
Fall 2017 :: CSE 306

(Linux)
Networking

Nima Honarmand

Fall 2017 :: CSE 306

Network Layer Diagrams
• OSI and TCP/IP Stacks (From Understanding Linux Network Internals)

Used in

Real

World

Fall 2017 :: CSE 306

Ethernet (IEEE 802.3)
• LAN (Local Area Network) connection

• Simple packet layout:
• Header

• Type (e.g., IPv4)
• source MAC address
• destination MAC address
• length (up to 1500 bytes)
• …

• Data block (payload)
• Checksum

• Higher-level protocols “wrapped” inside payload

• “Unreliable” – no guarantee packet will be delivered

Fall 2017 :: CSE 306

Internet Protocol (IP)
• 2 flavors: Version 4 and 6

• Version 4 widely used in practice

• Version 6 should be used in practice – but isn’t
• Public IPv4 address space is practically exhausted (see arin.net)

• Provides a network-wide unique address (IP address)
• Along with netmask

• Netmask determines if IP is on local LAN or not

• If destination not on local LAN
• Packet sent to LAN’s gateway

• At each gateway, payload sent to next hop

Fall 2017 :: CSE 306

Address Resolution Protocol (ARP)

• IPs are logical (set in OS with ifconfig or ipconfig)

• OS needs to know where (physically) to send packet
• And switch needs to know which port to send it to

• Each NIC has a MAC (Media Access Control) address
• “physical” address of the NIC

• OS needs to translate IP to MAC to send
• Broadcast “who has 10.22.17.20” on the LAN

• Whoever responds is the physical location
• Machines can cheat (spoof) addresses by responding

• ARP responses cached to avoid lookup for each packet

Fall 2017 :: CSE 306

User Datagram Protocol (UDP)
• Applications on a host are assigned a port number

• A simple integer

• Multiplexes many applications on one device

• Ports below 1k reserved for privileged applications

• Simple protocol for communication
• Send packet, receive packet

• No association between packets in underlying protocol
• Application is responsible for dealing with…

• Packet ordering

• Lost packets

• Corruption of content

• Flow control

• Congestion

Fall 2017 :: CSE 306

Transmission Control Protocol (TCP)

• Same port abstraction (1-64k)
• But different ports

• i.e., TCP port 22 isn’t the same port as UDP port 22

• Higher-level protocol providing end-to-end reliability
• Transparent to applications

• Lots of features
• packet acks, sequence numbers, automatic retry, etc.

• Pretty complicated

Fall 2017 :: CSE 306

Web Request Example

Source: Understanding Linux Network Internals

Fall 2017 :: CSE 306

User-Level Networking APIs
• Programmers rarely create Ethernet frames

• Or IP or TCP packets

• Most applications use the socket abstraction
• Stream of messages or bytes between two applications
• Applications specify protocol (TCP or UDP), remote IP address and port

number

POSIX interface

• socket(): create a socket; returns associated file descriptor

• bind()/listen()/accept(): wait for connection (server)

• connect(): connect to remote end (client)

• send()/recv(): send and receive data
• All headers are added/stripped by OS

Fall 2017 :: CSE 306

Linux Implementation

• Sockets implemented in the kernel
• So are TCP, UDP, and IP and all other protocols

• Benefits:
• Application not involved in TCP ACKs, retransmit, etc.

• If TCP is implemented in library, app wakes up for timers

• Kernel trusted with correct delivery of packets

Fall 2017 :: CSE 306

Networking Services in Linux
• In addition to the socket interface and TCP/IP handling,

the kernel provides a ton of other services

• Address resolution

• Bridging (Layer-2 switching)

• Loopback and virtual network devices

• Routing (L3 switching)

• Firewall and filtering

• Packet sniffing

• …

• Here, we only focus on general packet processing for
application send and receives

Fall 2017 :: CSE 306

(Part of) Received Packet Processing

Source: http://www.cs.unh.edu/cnrg/people/gherrin/linux-net.html

Fall 2017 :: CSE 306

NIC
Driver

NIC Interface: Ring Buffers (1)
• High performance devices

(such as NICs) use pre-
allocated FIFOs of
descriptors as device
interface
• E.g., network cards use send

(TX) and receive (RX) rings

• Each descriptor in the
queue usually points to a
“buffer” where NIC should
read data from (for send)
or written data to (for recv)

DRAM

buffer

buffer

buffer

RX Ring

buffer

buffer

TX Ring

Use to

receive

Use to

send

NIC
DeviceWrite to

(receive)

Read from

(send)

Fall 2017 :: CSE 306

NIC Interface: Ring Buffers (2)
• Both rings and buffers allocated in DRAM by driver

• Device uses DMA to access descriptors and buffers

• Ring structured like a circular FIFO queue
• Device has registers for ring base, end, head and tail

• Head: the first HW-owned (ready-to-consume) DMA buffer
• Tail: location after the last HW-owned DMA buffer

• Device advances head pointer to get the next valid buffer
• Driver advances tail pointer to add a valid buffer

• No dynamic buffer allocation or device stalls if ring is
well-sized to the load
• Trade-off between device stalls (or dropped packets) &

memory overheads

Fall 2017 :: CSE 306

NIC Interface: Interrupts & Doorbells (1)

• Ring buffers used for both sending and receiving

• Receive: device copies data into next empty buffer in
RX ring and advances head pointer

• How would driver know about the new buffer?
• Option 1: driver polls head pointer to see if changed

• Option 2: Device sends an interrupt

• How would device know when there is a new empty
buffer?
• When the driver writes to RX tail register

• Sometimes, referred to as ringing the doorbell

Fall 2017 :: CSE 306

NIC Interface: Interrupts & Doorbells (2)

• Send: driver prepares a full buffer & appends it to
the TX ring tail

• How would device know about the new buffer?
• When the driver writes to TX tail register

• Again, a doorbell operation

• How would driver know there is room for new
buffers in the ring?
• Same options as before: driver polling or device

interrupting

Fall 2017 :: CSE 306

Handling Interrupts
• Recall: interrupts disabled while in interrupt handler

→ Need to avoid spending much time in there

• But processing received packets can take a long time

• Solution: split interrupt processing into two steps
• Top half: acknowledge interrupt, queue work somewhere

• Bottom half: take work from queue and do it

• Only top half needs to run with interrupts disabled

• NOTE: This is a general interrupt processing scheme for
all devices, not just for network

Fall 2017 :: CSE 306

Top and Bottom Halves
• “Top half”:

• acknowledges device interrupt by writing to a special register

• sets a flag in kernel memory to activate the corresponding
bottom half

• “Bottom half” does the actual processing of the device
interrupt

• Terminology: Hard- vs. Soft-IRQ
• A hard-IRQ is the hardware interrupt line (triggers the top half

handler from IDT)

• Soft-IRQ is the actual interrupt handling code (bottom half)

Fall 2017 :: CSE 306

Linux Implementation

• There is a per-cpu bitmask of pending Soft-IRQs
• One bit per Soft-IRQ

• e.g., NET_RX_SOFTIRQ and NET_TX_SOFTIRQ for network

• There is a function associated with each Soft-IRQ

• Hard IRQ service routine sets the bit in the bitmask
• bit can also be set by other code in kernel including Soft IRQ

code itself

• At the right time, the kernel checks the bitmask and
calls the function for pending Soft-IRQs

Fall 2017 :: CSE 306

Linux Implementation
• Right time: when about to return to usermode from

exceptions/interrupts/syscalls

• Each CPU also has a kernel thread ksoftirqd<CPU#>
• Processes pending bottom halves for that CPU

• ksoftirqd is nice +19: Lowest priority—only called when
nothing else to do

• Only process a few (e.g., 10) packets before returning to
user mode
• To avoid delaying user-mode program indefinitely

• Remaining packets will be processed when ksoftirqd runs

Fall 2017 :: CSE 306

Benefits of Separate Halves
1) Minimizes time in an interrupt handler with interrupts

disabled

2) Simplifies service routines (defer complicated
operations to a more general processing context)
• E.g., what if you need to wait for a lock?

• No Problem

• or, be put to sleep until your kmalloc() succeeds?
• No Problem

3) Gives kernel more scheduling flexibility
• Can mix processing of device interrupts (using ksoftirqd) with

application threads

Fall 2017 :: CSE 306

Linux Plumbing
• Each message is put in a sk_buff structure

• Passed through a stack of protocol handlers

• Handlers update bookkeeping, wrap headers, etc.

• At the bottom are the device rings
• Device sends/receives packets according to sk_buffs

on its TX and RX rings

Fall 2017 :: CSE 306

Efficient Packet Processing

• Receive side:
Moving pointers is
better than removing
headers

• Send side:
Prepending headers is
more efficient than re-
copy

head/end vs. data/tail pointers in sk_buff

Source: Understanding Linux Network Internals

Fall 2017 :: CSE 306

Back to Receive: Bottom Half
• For each pending sk_buff:

• Pass a copy to any taps (sniffers)

• Do any MAC-layer processing, like bridging

• Pass a copy to the appropriate protocol handler (e.g., IP)
• Recur on protocol handlers until you get to a port number

• Perform some handling transparently (filtering, ACK, retry)

• If good, deliver to associated socket

• If bad, drop

Fall 2017 :: CSE 306

Socket Delivery

• Once bottom half moves payload into a socket:
• Check to see if a task is blocked on input for this socket

• If yes, copy data to awaken the thread

• Once awoken, recv() reads data from socket
buffer and copies to user-mode buffer and returns
to user mode

Fall 2017 :: CSE 306

Revisiting Received Packet Processing

Source: http://www.cs.unh.edu/cnrg/people/gherrin/linux-net.html

Fall 2017 :: CSE 306

Socket Sending
• send() copies data into socket

• Allocate sk_buff for data

• Be sure to leave plenty of head and tail room!

• System call handles protocol in application’s timeslice

• Last protocol handler enqueues packet for transmit
• If there is space in the TX ring

• Interrupt usually signals completion
• Bottom half has very little to do

• Usually, just add pending packets to the TX ring if previously full

Fall 2017 :: CSE 306

Receive Livelock
• What happens when packets arrive at a very high

frequency?
• You spend all of your time handling interrupts!

• Receive Livelock: Condition when system never makes
progress
• Because spends all of its time starting to process new packets

• Bottom halves never execute
• Hard to prioritize other work over interrupts

• Better process one packet to completion than to run
just the top half on a million

Fall 2017 :: CSE 306

Receive Livelock in Practice

Ideal

Source: Mogul & Ramakrishnan, ToCS, Aug 1997

Fall 2017 :: CSE 306

Shedding Load

• If can’t process all incoming packets, must drop some

• If going to drop some packets, better do it early!
• Stop taking packets off of the network card

• NIC will drop packets once its buffers get full on its own

Fall 2017 :: CSE 306

Polling Instead of Interrupts

• Under heavy load, disable NIC interrupts

• Use polling instead
• Ask if there is more work once you’ve done the first

batch

• Allows packet go through bottom half processing
• And the application, and then get a response back out

• Ensures some progress

Fall 2017 :: CSE 306

Why not Poll All the Time?

• If polling is so great, why bother with interrupts?

• Latency
• If incoming traffic is rare, want high-priority

• Latency-sensitive applications get their data ASAP

• Example: annoying to wait at ssh prompt after hitting a key

Fall 2017 :: CSE 306

General Insight on Polling

• If the expected input rate is low
• Interrupts are better

• When expected input rate is above threshold
• Polling is better

• Need way to dynamically switch between methods

Fall 2017 :: CSE 306

Livelock Only Relevant to Networks?

• Why don’t other devices (e.g., disks) have this
problem?

1) For disk, if CPU is too busy processing previous
disk requests, it can’t issue more

2) For network, external CPU can generate all sorts
of network inputs

Fall 2017 :: CSE 306

Linux NAPI (New API)
• Drivers provides poll() method for low-level receive

• Passes packets received by the device to kernel

• Bottom half calls driver’s poll() to get pending packets from
the device

• Bottom half can disable the interrupt under heavy loads
• Or uses a timer interrupt to schedule a poll (instead of per-packet

interrupts)
• Bonus: Some NICs have a built-in timer

• Can fire an interrupt periodically, only if something to say!

• Gives kernel control to throttle network input
• Under heavy-load, device will overwrite some buffers in the ring

→ Packets dropped in the device itself without involving the CPU

• Once load drops can enable per-packet interrupts back again

Fall 2017 :: CSE 306

Conclusion

• Networking in OS a humongous piece of code
• We just covered socket send/recv

• High performance devices (like NICs) use ring
buffers as their interfaces

• Livelock is a real problem for NICs
• Use combination of polling and interrupts

• Use polling when there is heavy load

• Once load drops, enable interrupts again

