
• Do you like to stare at your monitor for 10 seconds after

pressing a key waiting for something to happen?

• New metric: Response Time
• Job Response Time: first_start_time – arrival_time
• I.e., the time that it takes for a new job to start running

[B arrives]

A

0 20 40 60 80

B’s turnaround: 20s

B

B’s response: 10s

Fall 2017 :: CSE 306

Round-Robin (RR) Scheduler

• Previous schedulers:
• FIFO, SJF, and STCF can have poor response time

• New scheduler: RR (Round Robin)
• Alternate ready threads every fixed-length time-slice

• Preempt current thread at the end of its time-slice and
schedule the next one in a fixed order

Fall 2017 :: CSE 306

FIFO vs. RR

• In what way is RR worse?
• Avg. turnaround time with equal job lengths is horrible

• c'est la vie
• Impossible to optimize all metrics simultaneously

• Try to strike a balance that works well most of the time

0 5 10 15 20

A B C

0 5 10 15 20

A B C …

Avg. response time
= (0 + 5 + 10) / 3 = 5

Avg. response time
= (0 + 1 + 2) / 3 = 1

Fall 2017 :: CSE 306

More Realistic Workload Assumptions

• Workload Assumptions
1) Each job runs for the same amount of time

2) All jobs arrive at the same time

3) Run-time of each job is known

• In practice, the OS cannot know how long a job is
going to need the CPU before it completes

• Not just the OS; Even programmer is unlikely to know it

• Need a smarter scheduler that does not rely on
knowing job run-times

Fall 2017 :: CSE 306

MLFQ: Multi-Level Feedback Queue

• Goal: general-purpose scheduling

• Must support two job types with distinct goals
• Interactive programs care about response time

• Example: text editor, shell, etc.

• Batch programs care about turnaround time
• Example: video encoder

• Approach: multiple levels of round-robin
• Each level has higher priority than lower levels and

preempts them

Fall 2017 :: CSE 306

Priorities
• Rule 1: If priority(A) > priority(B), A runs

• Rule 2: If priority(A) == priority(B), A & B run in RR

A

B

C

Q3

Q2

Q1

Q0 D

• Multi-level

• How to know how to set
priority?

• Answer: use history “feedback”

Fall 2017 :: CSE 306

History

• Use past behavior to predict future behavior
• Common technique in computer systems

• Threads alternate between CPU work and blocking
operations (e.g., I/O)

• Guess how next CPU burst (job) will behave based on
past CPU bursts (jobs) of this thread

Fall 2017 :: CSE 306

More MLFQ Rules

• Rule 1: If priority(A) > Priority(B), A runs

• Rule 2: If priority(A) == Priority(B), A & B run in RR

• Rule 3: Threads start at top priority

• Rule 4: If job uses whole time-slice, demote thread
to lower priority

• Longer time slices at lower priorities to accommodate
CPU-bound applications

Fall 2017 :: CSE 306

Example: One Long Job

0 5 10 15 20

Q3

Q2

Q1

Q0

Fall 2017 :: CSE 306

An Interactive Process Joins

• Interactive process seldom uses entire time slice, so
not typically demoted

120 140 160 180 200

Q3

Q2

Q1

Q0

Fall 2017 :: CSE 306

Problems with MLFQ
1) Starvation

• Too many interactive (high-priority) threads can
monopolize the CPU and starve lower-priority threads

2) It is unforgiving: once demoted to lower priority,
thread stays there
• But programs may change behavior over time

• I/O bound at some point and CPU-bound later

3) Devious programmers can game the system
• Relinquish the CPU right before the time-slice ends

• Never demoted; always high priority

Fall 2017 :: CSE 306

Solutions

• Prevent starvation: periodically boost all priorities
(i.e., move all threads to highest-priority queue)

• Also takes care of unforgiving-ness

• New Problem: how to set the boosting period?

• Prevent gaming: fix the total amount of time each
thread stays at a priority level

• I.e., do not forget about previous time-slices

• Demote when exceed threshold

• New Problem: how to set the threshold?

• New Problem: has to keep more per-thread state

Fall 2017 :: CSE 306

New Metric: Fairness

• So far, we’ve considered two metrics
• Turnaround time

• Response time

• We’ve seen it’s impossible to minimize both
simultaneously

• We settled for a compromise: reduce response time for
interactive apps and lower turnaround time for batch jobs

• But there always many jobs in the systems. What if we
want them to be treated “fairly”?

Fall 2017 :: CSE 306

Fairness

• Definition: each jobs’ turnaround time should be
proportional to its length (i.e., the CPU time it
needs)

• Turnaround time

= job length + time in ready queue

= time in “Running” state + time in “Ready” state

• Therefore, fairness means amount of time a job
spends in “Ready” state should be proportional to
its length

Fall 2017 :: CSE 306

Fairness (cont’d)
• Is FIFO fair?

• No

• Is SJF fair? How about STCF?
• No, No

• How about RR?
• Yes, but too naïve.
• Does not support priorities, low response time for interactive jobs, etc.

• How about MLFQ?
• No, but boosting prevents starvation which means some attention to fairness

• There are a class of scheduling disciplines that make fairness their main
goal, while paying attention to other goals such as responsiveness and
priorities

• Lottery scheduling, stride scheduling and Linux’s Completely Fair Scheduler (CFS)

• Read more about them in OSTEP, chapter 9.

Fall 2017 :: CSE 306

Linux O(1) Scheduler

Fall 2017 :: CSE 306

Linux O(1) Scheduler

• Think of it as a variation of MLFQ

• Goals
• Provide good response time for short interactive jobs

• Provide good turnaround time for long CPU-bound jobs

• Provide a mechanism for static priority assignment

• Be simple to implement and efficient to run

• Etc.

Fall 2017 :: CSE 306

O(1) Bookkeeping
• task: Linux kernel lingo for thread

• runqueue: a list of runnable tasks
• Blocked threads are not on any runqueue

• They are on some wait queue elsewhere

• Each runqueue belongs to a specific CPU

• Each task is on exactly one runqueue
• Task only scheduled on runqueue’s CPU unless migrated

• 2 × 40 × #CPUs runqueues
• 40 dynamic priority levels (more later)

• 2 sets of runqueues: active and expired

Fall 2017 :: CSE 306

O(1) Data Structures

Active Expired

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.

Fall 2017 :: CSE 306

O(1) Intuition

• Take first task from highest-priority runqueue on
active set

• When done, put it on runqueue on expired set

• When active set empty, swap active and expired
runqueues

• Constant time: O(1)
• Fixed number of queues to check

• Only take first item from non-empty queue

Fall 2017 :: CSE 306

O(1) Example

Active Expired

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.

Pick first,
highest

priority task
to run

Move to
expired queue

when time-slice
expires

Fall 2017 :: CSE 306

What Now?

Active Expired

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.

Fall 2017 :: CSE 306

What Now?

Expired Active

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.

Fall 2017 :: CSE 306

Blocked Tasks

• What if a thread blocks, say on I/O?
• It still has part of its quantum left

• Not runnable

• Don’t put on the active or expired runqueues

• Need a “wait queue” for each blocking event
• Disk, lock, pipe, network socket, etc…

Fall 2017 :: CSE 306

Blocking Example

Active Expired

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.

Disk

Block on
disk!

Thread
goes on
disk wait

queue

Fall 2017 :: CSE 306

Blocked Tasks (cont.)

• A blocked task is moved to a wait queue
• Moved back to active queue when expected event

happens

• No longer on any active or expired queue!

• Disk example:
• I/O finishes, IRQ handler puts task on active runqueue

Fall 2017 :: CSE 306

Time Slice Tracking

• A task blocks and then becomes runnable
• How do we know how much time it had left?

• Each task tracks ticks left in time_slice field
• On each clock tick: current->time_slice--

• If time slice goes to zero, move to expired queue
• Refill time slice

• Schedule someone else

• An unblocked task can use balance of time slice
• When unblocked, put on active queue

Fall 2017 :: CSE 306

More on Priorities

• 100 = highest priority

• 139 = lowest priority

• 120 = base priority
• “nice” value: user-specified adjustment to base priority

• Set using nice() system call

• Selfish (not nice) = -20 (I want to go first)

• Really nice = +19 (I will go last)

Fall 2017 :: CSE 306

Base Time Slice

• “Higher” priority tasks get longer time slices (unlike
MLFQ)

• In addition to running first

1205)140(

12020)140(

priomsprio

priomsprio
time

Fall 2017 :: CSE 306

How to Make Interactive Jobs Responsive?

• By definition, interactive applications wait on I/O a lot
• Wait for next keyboard or mouse input, do a bit of work, wait

for the next input, and so on

• Monitor I/O wait time
• Infer which programs are UI (and disk intensive)

• Give these threads a dynamic priority boost

• Note that this behavior can be dynamic
• Example: DVD Ripper

• UI configures DVD ripping
• Then it is CPU bound to encode to mp3

→ Scheduling should match program phases

Fall 2017 :: CSE 306

Dynamic Priority
• Dynamic priority

= max(100, min(static_priority − bonus + 5, 139))

• Bonus is calculated based on wait time

• Dynamic priority determines a task’s runqueue

• Tries to balance throughput for CPU-bound programs
and latency for IO-bound ones

• May not be optimal

• Call it what you prefer
• Carefully-studied battle-tested heuristic

• Horrible hack that seems to work

Fall 2017 :: CSE 306

Dynamic Priority in O(1) Scheduler

• runqueue determined by the dynamic priority
• Not the static priority

• Dynamic priority mostly based on time spent waiting

• To boost UI responsiveness

• “Nice” values influence static priority
• Can’t boost dynamic priority without being in wait queue!

• No matter how “nice” you are or aren't

Fall 2017 :: CSE 306

Linux’s
Completely Fair
Scheduler (CFS)

Fall 2017 :: CSE 306

Fair Scheduling

• Idea: 50 tasks of equal length, each should get 2% of
CPU time

• Is this all we want?
• What about priorities?

• Responsive interactive jobs?

• Per-user fairness?
• Alice has 1 task and Bob has 49; why should Bob get 98% of CPU?

• Completely Fair Scheduler (CFS)
• Default Linux scheduler since 2.6.23

Fall 2017 :: CSE 306

CFS idea

• Back to a simple list of tasks (conceptually)

• Ordered by how much time they have had
• Least time to most time

• Always pick the “neediest” task to run
• Until it is no longer neediest

• Then re-insert old task in the timeline

• Schedule the new neediest

Fall 2017 :: CSE 306

CFS Example

5 10 15 22 26

List sorted by
how many

“ticks” the task
has had

Schedule
“neediest” task

Fall 2017 :: CSE 306

CFS Example

10 15 22 26

11
Once no longer

the neediest, put
back on the list

Fall 2017 :: CSE 306

But Lists Are Inefficient

• That’s why we really use a tree
• Red-black tree: 9/10 Linux developers recommend it

• log(n) time for:
• Picking next task (i.e., search for left-most task)

• Putting the task back when it is done (i.e., insertion)

• Remember: n is total number of tasks on system

Fall 2017 :: CSE 306

Details

• Global Virtual Clock (global vclock): ticks at a
fraction of real time

• fraction = number of total tasks

→ Indicates “Fair” share of each task

• Each task counts how many clock ticks it has had

• Example: 4 tasks
• Global vclock ticks once every 4 real ticks

• Each task scheduled for one real tick
• Advances local clock by one real tick

Fall 2017 :: CSE 306

More Details

• Task’s ticks make key in RB-tree
• Lowest tick count gets serviced first

• No more runqueues
• Just a single tree-structured timeline

Fall 2017 :: CSE 306

CFS Example (more realistic)

• Tasks sorted by ticks executed

• One global tick per n ticks
• n == number of tasks (5)

• 4 ticks for first task

• Reinsert into list

• 1 tick to new first task

• Increment global clock
1

4

8

10

12

Global Ticks: 7

5

Global Ticks: 8

5

Fall 2017 :: CSE 306

Why a Global Virtual Clock?

• What to do when a new task arrives?
• If task ticks start at zero, unfair to run for a long time

• Strategies:
• Could initialize to current Global Ticks

• Could get half of parent’s deficit

Fall 2017 :: CSE 306

10:1 ratio is made-up.
See code for real weights.

What about Priorities?
• Priorities let me be deliberately unfair

• This is a useful feature

• In CFS, priorities weigh the length of a task’s “local tick”
• Local Virtual Clock

• Example:
• For a high-priority task

• A task-local tick may last for 10 actual clock ticks

• For a low-priority task
• A task-local tick may only last for 1 actual clock tick

• Higher-priority tasks run longer

• Low-priority tasks make some progress

Fall 2017 :: CSE 306

What about Interactive Apps?

• Recall: UI programs are I/O bound
• We want them to be responsive to user input

• Need to be scheduled as soon as input is available

• Will only run for a short time

Fall 2017 :: CSE 306

CFS and Interactive Apps

• Blocked tasks removed from RB-tree
• Just like O(1) scheduler

• Global vclock keeps ticking while tasks are blocked
• Increasingly large deficit between task and global vclock

• When a GUI task is runnable, goes to the front
• Dramatically lower local-clock value than CPU-bound jobs

Fall 2017 :: CSE 306

Other Refinements

• Per task group or user scheduling
• Controlled by real to virtual tick ratio

• Function of number of global and user’s/group’s tasks

Fall 2017 :: CSE 306

Recap: Different Types of Ticks

• Real time is measured by a timer device
• “ticks” at a certain frequency by raising a timer interrupt

every so often

• A thread’s local virtual tick is some number of real
ticks

• Priorities, per-user fairness, etc... done by tuning this
ratio

• Global Ticks tracks the fair share of each process
• Used to calculate one’s deficit

Fall 2017 :: CSE 306

CFS Summary
• Idea: logically a single queue of runnable tasks

• Ordered by who has had the least CPU time

• Implemented with a tree for fast lookup

• Global clock counts virtual ticks
• One tick per “task_count” real ticks

• Features/tweaks (e.g., prio) are hacks
• Implemented by playing games with length of a virtual

tick

• Virtual ticks vary in wall-clock length per-process

Fall 2017 :: CSE 306

Other Issues

Fall 2017 :: CSE 306

Real-time Scheduling
• Different model

• Must do modest amount of work by a deadline

• Example: audio application must deliver one frame every n ms
• Too many or too few frames unpleasant to hear

• Strawman solution
• If I know it takes n ticks to process a frame of audio, schedule my

application n ticks before the deadline

• Problem? hard to accurately estimate n
• Variable execution time depending on inputs
• Interrupts
• Cache misses
• TLB misses
• Disk accesses

Fall 2017 :: CSE 306

Hard Problem

• Gets even harder w/ multiple applications +
deadlines

• May not be able to meet all deadlines

• Shared data structures worsen variability
• Block on locks held by other tasks

Fall 2017 :: CSE 306

Linux Hack
• Have different scheduling classes (disciplines):

• SCHED_IDLE, SCHED_BATCH, SCHED_OTHER, SCHED_RR, SCHED_FIFO

• “Normal” tasks are in SCHED_OTHER

• “Real-time” tasks get highest-priority scheduling class
• SCHED_RR and SCHED_FIFO (RR: round robin)

• RR is preemptive, FIFO is cooperative

• RR tasks fairly divide CPU time amongst themselves
• Pray that it is enough to meet deadlines

• Other tasks share the left-overs (if any) and may starve

• Assumption: RR tasks mostly blocked on I/O (like GUI programs)
• Latency is the key concern

• New real-time scheduling class since Linux 3.14: SCHED_DEADLINE
• Highest priority class in system; Uses “Earliest Deadline First” scheduling

• Details in http://man7.org/linux/man-pages/man7/sched.7.html

http://man7.org/linux/man-pages/man7/sched.7.html

Fall 2017 :: CSE 306

Linux Scheduling-Related API

• Includes many functions to set scheduling classes,
priorities, processor affinities, yielding, etc.

• See
http://man7.org/linux/man-pages/man7/sched.7.html
for a detailed discussion

http://man7.org/linux/man-pages/man7/sched.7.html

Fall 2017 :: CSE 306

Next Issue: Average Load

• How do we measure how “busy” a CPU is?
• Useful, e.g., when an idle CPU wants to “steal” threads

from another CPU

• Should steal from the busiest CPU

• Average number of runnable tasks over time

• Available in /proc/loadavg

Fall 2017 :: CSE 306

Next Issue: Kernel Time

• Context switches generally at user/kernel boundary
• Or on blocking I/O operations

• System call times vary

• Problems: if a time slice expires inside of a system call:
1) Task gets rest of system call “for free”

• Steals from next task

2) Potentially delays interactive/real-time tasks until finished

Fall 2017 :: CSE 306

Idea: Kernel Preemption
• Why not preempt system calls just like user code?

• Well, because it is harder, duh!

• Why?
• May hold a lock that other tasks need to make progress

• May be in a sequence of HW config operations
• Usually assumes sequence won’t be interrupted

• General strategy: allow fragile code to disable
preemption

• Like interrupt handlers disabling interrupts if needed

Fall 2017 :: CSE 306

Kernel Preemption

• Implementation: actually not too bad
• Essentially, it is transparently disabled with any locks held

• A few other places disabled by hand

• Result: UI programs a bit more responsive

