

I/O Devices

Nima Honarmand (Based on slides by Prof. Andrea Arpaci-Dusseau)

Hardware Support for I/O

- OS communicates w/ device by reading/writing to *Device Registers*
 - Don't think of them as storage locations like CPU registers; they are communication interfaces
- Internal device hardware interprets these reads/writes in a device-specific way

Example Write Protocol

Device Registers:


```
while (STATUS == BUSY) // 1
  1
```

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

* Stony Brook University

Use Interrupts instead of Polling

while (STATUS == BUSY) // 1 context switch and wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4 context switch and wait for interrupt;

while (STATUS == BUSY) // 1 context switch and wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4 context switch and wait for interrupt; Stony Brook University

Interrupts vs. Polling

- Are interrupts ever worse than polling?
 - Fast device: Better to spin than take interrupt overhead
 - Device time unknown? Hybrid approach (spin then use interrupts)
- Flood of interrupts arrive
 - Can lead to **livelock** (always handling interrupts)
 - Better to ignore interrupts while make some progress handling them
- Other improvement
 - Interrupt coalescing (batch together several interrupts)

Protocol Variants

- Status check: polling vs. interrupt
- Transferring data: Programmed IO (PIO) vs. DMA

while (STATUS == BUSY) // 1 context switch and wait for interrupt;

Write data to DATA register // 2

What else can we optimize?

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4 context switch and wait for interrupt; * N Stony Brook University

PIO vs. DMA

• Programmed IO (PIO)

 OS code transfers every byte of data to/from device
 → CPU is directly involved with—and burns cycles on data transfer

• Direct Memory Access (DMA)

- OS prepares a buffer in RAM
 - If writing to device, fills buffer with data to write
 - If reading from device, initial buffer content does not matter
- OS writes buffer's <u>physical</u> address and length to device
- Device reads/writes data directly from/to RAM buffer
- \rightarrow No wasting of CPU cycles on data transfer

while (STATUS == BUSY) // 1 context switch and wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4 context switch and wait for interrupt; With PIO

Stony Brook University

Prepare the buffer // 0

while (STATUS == BUSY) // 1 context switch and wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4 context switch and wait for interrupt;

Protocol Variants

- Status check: polling vs. interrupt
- Transferring data: Programmed IO (PIO) vs. DMA
- Communication: special instructions vs. memorymapped IO

How OS Reads/Writes Dev. Registers

• Special instructions

- Each device register is assigned a *port number*
- Special instructions (in and out in x86) communicate read/write ports

• Memory-Mapped I/O

- Each device register is assigned a physical memory
- Normal memory loads/store instruction (mov in x86) used to access registers
- OSTEP claims does not matter which one you use; I disagree
 - MMIO far better and more flexible
 - Modern devices exclusively use MMIO

xv6 code review

• IDE disk driver in xv6

Protocol Variants

- Status check: polling vs. interrupt
- Transferring data: Programmed IO (PIO) vs. DMA
- Communication: special instructions vs. memorymapped IO

Variety is a Challenge

- Problem:
 - Many, many devices
 - Each has its own protocol
- How can we avoid writing a slightly different OS for each H/W combination?
 - Extra level of indirection: use a device abstraction
- Keep OS code mostly device-independent
 - *Device drivers* deal with devices and *provide generic interfaces* used by the rest of the OS
 - Most of a modern OS source code is its device drivers
 - E.g., drivers are about 70% of Linux source code

Example: Storage Stack

A Few Points on MMIO Programming

Memory-Mapped I/O

- MMIO allows you to map device interface to C struct and use it conveniently in C code
 - Subject to side-effect caveats
- Example: MMIO for our canonical device
 - Lets say the three registers are mapped to three consecutive integers in physical address space

```
typedef struct {
    int status;
    int command;
    int data;
} mydev_interface;
```

```
mydev_intrface* dev =
  (mydev interface*) <dev addr>;
```

```
while (dev->status & D_BUSY);
for (i=0; i<data_len; i++)
    dev->data = data[i];
dev->command = COMMAND;
while (dev->status & D_BUSY);
```


Programming Mem-Mapped IO

- A memory-mapped device is accessed by normal memory ops
 - E.g., the mov family in x86
- But, how does compiler know about I/O?
 - Which regions have side-effects and other constraints?
 - It doesn't: programmer must specify!

Problem with Optimizations

- Recall: Common optimizations (compiler and CPU)
 - Compilers keep values in registers, eliminate redundant operations, etc.
 - CPUs have caches
 - CPUs do out-of-order execution and re-order instructions
- When reading/writing a device, it should happen immediately
 - Should not keep it in a processor register
 - Should not re-order it (neither compiler nor CPU)
 - Also, should not keep it in processor's cache
- CPU *and* compiler optimizations must be disabled

volatile Keyword

- <u>volatile</u> on a variable means this variable can change value at any time
 - So, do not register allocate it and disable all optimizations on it
 - Send all writes directly to memory
 - Get all reads directly from memory
- volatile code blocks are not re-ordered by the compiler
 - Must be executed precisely at this point in program
 - E.g., inline assembly

Fence Operations

- Also known as Memory Barriers
- volatile does not force the CPU to execute instructions in order

Write to <device register 1>;
mb(); // fence
Read from <device register 2>;

- Use a *fence* to force in-order execution
 - Linux example: mb()
 - Also used to enforce ordering between memory operations in multi-processor systems

Dealing with Caches

- Processor may cache memory locations
 - Whether it's DRAM or MMIO locations
 - Because the CPU does not know which is which
- Often, memory-mapped I/O should not be cached
 - Why?
- volatile does not affect caching
 - Because compilers don't know about caching
- Solution: OS marks ranges of memory used for MMIO as *non-cacheable*
 - Basically, disable caching for such memory ranges
 - There are PTE flags for this (e.g., PCD flags in x86 PTEs)

Correct Code for Our Example

```
make_uncacheable(dev_addr);
```

```
volatile mydev_intrface* dev =
  (volatile mydev_interface*)dev_addr;
```

```
while (dev->status & D_BUSY);
mb();
for (i=0; i<data_len; i++)
        dev->data = data[i];
mb();
dev->command = COMMAND;
mb();
while (dev->status & D_BUSY);
```

Notes:

- make_uncacheable
 is a made-up name;
 each kernel has a
 different set of functions
 for this purpose
- Some of the mb() calls
 in this code are
 unnecessary in x86; but
 better safe than sorry