
Fall 2017 :: CSE 306

Condition Variables
& Semaphores

Nima Honarmand
(Based on slides by Prof. Andrea Arpaci-Dusseau)



Fall 2017 :: CSE 306

Review: Concurrency Objectives

• Mutual Exclusion — A & B don’t run at the same 
time
• Solved using locks

• Ordering — B runs after A does something
• Solved using condition variables



Fall 2017 :: CSE 306

Example 1: Thread Join

pthread_t p1, p2;

// create child threads

pthread_create(&p1, NULL, mythread, "A"); 

pthread_create(&p2, NULL, mythread, "B"); 

…

// join waits for the child threads to finish

thr_join(p1, NULL); 

thr_join(p2, NULL); 

return 0;

how to implement thr_join()?



Fall 2017 :: CSE 306

Waiting for an Event

• Parent thread has to wait until child terminates

• Option 1: spin until that happens
• Waste of CPU time

• Option 2: wait (sleep) in a queue until that happens
• Better use of CPU time

• Similar to the idea in queue-based lock of previous 
lecture

• Child thread will signal the parent to wake up before its 
termination



Fall 2017 :: CSE 306

Generalizing Option 2

• Condition Variable: queue of waiting threads with 
two basic operations

• B waits for a signal on cv before running
• cond_wait(cv, …)

• A sends signal to cv to wake-up one waiting thread
• cond_signal(cv, …)



Fall 2017 :: CSE 306

Thread Join: Attempt 1

• Does this work? If not, what’s the problem?

• Child may run and call cond_signal() before 
parent called cond_wait()

→ Parent will sleep indefinitely

Parent

void thr_join() {

cond_wait(&c);

}

Child

void thr_exit() {

cond_signal(&c);

}



Fall 2017 :: CSE 306

Thread Join: Attempt 2

• Let’s keep some state then

• Is there a problem here?

Parent

void thr_join() {

if (done == 0) {

cond_wait(&c);

}

}

Child

void thr_exit() {

done = 1;

cond_signal(&c);

}



Fall 2017 :: CSE 306

Thread Join: Attempt 2

• Let’s keep some state then

Parent: a b
Child: x y

• Again, parent may sleep indefinitely

• Solution?

Parent

void thr_join() {

if (done == 0) { //a

cond_wait(&c); //b

}

}

Child

void thr_exit() {

done = 1; //x

cond_signal(&c); //y

}



Fall 2017 :: CSE 306

Using Locks to Achieve Atomicity

• Need a lock (called mutex in pthreads) to ensure two things
1) Checking condition (waiting thread) & modifying it (waking thread) remain 

mutually exclusive
2) Checking condition & putting thread to sleep (waiting thread) remain atomic

• cond_wait() should unlock mutex atomically w/ going to sleep
• If mutex not released, waking thread cannot make progress
• If release is not atomic, we get a race condition. Can you identify it?

Waiting Thread

mutex_lock(&m);

if (! check_cond())

cond_wait(&c, &m);

…

mutex_unlock(&m);

Waking Thread

mutex_lock(&m);

set_cond();

cond_signal(&c);

…

mutex_unlock(&m);



Fall 2017 :: CSE 306

Using Locks to Achieve Atomicity
• cond_wait() releases the mutex atomically with 

going to sleep

• cond_wait() re-acquires the mutex immediately 
after being awoken (before returning)

• To be safe, should always be holding mutex when 
calling cond_signal()



Fall 2017 :: CSE 306

Spurious Wakeups
• In most systems, a sleeping thread might be awoken 
spuriously
• In addition to being awoken when signaled

• So, no guarantee that condition you’ve been waiting for 
is true when you are awoken

• Need to check the condition again before continuing
• How?

Waiting Thread

mutex_lock(&m);

while (! check_cond())

cond_wait(&c, &m);

…

mutex_unlock(&m);



Fall 2017 :: CSE 306

Thread Join: Correct Solution

• This code works for one parent and one child

• Does it work for one parent and multiple children?
• Yes

• What if there were multiple parents each with multiple children?
• It won’t work; we’ll revisit that case later

Parent

void thr_join() {

mutex_lock(&m);

while (done == 0) 

cond_wait(&c, &m);

mutex_unlock(&m);

}

Child

void thr_exit() {

mutex_lock(&m);

done = 1;

cond_signal(&c);

mutex_unlock(&m);

}



Fall 2017 :: CSE 306

Exercise

• Implement cond_wait and cond_signal

• Hine: can use park(), unpark() and 
setpark()

• As we did for the queue lock



Fall 2017 :: CSE 306

Recap: CV Rules of Thumb (Take 1)

• Shared state determines if condition is true or not

• Check the state before waiting on cv
• In a while loop

• Use a mutex to protect
1) the shared state on which condition is based, as well as,

2) operations on the cv

• Remember to acquire the mutex before calling 
cond_signal()



Fall 2017 :: CSE 306

Example 2: Bounded Buffer
• Classic producer/consumer problem

• Multiple producers and multiple consumers communicate 
using a shared, finite-size buffer

• Producers add items to buffer
• If buffer is full, producer has to wait until there is free space

• Consumers remove items from buffer
• If buffer is empty, consumer has to wait until one or more items are 

added

• Common examples:
• Unix pipe: bounded buffer in kernel (multiple producers & consumers)

• Work queue in a web server (one producer, multiple consumers)



Fall 2017 :: CSE 306

Bounded Buffer: Attempt 1

• Starting simple: assume one producer, one consumer
• numfull: number of elements in the buffer

• Does this code work for 1P and 1C?

• Yes 

Producer

for (int i=0; i<loops; i++) {

mutex_lock(&m);

while (numfull == MAX)

cond_wait(&cond, &m);

do_fill(i);

cond_signal(&cond);

mutex_unlock(&m);

}

Consumer

while(1) {

mutex_lock(&m);

while (numfull == 0)

cond_wait(&cond, &m);

int tmp = do_get();

cond_signal(&cond);

mutex_unlock(&m);

printf(“%d\n”, tmp);

}



Fall 2017 :: CSE 306

Bounded Buffer: Attempt 1

• How about 1P and 2C? Would it work?

• No Why?

Producer

for (int i=0; i<loops; i++) {

mutex_lock(&m);

while (numfull == MAX)

cond_wait(&cond, &m); //a

do_fill(i); //b

cond_signal(&cond); //c

mutex_unlock(&m);

}

Consumer

while(1) {

mutex_lock(&m);

while (numfull == 0)

cond_wait(&cond, &m); //x

int tmp = do_get(); //y

cond_signal(&cond); //z

mutex_unlock(&m);

printf(“%d\n”, tmp);

}



Fall 2017 :: CSE 306

Bounded Buffer: Attempt 1
• Say queue size is one (i.e., it can hold only one item)

• C1 and C2 initially find queue empty so they are waiting (line x)

1) P adds an item to buffer (line b), signals cond (line c), waking 
up C1, waits on cond until signaled (line a)

2) C1 is awoken, removes item from buffer (line y), signals cond
(line z), waking up C2, finds buffer empty, goes to sleep (line x)

3) C2, being woken up by C1, finds buffer empty, goes to sleep 
waiting on cond (line x)

• Everyone is sleeping → P can’t produce → no forward progress

• Crux: C1’s signal was meant to awaken P but it awoke C2



Fall 2017 :: CSE 306

Solution 1: Wake up Everyone
• When not sure if next waiting thread is the right one to 

wake up, just wake up all

• Not the most elegant solution (that’s Solution 2)
• Probably bad for performance: all awoken threads will 

compete for mutex again
• But a good fallback mechanism to ensure correctness

• Need a new API: cond_broadcast(cv) 
• Semantic: wakes up all the queues waiting on cv

• There are cases where there is no elegant solution and 
we have to use broadcast
• See the memory allocator example in OSTEP, Section 30.3



Fall 2017 :: CSE 306

Solution 2: Use Multiple CVs
• Identify different conditions that need waiting for

• Use a separate CV for each condition using 
cond_wait() and cond_signal()

• More elegant, better-performing solution than 
using cond_broadcast()

• Different conditions in bounded buffer problem?
• Two

• Waiting for queue to become non-full

• Waiting for queue to become non-empty



Fall 2017 :: CSE 306

Bounded Buffer: Correct & Elegant Solution

• Would it be okay also to use two mutexes?
• No

• Why?
• Because mutex protects associated with the shared state 

(buffer, in this case)

Producer

for (int i=0; i<loops; i++) {

mutex_lock(&m);

while (numfull == MAX)

cond_wait(&non_full, &m);

do_fill(i);

cond_signal(&non_empty);

mutex_unlock(&m);

}

Consumer

while(1) {

mutex_lock(&m);

while (numfull == 0)

cond_wait(&non_empty, &m);

int tmp = do_get();

cond_signal(&non_full);

mutex_unlock(&m);

printf(“%d\n”, tmp);

}



Fall 2017 :: CSE 306

Example 3: Join w/ Multiple Parents

• Consider multiple parents each with multiple children
• However, each child only has one parent

• Assume a parent thread may only join its own children

• NOTE: This semantic is different from pthread_join()

Parent 1

pthread_t p1, p2;

// create child threads

pthread_create(&p1, NULL, mythread, "A"); 

pthread_create(&p2, NULL, mythread, "B"); 

// …

// join waits for the child threads to finish

thr_join(p1, NULL); 

thr_join(p2, NULL); 

return 0;

Parent 2

pthread_t p1, p2;

// create child threads

pthread_create(&p1, NULL, mythread, "C"); 

pthread_create(&p2, NULL, mythread, "D"); 

// …

// join waits for the child threads to finish

thr_join(p1, NULL); 

thr_join(p2, NULL); 

return 0;



Fall 2017 :: CSE 306

Example 3: Join w/ Multiple Parents

• Obviously we need an array of done flags, one per child

• Is this code correct?
• No
• When a child signals c, it is not guaranteed to awaken its own parent

• Solutions:
1) Use cond_broadcast() to awaken all sleeping parents
2) Use cond_signal() but use a separate CV for each parent
3) Use cond_signal() but use a separate CV for each child

Parent

void thr_join(int i) {

mutex_lock(&m);

while (done[i] == 0) 

cond_wait(&c, &m);

mutex_unlock(&m);

}

Child

void thr_exit() {

mutex_lock(&m);

done[my_id] = 1;

cond_signal(&c);

mutex_unlock(&m);

}



Fall 2017 :: CSE 306

Example 3: Solution 1

• Obviously we need an array of done flags, one per child

• Is this code correct?
• No
• When a child signals c, it is not guaranteed to awaken its own parent

• Solutions:
1) Use cond_broadcast() to awaken all sleeping parents
2) Use cond_signal() but use a separate CV for each parent
3) Use cond_signal() but use a separate CV for each child

Parent

void thr_join(int i) {

mutex_lock(&m);

while (done[i] == 0) 

cond_wait(&c, &m);

mutex_unlock(&m);

}

Child

void thr_exit() {

mutex_lock(&m);

done[my_id] = 1;

cond_broadcast(&c);

mutex_unlock(&m);

}



Fall 2017 :: CSE 306

Example 3: Solution 2

• Obviously we need an array of done flags, one per child

• Is this code correct?
• No
• When a child signals c, it is not guaranteed to awaken its own parent

• Solutions:
1) Use cond_broadcast() to awaken all sleeping parents
2) Use cond_signal() but use a separate CV for each parent
3) Use cond_signal() but use a separate CV for each child

Parent

void thr_join(int i) {

mutex_lock(&m);

while (done[i] == 0) 

cond_wait(&c[my_id], &m);

mutex_unlock(&m);

}

Child

void thr_exit() {

mutex_lock(&m);

done[my_id] = 1;

cond_signal(&c[my_parent]);

mutex_unlock(&m);

}



Fall 2017 :: CSE 306

Example 3: Solution 3

• Obviously we need an array of done flags, one per child

• Is this code correct?
• No
• When a child signals c, it is not guaranteed to awaken its own parent

• Solutions:
1) Use cond_broadcast() to awaken all sleeping parents
2) Use cond_signal() but use a separate CV for each parent
3) Use cond_signal() but use a separate CV for each child

Parent

void thr_join(int i) {

mutex_lock(&m);

while (done[i] == 0) 

cond_wait(&c[i], &m);

mutex_unlock(&m);

}

Child

void thr_exit() {

mutex_lock(&m);

done[my_id] = 1;

cond_signal(&c[my_id]);

mutex_unlock(&m);

}



Fall 2017 :: CSE 306

Recap: CV Rules of Thumb (Take 2)
• Shared state determines if condition is true or not

• Check the state before waiting on cv
• In a while loop

• Use a mutex to protect
1) the shared state on which condition is based, as well as,
2) operations on the cv

• Remember to acquire the mutex before calling 
cond_signal() and cond_broadcast()

• Use different CVs for different conditions

• Sometimes, cond_broadcast() helps if you can’t find an 
elegant solution using cond_signal()



Fall 2017 :: CSE 306

Pthreads Condition Variable API
• Creation/destruction

• pthread_cond_init(cv, attr)

• pthread_cond_destroy(cv)

• pthread_condattr_init(attr)

• pthread_condattr_destroy(attr)

• Waiting and waking
• pthread_cond_wait(cv, mutex)

• pthread_cond_timedwait(cv, mutex, time)

• pthread_cond_signal(cv)

• pthread_cond_broadcast(cv)

• Required reading linked on the course schedule page



Fall 2017 :: CSE 306

Semaphores
• A synchronization primitive that can work both as a 

lock, as well as a special case of condition variables
• In particular, for Bounded Buffer problem

• Not easy to use as a general condition variable

• Not easy to use to build a general condition 
variable 
• Doable but quite difficult

• See Microsoft Research’s attempt at 
http://research.microsoft.com/pubs/64242/Implementi
ngCVs.pdf



Fall 2017 :: CSE 306

Semaphores (2)

• Read more in OSTEP, Chapter 31

• More of an intellectual curiosity, IMHO
• A nice one though, worth reading about

• Pthreads just have locks and condition variables, 
but no semaphores


