
Fall 2017 :: CSE 306

FS Consistency
& Journaling

Nima Honarmand
(Based on slides by Prof. Andrea Arpaci-Dusseau)

Fall 2017 :: CSE 306

Why Is Consistency Challenging?
• File system may perform several disk writes to serve a single

request
• Caching makes things worse by not knowing the exact time at which the

writes might happen

• If FS is interrupted between writes, may leave data in
inconsistent state

• What can interrupt write operations?
• Power loss and hard reboot
• Kernel panic (could be due to bugs not in FS)
• FS bugs

• These are practically impossible to avoid → inconsistencies will
happen
• Need a mechanism to recover from (or fix) inconsistent state

Fall 2017 :: CSE 306

Running Example

• Consider appending a new block to a file
• e.g., because of a write() syscall

• What are the blocks that need to be written?
• FS Data bitmap

• File’s inode (inode table block containing the inode)

• New data block

Fall 2017 :: CSE 306

Possible Inconsistencies

• What happens if crash after only updating some of
these blocks?
• In terms of FS consistency

a) bitmap:

b) data:

c) inode:

d) bitmap and data:

e) bitmap and inode:

f) data and inode:

leaked space (block not usable anymore)

nothing bad

point to garbage + another file may use block

leaked space (block not usable anymore)

point to garbage

another file may use block

How to fix file system inconsistencies?

Fall 2017 :: CSE 306

Solution #1: FSCK
• File System Checker

• Often read “FS-check”

• Strategy:
• After crash, scan whole disk for contradictions and “fix” if needed
• Keep file system off-line until FSCK completes

• For example, how to tell if data bitmap block is consistent with
inodes?
• Read every valid inode + indirect blocks
• If pointer to data block, corresponding bit should be 1; else bit is 0

• Interlude: how does OS know if an FSCK is needed?
• Superblock is marked “dirty” when mounted
• Upon clean shutdown/reboot, kernel removes the “dirty” mark

Fall 2017 :: CSE 306

FSCK Checks
• First big question: How to check for consistency?

• Hundreds of types of checks over different fields…
• All are heuristic checks based on what we expect from a “consistent” FS state

• Do superblocks match?
• FS usually keeps multiple superblock copies for reliability reasons

• Do directories contain “.” and “..”?
• Do number of dir entries equal inode link counts?
• Do different inodes ever point to same block?
• …

• Second big question: how to solve problems once found?
• Not always easy to know what to do
• Goal is to reconstitute some consistent state

Fall 2017 :: CSE 306

Example 1: Link Count

Dir Entry

Dir Entry

inode

link_count = 1

How to fix to restore consistency?

Fall 2017 :: CSE 306

Example 1: Link Count

Dir Entry

Dir Entry

inode

link_count = 2

Simple fix!

Fall 2017 :: CSE 306

Example 2: Link Count

inode

link_count = 1

How to fix to restore consistency?

Fall 2017 :: CSE 306

Example 2: Link Count

Dir Entry

inode

link_count = 1

ls -l /

total 150

drwxr-xr-x 401 18432 Dec 31 1969 afs/

drwxr-xr-x. 2 4096 Nov 3 09:42 bin/

drwxr-xr-x. 5 4096 Aug 1 14:21 boot/

dr-xr-xr-x. 13 4096 Nov 3 09:41 lib/

dr-xr-xr-x. 10 12288 Nov 3 09:41 lib64/

drwx------. 2 16384 Aug 1 10:57 lost+found/

...

Fall 2017 :: CSE 306

Example 3: Data Bitmap

inode

link_count = 1

block

(number 123)

data bitmap

0011001100

for block 123

How to fix to restore consistency?

Fall 2017 :: CSE 306

Example 3: Data Bitmap

inode

link_count = 1

block

(number 123)

data bitmap

0011001101

Simple fix!

Fall 2017 :: CSE 306

Example 4: Duplicate Pointers

How to fix to restore consistency?

inode

link_count = 1

block

(number 123)

inode

link_count = 1

Fall 2017 :: CSE 306

Example 4: Duplicate Pointers

inode

link_count = 1

block

(number 123)

inode

link_count = 1

block

(number 789)

copy

Simple, but is this correct?

Fall 2017 :: CSE 306

Example 5: Bad Pointer

inode

link_count = 1

super block
tot-blocks=8000

Block #9999

How to fix to restore consistency?

Fall 2017 :: CSE 306

Example 5: Bad Pointer

inode

link_count = 1

super block
tot-blocks=8000

Simple, but is this correct?

Fall 2017 :: CSE 306

Problems with FSCK

• Problem 1: functionality
• Not always obvious how to fix file system image

• Don’t know “correct” state, just consistent one

• Easy way to get consistency: reformat disk!

• Problem 2: performance
• FSCK is awfully slow!

Fall 2017 :: CSE 306

FSCK is Very Slow

Source: “ffsck: The Fast File System Checker”

Checking a 600GB disk takes ~70 minutes

Fall 2017 :: CSE 306

Solution #2: Journaling
• Goals

1) Ok to do some recovery work after crash, but not to read entire disk

2) Don’t move file system to just any consistent state, get correct state

• Strategy: achieve atomicity when there are multiple disk updates

• Definition of atomicity for concurrency
• Operations in critical sections are not interrupted by operations on

related critical sections

• Definition of atomicity for persistence
• Collections of writes are not interrupted by crashes

• Either “all new” or “all old” data is visible

Fall 2017 :: CSE 306

Consistency vs. Correctness

• Say a set of writes moves the disk from state A to B

A B

consistent states

all states
empty

(just formatted)

FSCK gives consistency.
Atomicity gives A or B.

Fall 2017 :: CSE 306

Journaling Strategy
• Log all disk changes in a journal before writing them to

file system proper

• Journal itself is a “temporary” persistent space on disk
• Could be the same disk as FS or a different one (for added

reliability)

Data Blocks
super
block

inodes
bit

maps

Data Blocks
super
block

inodes
bit

maps
Journal

Disk Layout

w/o Journal

Disk Layout

with Journal

Fall 2017 :: CSE 306

How Journaling Works

• Consider our running example
• Need to write a data-bitmap block (B), an inode table

block (I), and a new data block (D)

• Let’s say B is block #10, I is block #12, and D is block #20

• Before writing to those blocks, store intended
changes in the journal

TxB
10, 12, 20 B I D TxE

Fall 2017 :: CSE 306

Journaling Terminology

TxB
10, 12, 20 B I D TxE

(Journal) Transaction

Tx
Body

Tx
Begin Block

Tx
End Block

Fall 2017 :: CSE 306

How Journaling Works

• Order of operations
1) Journal write: write the following to the journal

• A Tx Begin block with disk block numbers of all blocks that will
be changed

• New content of blocks that will be changed (Tx Body)

• A Tx End block to indicate that all the intended changes are
safely in the journal

2) Checkpoint: Write the actual FS blocks

Fall 2017 :: CSE 306

Crash Recovery Using Journal (1)

• Journal transaction ensures atomicity
• All disk writes needed to take FS from “one consistent

state” to “next consistent state” are recorded first

• This ensures atomicity w.r.t. crashes

• If a crash happens during journal write
• Ignore the half-written transaction during recovery

• Crash happened during journal write → no
checkpointing took place → FS blocks are not changed

Fall 2017 :: CSE 306

Using Journal for Crash Recovery (2)

• If a crash happens after journal write but before (or
during) checkpointing
• During recovery, replay transaction by writing the recorded

changes to FS blocks

• This is correct even if crash happened during
checkpointing
• i.e., even if some FS blocks were written before crash

• Why?

• Because we will just overwrite them with the same data

Fall 2017 :: CSE 306

Order of Writes (1)
Question: in what order should we send the writes to disk?

• Does the order between journal write and checkpointing
matter?

• Of course!

• What happens if checkpointing begins before journal writes
are finished?
• Inconsistent FS state in case of crash

→ Checkpointing should only begin after the whole
transaction is safely on the disk

Fall 2017 :: CSE 306

Order of Writes (2)

• Does the order of journal writes matter?
• TxB, Tx Data and TxE

• Hint: what is the purpose of TxE block?

• Disk can do TxB and Tx Body in any order

• TxE written last to indicate Tx is fully in the journal

• Revised order of operations:
1) Journal write (TxB and Tx Body)

2) Journal commit (write TxE)

3) Checkpoint

Fall 2017 :: CSE 306

Finite Journal
• Journal size is limited

• At some point we should free up journal space

• When is it safe to do so?
• After a transaction is checkpointed, we can free its space in the journal

• Journal often treated as a circular FIFO
• With pointers to the first and last not-checkpointed transactions
• Store this information in a journal superblock

• Revised order of operations:
1) Journal write (TxB and Tx Body) – advance the FIFO tail pointer
2) Journal commit (write TxE) – advance the FIFO tail pointer
3) Checkpoint
4) Free – advance the FIFO head pointer

Fall 2017 :: CSE 306

Journaling Optimizations

• Journaling has two major sources of overhead
1) It more than doubles the number of disk writes

• Every block first written to journal, then to FS

• Also, there are TxB and TxE to write

2) It enforces a lot of ordering between disk writes
• TxB, Tx Body → TxE

• TxE → Checkpointing

• Interlude: Why is it bad to enforce ordering?
• It reduces the effectiveness of disk scheduling algorithms

• How can we reduce these overheads?

Fall 2017 :: CSE 306

Optimization 1: Batching Updates
• Instead of logging updates of every system call separately,

merge many operations into one big transaction

• E.g., start a new transaction every 5 seconds; during the current 5-
sec interval all disk changes go into the same Tx

• You’ll still have atomicity, so no inconsistency problems

• Benefit?
• Fewer write orderings

• Fewer TxB and TxE blocks

• Drawback?
• On a crash, might lose more operations

Fall 2017 :: CSE 306

Optimization 2: Journal Metadata Only

• So far, we journaled both metadata changes
(bitmaps, inodes, etc.) as well as data changes (file
data blocks)

• Structural consistency of FS only requires atomicity
of metadata operations

• On the other hand, most of Tx Body is file data
(typically)

• So, what if we just do metadata journaling?
• Will reduce Tx size significantly

Fall 2017 :: CSE 306

Journaling Modes (1)

• Data journaling
• Both data + metadata in the journal

• Lots of data written twice, safer

• Metadata journaling + ordered data writes
• Only metadata in the journal

• Data writes should happen before metadata is in journal
• Why not after?

• Because inode can point to garbage data if crash

• Faster than full data, but constrains write orderings

Fall 2017 :: CSE 306

Journaling Modes (2)

• Metadata journaling + unordered data writes
• Data write can happen anytime w.r.t. metadata journal

• Fastest, most dangerous

• Still guarantees structural consistency

• Ordered metadata journaling is the most popular
• NTFS, ext3, XFS, etc.

• In ext3, you can choose any journaling mode

Fall 2017 :: CSE 306

Conclusion

• Most modern file systems use journals
• ordered-mode for metadata is popular

• FSCK is still useful for weird cases
• Bit flips

• FS bugs

• Some advanced file systems don’t use journals, but only
do writes on unused blocks (never overwrite blocks)
• Copy-on-Write file systems (e.g., ZFS)

• Log-structure file systems (e.g., LFS)

