
Fall 2017 :: CSE 306

Concurrency
Bugs

Nima Honarmand
(Based on slides by Prof. Andrea Arpaci-Dusseau)

Fall 2017 :: CSE 306

Concurrency Bugs are Serious
The Therac-25 incident (1980s)

“The accidents occurred when the high-power electron beam
was activated instead of the intended low power beam, and
without the beam spreader plate rotated into place. Previous
models had hardware interlocks in place to prevent this, but
Therac-25 had removed them, depending instead on software
interlocks for safety. The software interlock could fail due to a
race condition.”

“…in three cases, the injured patients later died.”

Source: en.wikipedia.org/wiki/Therac-25

Fall 2017 :: CSE 306

Concurrency Bugs are Serious (2)
Northeast blackout of 2003

“The Northeast blackout of 2003 was a widespread power outage
that occurred throughout parts of the Northeastern and Midwestern
United States and the Canadian province of Ontario on Thursday,
August 14, 2003, just after 4:10 p.m. EDT.”

The blackout's primary cause was a bug in the alarm system... The
lack of an alarm left operators unaware of the need to re-distribute
power after overloaded transmission lines hit unpruned foliage,
triggering a "race condition" in the energy management system…
What would have been a manageable local blackout cascaded into
massive widespread distress on the electric grid.”

Source: en.wikipedia.org/wiki/Northeast_blackout_of_2003

Fall 2017 :: CSE 306

Concurrency Study from 2008

For four major projects, search for concurrency bugs
among > 500K bug reports. Analyze small sample to
identify common types of concurrency bugs.

Source: Lu et. al, “Learning from mistakes — a comprehensive study
on real world concurrency bug characteristics”

Fall 2017 :: CSE 306

Atomicity Violation Bugs
“The desired serializability among multiple memory
accesses is violated (i.e. a code region is intended to be
atomic, but the atomicity is not enforced during
execution)”

Thread 1

if (thd->proc_info) {
…
fputs(thd->proc_info, …);
…

}

Thread 2

thd->proc_info = NULL;

MySQL Example

• What’s wrong?

• How to fix?
• Use a lock

Fall 2017 :: CSE 306

Ordering Violation Bugs
“The desired order between two (groups of) memory
accesses is flipped (i.e., A should always be executed
before B , but the order is not enforced during
execution)”

Thread 1

void init() {
…
mThread =
PR_CreateThread(mMain, …);

…
}

Thread 2

void mMain(…) {
…
mState = mThread->State;
…

}

Mozilla Example

• What’s wrong?

• How to fix?
• Use a condition variable

Fall 2017 :: CSE 306

Ordering Violation Bugs (2)

• Why are we using a new flag (mtInit) instead of
mThread itself?

Thread 1

void init() {
…
mThread =
PR_CreateThread(mMain, …);

mutex_lock(&mtLock);
mtInit = 1;
cond_signal(&mtCond);
mutex_unlock(&mtLock);
…

}

Thread 2

void mMain(…) {
…
mutex_lock(&mtLock);
while (mtInit == 0)

cond_wait(&mtCond, &mtLock);
mutex_unlock(&mtLock);

mState = mThread->State;
…

}

Fall 2017 :: CSE 306

Fixing Concurrency Bugs: Easy?
• If all we had to do was adding locks and cond vars,

concurrent programming would be quite simple

• Problems?

1) Adding too many locks increase the danger of
deadlocks

2) How about having just a few big locks then?
• Causes performance problems because it reduces

concurrency

Fall 2017 :: CSE 306

Locking Granularity
• Coarse-grain locking

• Have one (or a few) locks that protect all (or big chunks) of shared
state

• Example: early Linux’s BKL (Big Kernel Lock)
• One big lock protecting all kernel data
• Only one processor code execute kernel code at any point of time; others

would have to wait
• Significant contention over big locks → hurts performance

• Fine-grain locking
• Have many small locks, each protecting one (or a few) objects
• Reduces contention → better performance
• Increases deadlock risk

Fall 2017 :: CSE 306

Deadlock Bugs
• Deadlock: No progress can be made because two or

more threads are waiting for the other to take
some action and thus neither ever does

• Could arise when we need to coordinate access to
more than one shared resources

• Means we need to grab and hold multiple locks
simultaneously

Fall 2017 :: CSE 306

Deadlock Theory
• Deadlocks can only occur when all

four conditions are true:
1) Mutual exclusion
2) Hold-and-wait
3) Circular wait
4) No preemption

• Eliminate deadlock by eliminating
any one condition

ST
O

P

STOP

STO
P

STOP

AB

CD

Fall 2017 :: CSE 306

1) Mutual Exclusion
• Definition: “Threads claim exclusive control of

resources that they require (e.g., thread grabs a lock)”

• Strategy: eliminate locks
• Try to use atomic instructions instead

Code with locks

void add (int *val, int amt)
{
mutex_lock(&m);
*val += amt;
mutex_unlock(&m);

}

Code with Compare-and-Swap (CAS)

void add (int *val, int amt)
{
do {

int old = *value;
} while(!CAS(val, old, old+amt));

}

Concurrent Counter Example

Fall 2017 :: CSE 306

Example: Lock-Free Linked List Insert
Code with locks

void insert (int val)
{
node_t *n =

malloc(sizeof(*n));
n->val = val;
mutex_lock(&m);
n->next = head;
head = n;
mutex_unlock(&m);

}

Code with Compare-and-Swap (CAS)

void insert (int val)
{
node_t *n = malloc(sizeof(*n));
n->val = val;
do {

n->next = head;
} while (!CAS(&head, n->next, n));

}

Fall 2017 :: CSE 306

2) Hold-and-Wait
• Definition: “Threads hold resources allocated to them

(e.g., locks they have already acquired) while waiting
for additional resources (e.g., locks they wish to
acquire).”

• Strategy: release currently held resources when waiting
for new ones

top:
pthread_mutex_lock(A);
if (pthread_mutex_trylock(B) != 0)
{

pthread_mutex_unlock(A);
goto top;

}
…

Example with trylock

Fall 2017 :: CSE 306

Problem w/ This Strategy
• Potential for Livelock: no process makes forward

progress, but the state of involved processes
constantly changes

• Can happen if all processes release resources and
then try to re-acquire, fail, and keep doing this

• Classic solution: back-off techniques
• Random back-off: wait for a random amount of time

before retrying
• Exponential back-off: wait for exponentially increasing

amount of time before retrying

Fall 2017 :: CSE 306

3) Circular Wait
• Definition: “There exists a circular chain of threads such

that each thread holds a resource (e.g., lock) being
requested by next thread in the chain.”

• Usually the easiest deadlock requirement to attack

• Strategy: impose a well-documented order of acquiring
locks

• Decide which locks should be acquired before others
• If A before B, never acquire A if B is already held!
• Document this, and write code accordingly

• Works well if system has distinct layers

Fall 2017 :: CSE 306

Simple Example
Thread 1

lock(&A);
lock(&B);

Thread 2

lock(&B);
lock(&A);

How would you fix this code?

Thread 1

lock(&A);
lock(&B);

Thread 2

lock(&A);
lock(&B);

Fall 2017 :: CSE 306

Example: mm/filemap.c lock ordering
/*
* Lock ordering:
* ->i_mmap_lock (vmtruncate)
* ->private_lock (__free_pte->__set_page_dirty_buffers)
* ->swap_lock (exclusive_swap_page, others)
* ->mapping->tree_lock
* ->i_mutex
* ->i_mmap_lock (truncate->unmap_mapping_range)
* ->mmap_sem
* ->i_mmap_lock
* ->page_table_lock or pte_lock (various, mainly in memory.c)
* ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
* ->mmap_sem
* ->lock_page (access_process_vm)
* ->mmap_sem
* ->i_mutex (msync)
* ->i_mutex
* ->i_alloc_sem (various)
* ->inode_lock
* ->sb_lock (fs/fs-writeback.c)
* ->mapping->tree_lock (__sync_single_inode)
* ->i_mmap_lock
* ->anon_vma.lock (vma_adjust)
* ->anon_vma.lock
* ->page_table_lock or pte_lock (anon_vma_prepare and various)
* ->page_table_lock or pte_lock
* ->swap_lock (try_to_unmap_one)
* ->private_lock (try_to_unmap_one)
* ->tree_lock (try_to_unmap_one)
* ->zone.lru_lock (follow_page->mark_page_accessed)
. . .

19

Fall 2017 :: CSE 306

Encapsulation Makes Ordering Difficult
• Encapsulation, and emphasis on code modularity, make

things difficult
• Can’t control the order in which locks are acquired when we

calling a function in another module

• What could go wrong in this code?
set_t *intersect(set_t *s1, set_t *s2)
{

set_t *rv = malloc(sizeof(*rv));
mutex_lock(&s1->lock);
mutex_lock(&s2->lock);
for(int i=0; i<s1->len; i++) {

if(set_contains(s2, s1->items[i])
set_add(rv, s1->items[i]);

mutex_unlock(&s2->lock);
mutex_unlock(&s1->lock);

}

Deadlock possible if one
thread calls
intersect(s1, s2)
and another thread
intersect(s2, s1)

Fall 2017 :: CSE 306

One Possible Solution
• Acquire the locks in the order of their virtual

addresses when possible
set_t *intersect(set_t *s1, set_t *s2) {

set_t *rv = malloc(sizeof(*rv));
if ((uint)&s1->lock < (uint)&s2->lock) {

mutex_lock(&s1->lock);
mutex_lock(&s2->lock);

} else {
mutex_lock(&s2->lock);
mutex_lock(&s1->lock);

}
for(int i=0; i<s1->len; i++) {

if(set_contains(s2, s1->items[i])
set_add(rv, s1->items[i]);

mutex_unlock(&s2->lock);
mutex_unlock(&s1->lock);

}

You may also want to
change the order of
unlock()s to be
reverse of lock()s.

Fall 2017 :: CSE 306

Other Complications
• Sometimes can’t know all virtual addresses in

advance

• Example: when traversing a linked list where each
object has a separate lock

Fall 2017 :: CSE 306

When a list element is
removed, have to restart
from beginning because
order of items has
changed.

Linux Example: fs/dcache.c
void d_prune_aliases(struct inode *inode) {

struct dentry *dentry;
struct hlist_node *p;

restart:
spin_lock(&inode->i_lock);
hlist_for_each_entry(dentry, p,
&inode->i_dentry, d_alias) {
spin_lock(&dentry->d_lock);
if (!dentry->d_count) {

__dget_dlock(dentry);
__d_drop(dentry);
spin_unlock(&dentry->d_lock);
spin_unlock(&inode->i_lock);
dput(dentry);
goto restart;

}
spin_unlock(&dentry->d_lock);

}
spin_unlock(&inode->i_lock);

}

Make sure inode lock is
acquired before dentry
locks

Fall 2017 :: CSE 306

4) Deadlock Detection and Recovery
• Database systems use many, many locks

• Very difficult to always avoid deadlocks in general in
such a system

• Last-resort strategy: detect deadlocks, and recover
• Detection usually involves looking out for locks that are

held for too long
• Recovery usually requires a restart of the database app

• An example of breaking the “No preemption”
condition

• By restarting, we are forcibly releasing the resource

Fall 2017 :: CSE 306

Summary: Current Reality
Pe

rf
or

m
an

ce

Complexity

Fine-Grained Locking

Coarse-Grained
Locking

Unsavory trade-off between synchronization
complexity and performance

25

Fall 2017 :: CSE 306

Locking in Kernel
• All locking stuff we discussed so far applies equally

to kernel and user code
• Spinlocks
• Blocking locks
• Granularity
• Deadlock
• Etc.

• However, there is one form of concurrency that’s
(almost) only found in kernel, remember?

• Yes, interrupts!

Fall 2017 :: CSE 306

Locks and Interrupts
• Suppose you are in the disk driver (say, serving a read()

syscall) and holding a disk-related lock

• Say, a disk interrupt happens, and you need to grab the
same lock in the interrupt service routine (ISR)

• What would happen?
• Yes, deadlock

• Can’t finish the ISR without grabbing the lock
• Can’t return to driver code (to release the lock) without finishing ISR

• Can you identify the multiple resources that are involved in
the deadlock?

1) Lock
2) CPU

Fall 2017 :: CSE 306

Solution
• How can we solve this problem?

• Two part solution:
1) Only use spinlocks in ISRs — never call, directly or

indirectly, a routine that would use a blocking lock
2) When acquiring a spinlock in kernel, disable interrupts

on the current processor

• Why just on this processor? Is it okay to get an
interrupt on other processors?

• This is why xv6 kernel spinlocks disable interrupts

	Concurrency�Bugs
	Concurrency Bugs are Serious
	Concurrency Bugs are Serious (2)
	Concurrency Study from 2008
	Atomicity Violation Bugs
	Ordering Violation Bugs
	Ordering Violation Bugs (2)
	Fixing Concurrency Bugs: Easy?
	Locking Granularity
	Deadlock Bugs
	Deadlock Theory
	1) Mutual Exclusion
	Example: Lock-Free Linked List Insert
	2) Hold-and-Wait
	Problem w/ This Strategy
	3) Circular Wait
	Simple Example
	Example: mm/filemap.c lock ordering
	Encapsulation Makes Ordering Difficult
	One Possible Solution
	Other Complications
	Linux Example: fs/dcache.c
	4) Deadlock Detection and Recovery
	Summary: Current Reality
	Locking in Kernel
	Locks and Interrupts
	Solution

