Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

FS Consistency
& Journaling

Nima Honarmand
(Based on slides by Prof. Andrea Arpaci-Dusseau)



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Why Is Consistency Challenging?

* File system may perform several disk writes to serve a single
request

e Caching makes things worse by not knowing the exact time at which the
writes might happen

* If FSis interrupted between writes, may leave data in
inconsistent state

 What can interrupt write operations?
* Power loss and hard reboot

* Kernel panic (could be due to bugs not in FS)
* FS bugs

* These are practically impossible to avoid = inconsistencies will
happen

* Need a mechanism to recover from (or fix) inconsistent state



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Running Example

e Consider appending a new block to a file
e e.g., becauseofawrite () syscall

* What are the blocks that need to be written?
e FS Data bitmap
* File’s inode (inode table block containing the inode)
* New data block



oINS — S —
Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Possible Inconsistencies

* What happens if crash after only updating some of
these blocks?

* In terms of FS consistency

a) bitmap: leaked space (block not usable anymore)

b) data: nothing bad

c) inode: point to garbage + another file may use block
d) bitmap and data: leaked space (block not usable anymore)

e) bitmap and inode: point to garbage
f) data and inode: another file may use block

How to fix file system inconsistencies?



Fall 2017 :: CSE 306

Solution

‘\\\\ Stony Brook University

1: FSCK

* File System Checker
e Often read “FS-check”

* Strategy:

» After crash, scan whole disk for contradictions and “fix” if needed
» Keep file system off-line until FSCK completes

* For example, how to tell if data bitmap block is consistent with

inodes?

* Read every valid inode + indirect blocks
* If pointer to data block, corresponding bit should be 1; else bitis O

e Interlude: how does OS know if an FSCK is needed?
e Superblock is marked “dirty” when mounted
* Upon clean shutdown/reboot, kernel removes the “dirty” mark



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

FSCK Checks

First big question: How to check for consistency?
* Hundreds of types of checks over different fields...
» All are heuristic checks based on what we expect from a “consistent” FS state

Do superblocks match?
* FS usually keeps multiple superblock copies for reliability reasons

Do directories contain “” and “.”?
Do number of dir entries equal inode link counts?
Do different inodes ever point to same block?

Second big question: how to solve problems once found?
* Not always easy to know what to do
* Goal is to reconstitute some consistent state



NN . ... 00 R —
Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Example 1: Link Count

Dir Entry

Inode

link count =1

Dir Entry

How to fix to restore consistency?



NN . ... 00 R —
Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Example 1: Link Count

Dir Entry

Inode

link count =

Dir Entry

Simple fix!



NN . ... 00 R —
Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Example 2: Link Count

Inode

link count =1

How to fix to restore consistency?



NN . ... 00 R —
Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Example 2: Link Count

Dir Entry

Inode

link count =1

ls -1 /

total 150

drwxr-xr-x 401 18432 Dec 31 1969 afs/
drwxr-xr-x. 2 4096 Nov 3 09:42 bin/
drwxr-xr-x. 5 4096 Aug 1 14:21 boot/
dr-xr-xr-x. 13 4096 Nov 3 09:41 1lib/
dr-xr-xr-x. 10 12288 Nov 3 09:41 1libo4/
drwx————-—- . 2 16384 Aug 1 10:57 lost+found/



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Example 3: Data Bitmap

Inode block
link_count =1 (number 123)

data bitmap
0011001100

for block 123

How to fix to restore consistency?



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Example 3: Data Bitmap

Inode block
link_count =1 (number 123)

data bitmap
001100110

Simple fix!



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Example 4: Duplicate Pointers

Inode block
link_count =1 (number 123)

Inode
link count =1

How to fix to restore consistency?



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Example 4: Duplicate Pointers

Inode block
link_count =1 (number 123)

copy

Inode block
link_count =1 (number 789)

Simple, but is this correct?



NN . ... 00 R —
Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Example 5: Bad Pointer

Inode
link count =1

» Block #9999

super block
tot-blocks=8000

How to fix to restore consistency?



NN . ... 00 R —
Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Example 5: Bad Pointer

Inode
link count =1

Simple, but is this correct?

super block
tot-blocks=8000




Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Problems with FSCK

* Problem 1: functionality
* Not always obvious how to fix file system image
 Don’t know “correct” state, just consistent one
e Easy way to get consistency: reformat disk!

* Problem 2: performance
e FSCK is awfully slow!



Fall 2017 :: CSE 306

FSCK is Very Slow

‘\\\\ Stony Brook University

4500 Phase 1 B Phase 3 2 Phase 5417.,3
—_— % Phase 2 @ Phase 4 B RIS NS Y
9 4000
§ 3500 3398
& 5000+ 2554
g 2500 . BN ANNL ALY
— 2000
U) }}1?»?}6.\))
< 1500 -
S 1000
2
&) 500 1
0- 150GB 300GB 450GB 600GB
File system image size

Source: “ffsck: The Fast File System Checker”

Checking a 600GB disk takes ~70 minutes



oINS — S —
Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Solution #2: Journaling

* Goals
1) Ok to do some recovery work after crash, but not to read entire disk
2) Don’t move file system to just any consistent state, get correct state

Strategy: achieve atomicity when there are multiple disk updates

Definition of atomicity for concurrency

e Operations in critical sections are not interrupted by operations on
related critical sections

Definition of atomicity for persistence
* Collections of writes are not interrupted by crashes
e Either “all new” or “all old” data is visible




oINS — S —
Fall 2017 :: CSE 306 q\\\\ Stony Brook University

Consistency vs. Correctness
e Say a set of writes moves the disk from state A to B

empty

(just formatted) all states

consistent states >

FSCK gives consistency.
Atomicity gives A or B.




Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Journaling Strategy

* Log all disk changes in a journal before writing them to
file system proper

* Journal itself is a “temporary” persistent space on disk
e Could be the same disk as FS or a different one (for added

reliability)
Disk Layout >UPET it inodes Data Blocks
w/o Journal block maps

D'.Sk Layout ol Data Blocks
with Journal maps




Fall 2017 :: CSE 306

How Journaling Works

‘\\\\ Stony Brook University

e Consider our running example

* Need to write a data-bitmap block (B), an inode table
block (1), and a new data block (D)

* Let’s say B is block #10, | is block #12, and D is block #20

» Before writing to those blocks, store intended
changes in the journal

TxB B
10,12, 20




oINS — S —
Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Journaling Terminology

(Journal) Transaction

TxB

10, 12, 20

TX X TX
Begin Block Body End Block



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

How Journaling Works

* Order of operations

1) Journal write: write the following to the journal

* A Tx Begin block with disk block numbers of all blocks that will
be changed

* New content of blocks that will be changed (Tx Body)

 ATx End block to indicate that all the intended changes are
safely in the journal

2) Checkpoint: Write the actual FS blocks



oINS — S —
Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Crash Recovery Using Journal (1)

* Journal transaction ensures atomicity

e All disk writes needed to take FS from “one consistent
state” to “next consistent state” are recorded first

* This ensures atomicity w.r.t. crashes

* If a crash happens during journal write
* |lgnore the half-written transaction during recovery

* Crash happened during journal write = no
checkpointing took place - FS blocks are not changed



oINS — S —
Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Using Journal for Crash Recovery (2)

* If a crash happens after journal write but before (or
during) checkpointing

* During recovery, replay transaction by writing the recorded
changes to FS blocks

* This is correct even if crash happened during
checkpointing
e j.e., even if some FS blocks were written before crash
e Why?
* Because we will just overwrite them with the same data



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Order of Writes (1)

Question: in what order should we send the writes to disk?

* Does the order between journal write and checkpointing
matter?

* Of course!

 What happens if checkpointing begins before journal writes
are finished?
* Inconsistent FS state in case of crash

— Checkpointing should only begin after the whole
transaction is safely on the disk



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Order of Writes (2)

* Does the order of journal writes matter?

 TxB, Tx Data and TxE
* Hint: what is the purpose of TxE block?

e Disk can do TxB and Tx Body in any order
* TXE written last to indicate Tx is fully in the journal

* Revised order of operations:
1) Journal write (TxB and Tx Body)
2) Journal commit (write TxE)
3) Checkpoint



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Finite Journal

e Journal size is limited
* At some point we should free up journal space

* When is it safe to do so?
» After a transaction is checkpointed, we can free its space in the journal

* Journal often treated as a circular FIFO
e With pointers to the first and last not-checkpointed transactions
e Store this information in a journal superblock

* Revised order of operations:
1) Journal write (TxB and Tx Body) — advance the FIFO tail pointer
2) Journal commit (write TxE) — advance the FIFO tail pointer
3) Checkpoint
4) Free —advance the FIFO head pointer



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Journaling Optimizations

* Journaling has two major sources of overhead
1) It more than doubles the number of disk writes

* Every block first written to journal, then to FS
* Also, there are TxB and TxE to write

2) It enforces a lot of ordering between disk writes

e TxB, Tx Body - TxE
* TxE - Checkpointing

* Interlude: Why is it bad to enforce ordering?
* |t reduces the effectiveness of disk scheduling algorithms

* How can we reduce these overheads?



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Optimization 1: Batching Updates

* Instead of logging updates of every system call separately,
merge many operations into one big transaction

* E.g., start a new transaction every 5 seconds; during the current 5-
sec interval all disk changes go into the same Tx

* You'll still have atomicity, so no inconsistency problems

e Benefit?
* Fewer write orderings
* Fewer TxB and TxE blocks

* Drawback?
* On acrash, might lose more operations



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Optimization 2: Journal Metadata Only

 So far, we journaled both metadata changes
(bitmaps, inodes, etc.) as well as data changes (file
data blocks)

* Structural consistency of FS only requires atomicity
of metadata operations

* On the other hand, most of Tx Body is file data
(typically)

* So, what if we just do metadata journaling?
* Will reduce Tx size significantly



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Journaling Modes (1)

e Data journaling
e Both data + metadata in the journal
* Lots of data written twice, safer

* Metadata journaling + ordered data writes
* Only metadata in the journal

* Data writes should happen before metadata is in journal
 Why not after?
* Because inode can point to garbage data if crash

* Faster than full data, but constrains write orderings



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Journaling Modes (2)

 Metadata journaling + unordered data writes

e Data write can happen anytime w.r.t. metadata journal
e Fastest, most dangerous
* Still guarantees structural consistency

* Ordered metadata journaling is the most popular
* NTFS, ext3, XFS, etc.

* In ext3, you can choose any journaling mode



Fall 2017 :: CSE 306 ‘\\\\ Stony Brook University

Conclusion

* Most modern file systems use journals
e ordered-mode for metadata is popular

e FSCK is still useful for weird cases
* Bit flips
* FS bugs

* Some advanced file systems don’t use journals, but only
do writes on unused blocks (never overwrite blocks)

* Copy-on-Write file systems (e.g., ZFS)
e Log-structure file systems (e.g., LFS)



