Superscalar Organization

Instructor: Nima Honarmand
Instruction-Level Parallelism (ILP)

- Recall: “Parallelism is the number of independent tasks available”
- ILP is a measure of inter-dependencies between insns.
- Average ILP = num. instruction / num. cyc required

Example

- **code1:**
 - ILP = 1
 - *i.e. must execute serially*

- **code2:**
 - ILP = 3
 - *i.e. can execute at the same time*

```
<table>
<thead>
<tr>
<th>code1:</th>
<th>code2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1 ← r2 + 1</td>
<td>r1 ← r2 + 1</td>
</tr>
<tr>
<td>r3 ← r1 / 17</td>
<td>r3 ← r9 / 17</td>
</tr>
<tr>
<td>r4 ← r0 - r3</td>
<td>r4 ← r0 - r10</td>
</tr>
</tbody>
</table>
```
ILP \neq IPC

• ILP usually assumes
 – Infinite resources
 – Perfect fetch
 – Unit-latency for all instructions

• ILP is a property of the program dataflow

• IPC is the “real” observed metric
 – How many insns. are executed per cycle

• ILP is an upper-bound on the attainable IPC
 – Specific to a particular program
Purported Limits on ILP

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weiss and Smith</td>
<td>1984</td>
<td>1.58</td>
</tr>
<tr>
<td>Sohi and Vajapeyam</td>
<td>1987</td>
<td>1.81</td>
</tr>
<tr>
<td>Tjaden and Flynn</td>
<td>1970</td>
<td>1.86</td>
</tr>
<tr>
<td>Tjaden and Flynn</td>
<td>1973</td>
<td>1.96</td>
</tr>
<tr>
<td>Uht</td>
<td>1986</td>
<td>2.00</td>
</tr>
<tr>
<td>Smith et al.</td>
<td>1989</td>
<td>2.00</td>
</tr>
<tr>
<td>Jouppi and Wall</td>
<td>1988</td>
<td>2.40</td>
</tr>
<tr>
<td>Johnson</td>
<td>1991</td>
<td>2.50</td>
</tr>
<tr>
<td>Acosta et al.</td>
<td>1986</td>
<td>2.79</td>
</tr>
<tr>
<td>Wedig</td>
<td>1982</td>
<td>3.00</td>
</tr>
<tr>
<td>Butler et al.</td>
<td>1991</td>
<td>5.8</td>
</tr>
<tr>
<td>Melvin and Patt</td>
<td>1991</td>
<td>6</td>
</tr>
<tr>
<td>Wall</td>
<td>1991</td>
<td>7</td>
</tr>
<tr>
<td>Kuck et al.</td>
<td>1972</td>
<td>8</td>
</tr>
<tr>
<td>Riseman and Foster</td>
<td>1972</td>
<td>51</td>
</tr>
<tr>
<td>Nicolau and Fisher</td>
<td>1984</td>
<td>90</td>
</tr>
</tbody>
</table>
ILP Limits of Scalar Pipelines (1)

- Scalar upper bound on throughput
 - Limited to CPI ≥ 1
 - Solution: superscalar pipelines with multiple insns at each stage
ILP Limits of Scalar Pipelines (2)

- Inefficient unified pipeline
 - Lower resource utilization and longer instruction latency
 - Solution: diversified pipelines
ILP Limits of Scalar Pipelines (3)

• Rigid pipeline stall policy
 – A stalled instruction stalls all newer instructions
 – Solution 1: out-of-order execution
ILP Limits of Scalar Pipelines (3)

- Rigid pipeline stall policy
 - A stalled instruction stalls all newer instructions
 - Solution 1: **out-of-order** execution
 - Solution 2: **inter-stage buffers**
ILP Limits of Scalar Pipelines (4)

- Instruction dependencies limit parallelism
 - Frequent stalls due to data and control dependencies
 - Solution 1: renaming – for WAR and WAW register dependences
 - Solution 2: speculation – for control dependences and memory dependences
ILP Limits of Scalar Pipelines (Summary)

1. Scalar upper bound on throughput
 - Limited to CPI >= 1
 - Solution: superscalar pipelines with multiple insns at each stage

2. Inefficient unified pipeline
 - Lower resource utilization and longer instruction latency
 - Solution: diversified pipelines

3. Rigid pipeline stall policy
 - A stalled instruction stalls all newer instructions
 - Solution: out-of-order execution and inter-stage buffers

4. Instruction dependencies limit parallelism
 - Frequent stalls due to data and control dependencies
 - Solutions: renaming and speculation

State of the art: Out-of-Order Superscalar Pipelines
Overall Picture

- Fetch issues:
 - Fetch multiple insns
 - Branches
 - Branch target mis-alignment

- Decode issues:
 - Identify insns
 - Find dependences

- Execution issues:
 - Dispatch insns
 - Resolve dependences
 - Bypass networks
 - Multiple outstanding memory accesses

- Completion issues:
 - Out-of-order completion
 - Speculative instructions
 - Precise exceptions

State of the art: Out-of-Order Superscalar Pipelines