
Fall 2017 :: CSE 306

I/O
Devices

Nima Honarmand
(Based on slides by Prof. Andrea Arpaci-Dusseau)

Fall 2017 :: CSE 306

Hardware Support for I/O

CPU RAM

Graphics
Card

Memory Bus
General I/O Bus
(e.g., PCI)Network

Card

Fall 2017 :: CSE 306

Canonical Device

• OS communicates w/ device by reading/writing to Device
Registers

• Don’t think of them as storage locations like CPU registers; they are
communication interfaces

• Internal device hardware interprets these reads/writes in a
device-specific way

OS reads/writes these

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM

Other special-purpose chips

Device Registers:

Hidden Internals:

Fall 2017 :: CSE 306

Example Write Protocol
Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM

Other special-purpose chips

Device Registers:

Hidden Internals:

while (STATUS == BUSY) // 1
;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4
;

Fall 2017 :: CSE 306

ACPU:

Disk: C

A wants to do I/O

while (STATUS == BUSY) // 1
;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4
;

Fall 2017 :: CSE 306

A BCPU:

Disk: C A

1 2 3 4

while (STATUS == BUSY) // 1
;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4
;

How to avoid
wasting CPU time

with polling?

Fall 2017 :: CSE 306

while (STATUS == BUSY) // 1
context switch and wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4
context switch and wait for interrupt;

Use Interrupts instead of Polling

Fall 2017 :: CSE 306

CPU:

Disk:

2 3 4

while (STATUS == BUSY) // 1
context switch and wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4
context switch and wait for interrupt;

A B

C A

B B AA

1

Fall 2017 :: CSE 306

Interrupts vs. Polling
• Are interrupts ever worse than polling?

• Fast device: Better to spin than take interrupt overhead
• Device time unknown? Hybrid approach (spin then use

interrupts)

• Flood of interrupts arrive
• Can lead to livelock (always handling interrupts)
• Better to ignore interrupts while make some progress

handling them

• Other improvement
• Interrupt coalescing (batch together several interrupts)

Fall 2017 :: CSE 306

Protocol Variants

• Status check: polling vs. interrupt

• Transferring data: Programmed IO (PIO) vs. DMA

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM

Other special-purpose chips

Device Registers:

Hidden Internals:

Fall 2017 :: CSE 306

CPU:

Disk:

2 3,4

while (STATUS == BUSY) // 1
context switch and wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4
context switch and wait for interrupt;

A B

C A

B B AA

What else can we
optimize?

1

Fall 2017 :: CSE 306

PIO vs. DMA
• Programmed IO (PIO)

• OS code transfers every byte of data to/from device
→ CPU is directly involved with—and burns cycles on—
data transfer

• Direct Memory Access (DMA)
• OS prepares a buffer in RAM

• If writing to device, fills buffer with data to write
• If reading from device, initial buffer content does not matter

• OS writes buffer’s physical address and length to device
• Device reads/writes data directly from/to RAM buffer
→ No wasting of CPU cycles on data transfer

Fall 2017 :: CSE 306

CPU:

Disk:

2 3,4

while (STATUS == BUSY) // 1
context switch and wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4
context switch and wait for interrupt;

A B

C A

B B AA

With PIO

1

Fall 2017 :: CSE 306

CPU:

Disk:

0 3,4

Prepare the buffer // 0

while (STATUS == BUSY) // 1
context switch and wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4
context switch and wait for interrupt;

A B

C A

B B AA

With DMA

1

Fall 2017 :: CSE 306

Protocol Variants

• Status check: polling vs. interrupt

• Transferring data: Programmed IO (PIO) vs. DMA

• Communication: special instructions vs. memory-
mapped IO

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM

Other special-purpose chips

Device Registers:

Hidden Internals:

Fall 2017 :: CSE 306

How OS Reads/Writes Dev. Registers
• Special instructions

• Each device register is assigned a port number
• Special instructions (in and out in x86) communicate

read/write ports

• Memory-Mapped I/O
• Each device register is assigned a physical memory
• Normal memory loads/store instruction (mov in x86) used to

access registers

• OSTEP claims does not matter which one you use; I
disagree

• MMIO far better and more flexible
• Modern devices exclusively use MMIO

Fall 2017 :: CSE 306

xv6 code review
• IDE disk driver in xv6

Fall 2017 :: CSE 306

Protocol Variants

• Status check: polling vs. interrupt

• Transferring data: Programmed IO (PIO) vs. DMA

• Communication: special instructions vs. memory-
mapped IO

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM

Other special-purpose chips

Device Registers:

Hidden Internals:

Fall 2017 :: CSE 306

Variety is a Challenge
• Problem:

• Many, many devices
• Each has its own protocol

• How can we avoid writing a slightly different OS for
each H/W combination?

• Extra level of indirection: use a device abstraction

• Keep OS code mostly device-independent
• Device drivers deal with devices and provide generic

interfaces used by the rest of the OS
• Most of a modern OS source code is its device drivers

• E.g., drivers are about 70% of Linux source code

Fall 2017 :: CSE 306

Example: Storage Stack

Virtual file system
Concrete file system
Generic block layer

Driver
Disk drive

Build common interface
on top of all disk drivers

Application

Different types of drives: HDD, SSD, network mount, USB stick
Different types of interfaces: ATA, SATA, SCSI, USB, NVMe, etc.

Fall 2017 :: CSE 306

A Few Points on MMIO
Programming

Fall 2017 :: CSE 306

Memory-Mapped I/O
• MMIO allows you to map device interface to C struct and

use it conveniently in C code
• Subject to side-effect caveats

• Example: MMIO for our canonical device
• Lets say the three registers are mapped to three consecutive

integers in physical address space

typedef struct {
int status;
int command;
int data;

} mydev_interface;

mydev_intrface* dev =
(mydev_interface*) <dev_addr>;

while (dev->status & D_BUSY);
for (i=0; i<data_len; i++)

dev->data = data[i];
dev->command = COMMAND;
while (dev->status & D_BUSY);

Fall 2017 :: CSE 306

Programming Mem-Mapped IO
• A memory-mapped device is accessed by normal

memory ops
• E.g., the mov family in x86

• But, how does compiler know about I/O?
• Which regions have side-effects and other constraints?
• It doesn’t: programmer must specify!

Fall 2017 :: CSE 306

Problem with Optimizations
• Recall: Common optimizations (compiler and CPU)

• Compilers keep values in registers, eliminate redundant operations,
etc.

• CPUs have caches
• CPUs do out-of-order execution and re-order instructions

• When reading/writing a device, it should happen
immediately

• Should not keep it in a processor register
• Should not re-order it (neither compiler nor CPU)
• Also, should not keep it in processor’s cache

• CPU and compiler optimizations must be disabled

Fall 2017 :: CSE 306

volatile Keyword
• volatile on a variable means this variable can

change value at any time
• So, do not register allocate it and disable all

optimizations on it
• Send all writes directly to memory
• Get all reads directly from memory

• volatile code blocks are not re-ordered by the
compiler

• Must be executed precisely at this point in program
• E.g., inline assembly

Fall 2017 :: CSE 306

Fence Operations
• Also known as Memory Barriers

• volatile does not force the CPU to execute
instructions in order

Write to <device register 1>;
mb(); // fence
Read from <device register 2>;

• Use a fence to force in-order execution
• Linux example: mb()
• Also used to enforce ordering between memory operations in

multi-processor systems

Fall 2017 :: CSE 306

Dealing with Caches
• Processor may cache memory locations

• Whether it’s DRAM or MMIO locations
• Because the CPU does not know which is which

• Often, memory-mapped I/O should not be cached
• Why?

• volatile does not affect caching
• Because compilers don’t know about caching

• Solution: OS marks ranges of memory used for MMIO
as non-cacheable

• Basically, disable caching for such memory ranges
• There are PTE flags for this (e.g., PCD flags in x86 PTEs)

Fall 2017 :: CSE 306

Correct Code for Our Example
Notes:
1) make_uncacheable

is a made-up name;
each kernel has a
different set of functions
for this purpose

2) Some of the mb() calls
in this code are
unnecessary in x86; but
better safe than sorry

make_uncacheable(dev_addr);

volatile mydev_intrface* dev =
(volatile mydev_interface*)dev_addr;

while (dev->status & D_BUSY);
mb();
for (i=0; i<data_len; i++)

dev->data = data[i];
mb();
dev->command = COMMAND;
mb();
while (dev->status & D_BUSY);

	I/O�Devices
	Hardware Support for I/O
	Canonical Device
	Example Write Protocol
	Slide Number 5
	Slide Number 6
	Use Interrupts instead of Polling
	Slide Number 8
	Interrupts vs. Polling
	Protocol Variants
	Slide Number 11
	PIO vs. DMA
	Slide Number 13
	Slide Number 14
	Protocol Variants
	How OS Reads/Writes Dev. Registers
	xv6 code review
	Protocol Variants
	Variety is a Challenge
	Example: Storage Stack
	A Few Points on MMIO Programming
	Memory-Mapped I/O
	Programming Mem-Mapped IO
	Problem with Optimizations
	volatile Keyword
	Fence Operations
	Dealing with Caches
	Correct Code for Our Example

