
Fall 2017 :: CSE 306

File Systems
Basics

Nima Honarmand

Fall 2017 :: CSE 306

File and “inode”
• File: user-level abstraction of storage (and other)

devices
• Sequence of bytes

• inode: internal OS data structure representing a file
• inode stands for index node, historical name used in Unix

• Each inode is identified by its index-number (inumber)
• Similar to processes being identified by their PID

• Each file is represented by exactly one inode in kernel

• We store both inode as well as file data on disk

Fall 2017 :: CSE 306

File Data vs. Metadata
• File Data: sequence of bytes comprising file content

• File Metadata: other interesting things OS keeps track
of for each file

• Size

• Owner user and group

• Time stamps: creation, last modification, last access

• Security and access permission: who can do what with this
file

• inode stores metadata and provides pointers to disk
blocks containing file data

Fall 2017 :: CSE 306

Directory and “dentry”
• Directory: special file used to organize other files into a

hierarchical structure
• Each directory is a file in its own right, so it has a corresponding

inode

• Logically, directory is a list of <file-name, inumber> pairs
• Internal format determined by the FS implementation

• File name is not the same thing as the file, it’s just a string of
characters we use to refer to the file
• inode is actual the file

• Directory entry: each <file-name, inumber> pair
• Called a dentry in Linux; we’ll use this name

Fall 2017 :: CSE 306

Directory Hierarchy

• Each dentry can point to a
normal file or a another
directory.

• This allows hierarchical (tree-
like) organization of files in a
file system.

• In this tree, all internal nodes
are directories and leaves are
ordinary files.

Fall 2017 :: CSE 306

File Path
• File path is the human-readable

string of characters we use to refer
to a node in directory tree

• For example:
• /
• /foo
• /bar/foo/bar.txt

• Each valid path corresponds to exactly one dentry
• And dentry points to exactly one inode

• Multiple dentries can point to the same inode
→ Multiple paths might map to the same file

Fall 2017 :: CSE 306

Hard Links
• An inode uniquely identifies a file for its lifespan

• Does not change when renamed

• Each dentry that points to an inode is a hard link to
that file
• We’ll talk about soft links later

• inode keeps track of these links to the file
• Count “1” for every such link

• When link count is zero, file becomes inaccessible and
can be garbage collected
• There is no ‘delete’ system call, only ‘unlink’

Demo: link count in output of ls -l

Fall 2017 :: CSE 306

File Operations: open()
int open(char *path, int flags, int mode);

• Traverses the directory tree to find the dentry
corresponding to path

• Checks/does a lot of things according to flags

• Examples of flags:
• O_RDONLY, O_WRONLY, O_RDWR: requested type of access to file
• O_CREAT: create if not existing
• O_TRUNC: truncate the file upon opening
• And many others; see the man page

• mode is used to set the file permissions if a new file is
created

Fall 2017 :: CSE 306

File Operations: open()
• If path is valid and requested access is permitted,
open() returns a file descriptor

• File descriptor is an index into the per-process File
Descriptor Table
• FDT is a kernel data structure; user program only has a index

into it

• Each entry in file descriptor table is a pointer to a File
Object
• File object represents an instance if an opened file

• File object then points to the inode (either directly or
through dentry)

Fall 2017 :: CSE 306

Process 1

File Descriptors and File Objects

• fd indexes into FDT; FDT entry points to File Object

• File object points to corresponding inode

fd

File
Object

1

File Descriptor
Table

inode
10

User

Kernel

Fall 2017 :: CSE 306

Process 1

File Descriptors and File Objects

• Multiple entries in same FDT may point to same file object
• E.g., after a dup() syscall

fd

File
Object

1

File Descriptor
Table

User

Kernel

inode
10

Fall 2017 :: CSE 306

Process 1

File Descriptors and File Objects

• Multiple file objects might point to the same inode
• E.g., if the file has been opened multiple times
• Either by the same process or a different one

fd

File
Object

1

File Descriptor
Table

File
Object

2

inode
10

User

Kernel

Fall 2017 :: CSE 306

Process 2Process 1

File Descriptors and File Objects

• The same file object might be pointed to by FDTs of
different processes
• E.g., due to fork(). Remember? FDT gets copied at form time.

fd

File
Object

1

File Descriptor
Table

File
Object

2

inode
10

File Descriptor
Table

User

Kernel

Fall 2017 :: CSE 306

Process 2Process 1

File Descriptors and File Objects

fd

File
Object

1

File Descriptor
Table

File
Object

2

inode
10

File Descriptor
Table

User

Kernel

File
Object

3

inode
20

Overall Picture

Fall 2017 :: CSE 306

Why File Objects?
• Why don’t FDT entries directly point to inodes?

• Because each time you open a file, you might use
different flags

• E.g., Different permission requests

• Also, kernel tracks the “current offset” of each open file
• Multiple open instances of the same file may be accessing the

file at different offsets

• Again, use an extra-level of indirection to solve the
problem!

Fall 2017 :: CSE 306

Absolute vs. Relative Paths

• Each process has a working directory
• Stored in its PCB

• Specifically, it is a dentry pointer

• First character of path dictates whether to start search
from root dentry (/) or current process’s working
directory dentry
• An absolute path starts with the ‘/’ character (e.g.,

/lib/libc.so)

• Anything else is a relative path (e.g., foo/vfs.pptx)

Fall 2017 :: CSE 306

File Path Lookup

• Execute in a loop looking for next piece
• Treat ‘/’ character as component delimiter

• Each iteration looks up part of the path

• Ex: ‘/home/myself/foo’ would look up…
• ‘home’ in / → dentry A → inode X

• ‘myself’ in content of X → dentry B → inode Y

• ‘foo’ in content of Y → dentry C → inode Z

• In every step, kernel should also check access
permissions to see if user has been granted access

Fall 2017 :: CSE 306

open() continued

• If inode found, create a new file object, find a free
entry in FDT, and put the file object pointer there

• What if FDT is full?
• Allocate a new table 2x the size and copies old one

• What if inode is not found?
• open() fails unless O_CREAT flag was passed to create

the file

• Why is create a part of open?
• Avoid races in if (!exist()) create(); open();

Fall 2017 :: CSE 306

File Operations: read() & write()

ssize_t read(int fd, void *buf, size_t

count);

ssize_t write(int fd, const void *buf, size_t

count);

• Read and write count number of bytes from file
• But from where in the file?

• Kernel maintains a current location (sometimes called
cursor) for each open file

• Read and write start from that location, and advance
the cursor by number of bytes read/written

Fall 2017 :: CSE 306

File Operations: read() & write()

• Having a cursor serves sequential file accesses

• What if we need to access a random location in a file?

Two solutions:

1) Change the cursor before read/write
• off_t lseek(int fd, off_t offset, int whence);

2) Use random-access versions of read/write:
• ssize_t pread(int fd, void *buf, size_t count,

off_t offset);

• ssize_t pwrite(int fd, const void *buf, size_t

count, off_t offset);

Demo: Using strace to see syscalls made by cat

Fall 2017 :: CSE 306

File Operations: link()

int link(const char *oldpath, const char

*newpath);

• Creates a new hard link with path newpath to inode
represented by oldpath

• Creates a new name for the same inode

• Opening either name opens the same file

• This is not a copy

• This is the syscall used by Linux’s ln command

Fall 2017 :: CSE 306

Interlude: Symbolic Links
• Special file type that stores a string

• String usually assumed to be a filename

• Created with symlink() system call

• How different from a hard link?
• Completely

• Doesn’t raise the link count of the file

• Can be “broken,” or point to a missing file (just a string)

• Sometimes abused to store short strings
[myself@newcastle ~/tmp]% ln -s "silly example" mydata

[myself@newcastle ~/tmp]% ls -l

lrwxrwxrwx 1 myself mygroup 23 Oct 24 02:42 mydata -> silly example

Fall 2017 :: CSE 306

File Operations: unlink()
int unlink(const char *pathname);

• Removes the dentry corresponding to pathname

• Decreases link count of corresponding inode by 1
• If inode link count reaches 0, FS can garbage collect it;

Otherwise, leaves it be because there are other dentries
pointing to it.

• This is the syscall used by Linux’s rm command
• There is no ‘delete’ system call, only unlink()

Fall 2017 :: CSE 306

Interlude: Link Count & Ref Count

• inodes and dentries live in two worlds
• On-disk copy

• In-memory copy

• In-memory copies are caches of on-disk copies
• E.g., inode cache keeps an in-memory copy of all on-disk

inodes that may be used by some process

• Similarly, for the dentry cache

• The kernel needs to know when it is safe to remove
an on-disk copy or free an in-memory copy

Fall 2017 :: CSE 306

Interlude: Link Count & Ref Count
• For in-memory copy, we use reference counts to in-

memory objects
• For every C pointer in kernel that points to an in-memory

copy, increment ref count by 1

• When someone releases the pointer, decrement ref count

• When ref count reaches 0, it is safe to garbage-collect

• For on-disk copy, we use both hard-link count as well as
ref count
• E.g., it is only safe to garbage collect an on-disk inode when

• There is no hard link pointing to it

• There is no C-pointer to its in-memory cached copy

Fall 2017 :: CSE 306

Example: Common Trick for Temp Files

• How to clean up temp file when program crashes?

• Use following syscalls to create the temp file
• open() with O_CREAT (1 link, 1 ref)

• unlink() (0 link, 1 ref)

• File gets cleaned up when program dies
• Kernel removes last reference on exit

• Happens regardless if exit is clean or not

• Except if the kernel crashes / power is lost
• Need something like fsck to “clean up” inodes without dentries

• Dropped into lost+found directory

Fall 2017 :: CSE 306

File Operations: rename()
int rename(const char *oldpath, const char

*newpath);

• Atomically renames a file, assuming oldpath is valid

• Deletes dentry corresponding to oldpath

• Creates a new dentry corresponding to newpath

• Note: newpath and oldpath might be in different
directories

Fall 2017 :: CSE 306

Example: How Editors Save Files
• Hint: don’t want half-written file in case of crash

• General approach
• Create a temp file (using open)

• Copy old to temp (using read old / write temp)

• Apply writes to temp

• Close both old and temp

• Do rename(temp, old) to atomically replace

• Drawback?
• Hint 1: what if there was a second hard link to old?

• Hint 2: what if old and temp have different permissions?

Fall 2017 :: CSE 306

File Operations: close()
int close(int fd);

• Removes the entry from File Descriptor Table and decreases
corresponding file object’s ref count

• Can garbage-collect the file object if its ref count reaches 0,
which in turn, decrements inode’s ref count

• If inode’s ref count reaches 0, can garbage-collect in-
memory copy
• If link count is also 0, can garbage-collect the on-disk copy

• FDs also closed when process exits
• If not closed already

Fall 2017 :: CSE 306

Other File Operations
• dup(), dup2() — Copy a file handle

• Creates a second table entries for same file object

• Obviously, increments file object’s reference count

• fstat() — returns the file metadata stored in
the inode

• fcntl() — Set flags on file object
• E.g., CLOSE_ON_EXEC flag prevents inheritance on
exec()

• Can be set by open() or fcntl()

Fall 2017 :: CSE 306

Directory Operations

• Creation
• int mkdir(const char *pathname, mode_t

mode);

• Removal
• int rmdir(const char *pathname);

• Only removes a directory if it is empty
• i.e., no dentries other than . and ..

Fall 2017 :: CSE 306

Directory Operations: Traversal

• POSIX interface:
• DIR *opendir(const char *name);

• struct dirent *readdir(DIR *dirp);

• int closedir(DIR *dirp);

• Linux kernel syscalls
• open(): regular open syscall

• int getdents(unsigned int fd, struct

linux_dirent *dirp, unsigned int

count);

• close(): regular close syscall

Fall 2017 :: CSE 306

Syscalls vs. STDIO operations
• The operations we discussed so far are system calls,

(typically) implemented by the kernel
• They all use file descriptors to refer to files
• They are often included from <unistd.h>

• In C, <stdio.h> adds another layer of abstraction on top
of kernel files, called streams
• Streams are represented by FILE objects, which are user-mode

(library) structures

• Stream operations that might be confused w/ syscalls often
have a “f” prefixed to their names
• E.g., fopen(), fclose(), fread(), fwrite()

• Other stream ops may or may not have an “f” prefix
• E.g., fputc() and putc()

Fall 2017 :: CSE 306

Multiple File Systems
• Users often want to have multiple file systems

• Multiple partitions per disk

• Multiple disks

• USB sticks

• CD/DVD

• Network file systems

• etc.

• How to do this?
• Windows approach: make each file system a separate

Drive (C, D, etc.)

• Unix approach: keep everything in one tree

Fall 2017 :: CSE 306

Mounting Multiple FS

• Idea: stitch all the file systems together into a super
file system!

~$ mount

/dev/sda1 on / type ext4 (rw)

/dev/sdb1 on /backups type ext4 (rw)

server:/honar on /homes/honar type nfs

Fall 2017 :: CSE 306

Mounting Multiple FS

• /dev/sda1 on /

• /dev/sdb1 on /backups

• server:/honar on /homes/honar

/

backups homes

bak1 bak2 bak3

etc bin

honar

306

lab1 lab2

.bashrc

Fall 2017 :: CSE 306

Mounting Multiple FS

• Now that you know directory structure and FS
objects, can you tell how it is done?

• The dentry corresponding to the mount location,
points to the root inode of the mounted file system
• E.g., dentry corresponding to /backups points to the

inode corresponding to the root of the file system od
/dev/sdb1.

• The actual implementation is a bit more
complicated but this is the gist of it.

Fall 2017 :: CSE 306

Core FS Objects (1)

• inode (index node): represent one file
• Keeps metadata as well as pointers to data blocks

• dentry (directory entry): name-to-inode mapping

• File object: represents an opened file
• Keeps pointer to inode (or dentry), access permissions, and

file offset

Fall 2017 :: CSE 306

Core FS Objects (2)

• Superblock: global metadata of a file system
• E.g., a magic number to indicate FS type

• E.g., allocation bitmaps to find free inodes and data blocks

• Many file systems put this as first block of partition

• Superblocks, inodes and dentries are stored on-disk
• and cached in main memory when accessed

• File object is only in memory

