
Fall 2017 :: CSE 306

Basic FS
Implementation

Nima Honarmand

Fall 2017 :: CSE 306

A Typical Storage Stack (Linux)

VFS (Virtual File System)

ext4

Page Cache

Block Device Layer

IO Scheduler

Disk Driver

Disk

Kernel

User

btrfs fat32 nfs

Network

: Already covered

: To be covered

Fall 2017 :: CSE 306

A Typical Storage Stack (Linux)
• Block layer and those underneath it hide disk details from the

rest of storage stack

• ext4, btrfs, fat32, nfs are examples of “actual file systems”
• The layer that determines how disk blocks are used to store the file

system data and metadata
• nfs (Network File system) is different; it does not use disk

• VFS hides the FS-specific details and works in terms of generic
inodes, dentries and superblocks
• It calls FS-provided functions to access on-disk inode, dentry, superblock

and file data
• It also caches inodes and dentries to reduce disk accesses

• Page cache is the main layer that caches FS data in the memory
• It interacts with most other layers

Fall 2017 :: CSE 306

File Allocation Methods

• Given a file’s inode, how to find its data blocks?
• inode some how stores data block locations

• Many different approaches
• Contiguous allocation

• Linked allocation

• Indexed allocation

• Multi-level indexed allocation

• Extents

• etc.

Fall 2017 :: CSE 306

File Allocation Considerations

• Amount of fragmentation (internal and external)
• Free space that can’t be used

• Ability to grow file over time

• Performance of sequential accesses

• Performance of random accesses
• Speed to find data blocks for random accesses

• Wasted space for meta-data overhead
• Meta-data must be stored persistently too

Fall 2017 :: CSE 306

Contiguous Allocation

• Allocate each file to contiguous sectors on disk

• Inode specifies starting block & length

• Placement/Allocation policies
• First-fit, best-fit, ...

I

• Fragmentation?

• Sequential access?

• Random access?

• File growth?

• Metadata overhead?

- Awful external fragmentation

+ Very good

+ Easy to find block

- Not easy; might need to move file

+ Very low

Fall 2017 :: CSE 306

Linked Allocation

• File stored as a linked list of blocks

• Inode contains pointers to first and last data blocks

• Each block contains pointer to the next block

• Fragmentation?

• Sequential access?

• Random access?

• File growth?

• Metadata overhead?

+ No external fragmentation

+/- Depends on block placement

- Awful; has to traverse list to find

+ Easy and fast

- One pointer per block

I

Fall 2017 :: CSE 306

Linked Allocation (cont’d)

• File Allocation Table (FAT)
• A variant of linked allocation commonly used in older

Windows, DOS and OS2

• Idea: Keep next-pointer information in a separate table
• Table has one entry per disk block

• The entry points to the next block in that file

• Advantage?
• Table can be cached in memory (if small)

→ Can traverse linked list in memory
→ Improves random access performance

Fall 2017 :: CSE 306

Indexed Allocation

• Inode points to Index Block
• Index block is an array of pointers to all blocks in the file

• Metadata: array of block numbers

• Allocate space for pointer at file creation time

• Fragmentation?

• Sequential access?

• Random access?

• File growth?

• Metadata overhead?

+ No external fragmentation

+/- Depends on block placement

+ Easy to find block number

+/- Easy up to max size; but max is small

- high, especially for small files

IBI

Fall 2017 :: CSE 306

Indexed Allocation (cont’d)

• How to support large files?

• Linked Index Blocks

• Multi-level Index Blocks

IB IBI IB

IB IBI IBIB

Fall 2017 :: CSE 306

Multi-Level Indexing in Practice

• E.g., Unix FFS and ext2/ext3 file systems

• Inode contains N+3 pointers
• N direct pointers to first N blocks in the file

• 1 indirect pointer (points to an index block)

• 1 double-indirect pointer (points to an index block of
index blocks)

• 1 triple-indirect pointer (points to …)

Fall 2017 :: CSE 306

Multi-Level Indexing in Practice

I

2
nd

Level
Indirection

Block

n
Data

Blocks

n3

Data
Blocks

3
rd

Level
Indirection

Block

IB

IB
IB

1
st

Level
Indirection

Block

IB

IB

IB

IB

IB

IB

IB

IB

n2

Data
Block

s
IB

10 Data Blocks

Fall 2017 :: CSE 306

Multi-Level Indexing in Practice
• Why have N (10) direct pointers?

• Because most files are small
→ allocate indirect blocks only for large files

• Implications
+/- Maximum file size limited (a few terabytes)

+ No external fragmentation

+ Simple and supports small files well

+ Easy to grow files

+/- Sequential access performance depends on block layout

+/- Random access performance good for small files;
for large files have to read multiple indirect blocks first

Fall 2017 :: CSE 306

Extent-Based Allocation
• Sequential access performance dictated by on-disk contiguity of

file data blocks
→ Most file systems try to keep file data in big chunks of consecutive disk
blocks

→ Why not use this fact to reduce individual block pointers?

• Extent: a consecutive range of disk blocks
• Identified by its first block and length

• Inode store file blocks as a set of extents (instead of pointers)
• Organize extents into multi-level tree structure

• Each leaf node: starting block and contiguous size

• Minimizes meta-data overhead when have few extents

• Allows growth beyond fixed number of extents

Fall 2017 :: CSE 306

Extent-Based Allocation

• Ext4 uses extents instead of
direct/indirect pointers used
by ext2/3

• Fragmentation?

• Sequential access?

• Random access?

• File growth?

• Metadata overhead?

+ No external fragmentation

+ Good assuming few large extents

+ Quick assuming a shallow extent tree

+ Easy to grow

+ low, assuming a few extents

Fall 2017 :: CSE 306

On-Disk FS Layout
• Varies from FS to FS; we consider a general scheme that

forms basis of most FS

• Disk blocks are used to hold one of the following
• Data blocks
• Inode table

• Each block here stores a few inodes;
i-number determines which block in the table and which inode in the
block

• Indirect blocks: often in the same pool as data blocks
• Directories: often in the same pool as data blocks
• Data block bitmap: to identify free/used data blocks
• Inode bitmap: to identify free/used inodes
• Superblock

Fall 2017 :: CSE 306

Simple Layout

0 7

D D D D D D D D

8 15

D D D D D D D D

16 23

D D D D D D D D

24 31

D D D D D D D D

32 39

D D D D D D D D

40 47

D D D D D D D D

48 55

D D D D D D D D

56 63

S i d I I I I I

D : Data block

I : Inode block

d : Data bitmap

i : Inode bitmap

S : Superblock

Fall 2017 :: CSE 306

One inode Block

• Inodes are fixed size
• 128-256 bytes

• Assume 4K blocks
• i.e., each block is 8 sectors

• 16 inodes per inode block
• Easy to find block

containing a given inode
number

inode

16

inode

17

inode

18

inode

19

inode

20

inode

21

inode

22

inode

23

inode

24

inode

25

inode

26

inode

27

inode

28

inode

29

inode

30

inode

31

Fall 2017 :: CSE 306

On-Disk inode Data

• Type: file, directory, symbolic link, etc.

• Ownership and permission info

• Size

• Creation and access time

• File data: direct and indirect block pointers

• Link count

Fall 2017 :: CSE 306

Directories

• Common design:
• Directory is a special file with its inode

• Store directory entries in data blocks

• Large directories just use multiple data blocks

• Various formats could be used to store dentries
• Lists

• B-trees

• Different tradeoffs w.r.t. cost of searching, enumerating
children, free entry management, etc.

Fall 2017 :: CSE 306

Free Space Management

• How do we find free data blocks or free inodes?

• Two common approaches
• In-situ free lists

• Bitmaps (more common)

Fall 2017 :: CSE 306

Superblock

• Need to know basic FS configuration metadata, like:
• FS type (FAT, FFS, ext2/3/4, etc.)

• block size

• # of inodes

• Location of inode table and bitmaps

• Store this in superblock

Fall 2017 :: CSE 306

Summary: On-Disk Structures

Super Block

Inode Table

Data Bitmap

Inode Bitmap

Data Block

directories indirects

Fall 2017 :: CSE 306

Example 1: create /foo/bar (1)

• Step 1: traverse

data inode root foo bar root foo

bitmap bitmap inode inode inode data data

read

read

read

read

Verify that bar does not already exist

Fall 2017 :: CSE 306

Example 1: create /foo/bar (2)

• Step 2: populate inode

data inode root foo bar root foo

bitmap bitmap inode inode inode data data

read

read

read

read

Why must read bar inode block?
How to initialize inode?

read
write

read
write

Fall 2017 :: CSE 306

Example 1: create /foo/bar (3)

• Step 3: update directory

data inode root foo bar root foo

bitmap bitmap inode inode inode data data

read

read

read

read

Update directory’s inode (e.g., size) and data

read
write

write

write

read
write

Fall 2017 :: CSE 306

Synthesis Example: write to /foo/bar

• Assuming it’s already opened

data inode root foo bar

bitmap bitmap inode inode inode

root

data

foo

data

read

read
write

write

write

bar

data

Need to allocate a data block assuming
bar was empty

Fall 2017 :: CSE 306

Efficiency
• How to avoid so much IO for basic operations?

• Answer: cache disk data aggressively

• What to cache?
• Everything

• Inodes
• Dentries
• Allocation bitmaps
• Data blocks

• Reads first check the cache; if not there, then access disk

• Modifications update the cached data (make them dirty)
• Dirty data is written back to disk later in the background

Fall 2017 :: CSE 306

Issues with Caching

• Many important decisions to make
• How much to cache?

• How long to keep dirty data?

• How much to write back?

• What about crashes?
• FS consistency issues

Fall 2017 :: CSE 306

sync() System Calls

• In case an application needs cached data flushed to
disk immediately

• sync() – Flush all dirty buffers to disk

• syncfs(fd) – Flush all dirty buffers to disk for FS
containing fd

• fsync(fd) – Flush all dirty buffers associated with
this file to disk (including metadata changes)

• fdatasync(fd) – Flush only dirty data pages for
this file
• Don’t bother with inode metadata, unless critical metadata

changed

