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Performance Metrics
• Latency (execution/response time): time to finish 

one task
• Throughput (bandwidth): number of tasks/unit 

time
– Throughput can exploit parallelism, latency can’t
– Sometimes complimentary, often contradictory

• Example: move people from A to B, 10 miles
– Car: capacity = 5, speed = 60 miles/hour
– Bus: capacity = 60, speed = 20 miles/hour
– Latency: car = 10 min, bus = 30 min
– Throughput: car = 15 PPH (w/ return trip), bus = 60 PPH

No right answer: pick metric for your goals
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Performance Comparison
• Processor A is X times faster than processor B if

– Latency(P, A) = Latency(P, B) / X

– Throughput(P, A) = Throughput(P, B) * X

• Processor A is X% faster than processor B if
– Latency(P, A) = Latency(P, B) / (1+X/100)

– Throughput(P, A) = Throughput(P, B) * (1+X/100)

• Car/bus example
– Latency? Car is 3 times (200%) faster than bus

– Throughput? Bus is 4 times (300%) faster than car
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Latency/throughput of What Program?

• Very difficult question!

• Best case: you always run the same set of programs
– Just measure the execution time of those programs

– Too idealistic

• Use benchmarks
– Representative programs chosen to measure performance

– (Hopefully) predict performance of actual workload

– Prone to Benchmarketing:

“The misleading use of unrepresentative benchmark
software results in marketing a computer system”

-- wikitionary.com
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Types of Benchmarks
• Real programs

– Example: CAD, text processing, business apps, scientific apps
– Need to know program inputs and options (not just code)
– May not know what programs users will run
– Require a lot of effort to port

• Kernels
– Small key pieces (inner loops) of scientific programs where 

program spends most of its time
– Example: Livermore loops, LINPACK

• Toy Benchmarks
– e.g. Quicksort, Puzzle
– Easy to type, predictable results, may use to check correctness of 

machine but not as performance benchmark.
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SPEC Benchmarks
• System Performance Evaluation Corporation

“non-profit corporation formed to establish, maintain
and endorse a standardized set of relevant benchmarks …”

• Different set of benchmarks for different domains:
– CPU performance (SPEC CINT and SPEC CFP)

– High Performance Computing (SPEC MPI, SPC OpenMP)

– Java Client Server (SPECjAppServer, SPECjbb, 
SPECjEnterprise, SPECjvm)

– Web Servers

– Virtualization

– …
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Example: SPEC CINT2006
Program Language Description

400.perlbench C Programming Language 

401.bzip2 C Compression

403.gcc C C Compiler 

429.mcf C Combinatorial Optimization 

445.gobmk C Artificial Intelligence: Go

456.hmmer C Search Gene Sequence

458.sjeng C Artificial Intelligence: chess 

462.libquantum C Physics / Quantum Computing

464.h264ref C Video Compression 

471.omnetpp C++ Discrete Event Simulation 

473.astar C++ Path-finding Algorithms

483.xalancbmk C++ XML Processing 

https://www.spec.org/cpu2006/Docs/400.perlbench.html
https://www.spec.org/cpu2006/Docs/401.bzip2.html
https://www.spec.org/cpu2006/Docs/403.gcc.html
https://www.spec.org/cpu2006/Docs/429.mcf.html
https://www.spec.org/cpu2006/Docs/445.gobmk.html
https://www.spec.org/cpu2006/Docs/456.hmmer.html
https://www.spec.org/cpu2006/Docs/458.sjeng.html
https://www.spec.org/cpu2006/Docs/462.libquantum.html
https://www.spec.org/cpu2006/Docs/464.h264ref.html
https://www.spec.org/cpu2006/Docs/471.omnetpp.html
https://www.spec.org/cpu2006/Docs/473.astar.html
https://www.spec.org/cpu2006/Docs/483.xalancbmk.html
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Example: SPEC CFP2006
Program Language Description

410.bwaves Fortran Fluid Dynamics 

416.gamess Fortran Quantum Chemistry. 

433.milc C Physics / Quantum Chromodynamics 

434.zeusmp Fortran Physics / CFD

435.gromacs C, Fortran Biochemistry / Molecular Dynamics 

436.cactusADM C, Fortran Physics / General Relativity 

437.leslie3d Fortran Fluid Dynamics 

444.namd C++ Biology / Molecular Dynamics 

447.dealII C++ Finite Element Analysis 

450.soplex C++ Linear Programming, Optimization 

453.povray C++ Image Ray-tracing 

454.calculix C, Fortran Structural Mechanics 

459.GemsFDTD Fortran Computational Electromagnetics

465.tonto Fortran Quantum Chemistry

470.lbm C Fluid Dynamics 

481.wrf C, Fortran Weather

482.sphinx3 C Speech recognition

https://www.spec.org/cpu2006/Docs/410.bwaves.html
https://www.spec.org/cpu2006/Docs/416.gamess.html
https://www.spec.org/cpu2006/Docs/433.milc.html
https://www.spec.org/cpu2006/Docs/434.zeusmp.html
https://www.spec.org/cpu2006/Docs/435.gromacs.html
https://www.spec.org/cpu2006/Docs/436.cactusADM.html
https://www.spec.org/cpu2006/Docs/437.leslie3d.html
https://www.spec.org/cpu2006/Docs/444.namd.html
https://www.spec.org/cpu2006/Docs/447.dealII.html
https://www.spec.org/cpu2006/Docs/450.soplex.html
https://www.spec.org/cpu2006/Docs/453.povray.html
https://www.spec.org/cpu2006/Docs/454.calculix.html
https://www.spec.org/cpu2006/Docs/459.GemsFDTD.html
https://www.spec.org/cpu2006/Docs/465.tonto.html
https://www.spec.org/cpu2006/Docs/470.lbm.html
https://www.spec.org/cpu2006/Docs/481.wrf.html
https://www.spec.org/cpu2006/Docs/482.sphinx3.html
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Benchmark Pitfalls
• Benchmark not representative

– Your workload is I/O bound → SPECint is useless

• Benchmark is too old
– Benchmarks age poorly

– Benchmarketing pressure causes vendors to optimize 
compiler/hardware/software to benchmarks

→ Need to be periodically refreshed
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Summarizing Performance Numbers

• Latency is additive, throughput is not
– Latency(P1+P2, A) = Latency(P1, A) + Latency(P2, A)

– Throughput(P1+P2, A) != 
Throughput(P1, A) + Throughput(P2,A)

• Example:
– 180 miles @ 30 miles/hour + 180 miles @ 90 miles/hour

– 6 hours at 30 miles/hour + 2 hours at 90 miles/hour 
• Total latency is 6 + 2 = 8 hours

• Total throughput is not 60 miles/hour
• Total throughput is only 45 miles/hour! (360 miles / (6 + 2 hours))

Arithmetic Mean is Not Always the Answer!
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Summarizing Performance Numbers

• Arithmetic: times
– proportional to time
– e.g., latency

• Harmonic: rates
– inversely proportional to time
– e.g., throughput

• Geometric: ratios
– unit-less quantities
– e.g., speedups & normalized times

• Any of these can be weighted

Memorize these to avoid looking them up later
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Improving 
Performance
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Principles of Computer Design
• Take Advantage of Parallelism

– E.g., multiple processors, disks, memory banks, 
pipelining, multiple functional units

– Speculate to create (even more) parallelism

• Principle of Locality
– Reuse of data and instructions

• Focus on the Common Case
– Amdahl’s Law
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Parallelism: Work and Critical Path
• Parallelism: number of independent tasks available 

• Work (T1): time on sequential system

• Critical Path (T): time on infinitely-parallel system

• Average Parallelism:
Pavg = T1 / T

• For a p-wide system:
Tp  max{ T1/p, T }
Pavg >> p  Tp  T1/p

x = a + b;   
y = b * 2
z =(x-y) * (x+y)
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Principle of Locality 
• Recent past is a good indication of near future

Temporal Locality: If you looked something up, it is very 
likely that you will look it up again soon

Spatial Locality: If you looked something up, it is very likely 
you will look up something nearby soon
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Amdahl’s Law

Make the common case fast!

1

timeorig

Speedup = timewithout enhancement / timewith enhancement

An enhancement speeds up fraction f of a task by factor S

timenew = timeorig·( (1-f) + f/S )

Soverall = 1 / ( (1-f) + f/S )

timenew

(1 - f) f/S

f(1 - f) f(1 - f)

(1 - f) f/S
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The Iron Law of Processor Performance

Architects target CPI, but must understand the others

Cycle

Time

nInstructio

Cycles

Program

nsInstructio

Program

Time


Total Work
In Program

CPI or 1/IPC 1/f (frequency)

Algorithms,
Compilers,

ISA Extensions

ISA,
Microarchitecture

Microarchitecture,
Process Tech
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Another View of CPU Performance

• Instruction frequencies for a load/store machine

• What is the average CPI of this machine?

Instruction Type Frequency Cycles
Load 25% 2
Store 15% 2
Branch 20% 2
ALU 40% 1

Average CPI
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Another View of CPU Performance
• Assume all conditional branches in this machine use simple 

tests of equality with zero (BEQZ, BNEZ)

• Consider adding complex comparisons to conditional 
branches

– 25% of branches can use complex scheme → no need for preceding 
ALU instruction

• The CPU cycle time of original machine is 10% faster

• Will this increase CPU performance?

New CPU CPI 63.1
2.025.01

1)2.025.04.0(22.0215.0225.0







Hmm… Both slower clock and increased CPI?
Something smells fishy !!!
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Another View of CPU Performance

• Recall the Iron Law

• The two programs have different number of 
instructions

ctNtimecycleCPIInstCount oldoldold
 6.1_Old CPU Time =

ctNtimecycleCPIInstCount newnewnew 1.163.1)2.025.01(_ 

New CPU Time = 

94.0
1.163.1)2.025.01(

6.1



Speedup = The new CPU is slower

for this instruction mix
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Partial Performance Metrics Pitfalls

• Which processor would you buy?
– Processor A: CPI = 2, clock = 2.8 GHz

– Processor B: CPI = 1, clock = 1.8 GHz

– Probably A, but B is faster (assuming same ISA/compiler)

• Classic example
– 800 MHz Pentium III faster than 1 GHz Pentium 4

– Same ISA and compiler

• Some Famous Partial Performance Metrics
– MIPS: Million Instruction Per Second

– MFLOPS: Million Floating-Point Operations Per Second
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Power
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Power vs. Energy (1/2)
• Energy: capacity to do work or amount of work done

– Expressed in joules

– Energy(OP1+OP2)=Energy(OP1)+Energy(OP2)

• Power: instantaneous rate of energy transfer
– Expressed in watts

– energy / time (watts = joules / seconds)

– Power(Comp1+Comp2)=Power(Comp1)+Power(Comp2)

• In processors, all consumed energy is converted to heat
– Hence: power also equals rate of heat generation
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Power vs. Energy (2/2)

Does this example help or hurt?



Spring 2016 :: CSE 502 – Computer Architecture

Why is Energy Important?
• Impacts battery life for mobile

• Impacts electricity costs for tethered (plugged)
– You have to buy electricity

• It costs to produce and deliver electricity

– You have to remove generated heat
• It costs to buy and operate cooling systems

• Gets worse with larger 
data centers

– $7M for 1000 server 
racks

– 2% of US electricity used 
by DCs in 2010 
(Koomey’11)
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Why is Power Important?
• Because power has a peak

• Power is also heat generation rate
– Must dissipate the heat
– Need heat sinks and fans and …

• What if fans not fast enough?
– Chip powers off (if it’s smart enough)
– Melts otherwise

• Thermal failures even when fans OK
– 50% server reliability degradation for +10°C
– 50% decrease in hard disk lifetime for +15°C
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Power: The Basics (1/2)
• Dynamic Power

– Related to switching activity of transistors (from 01 and 10)

• Dynamic Power ∝ 𝐶𝑉𝑑𝑑
2𝐴𝑓

– C: capacitance, function of transistor size and wire length
– Vdd: Supply voltage
– A: Activity factor (average fraction of transistors switching)
– f: clock frequency
– About 50-70% of processor power

Applied Voltage

Source Drain

Gate

Current

Threshold Voltage

Gate

Source Drain

+ + + + +

- - - - -

Current
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Power: The Basics (2/2)
• Static Power

– Current leaking from a transistor even if doing nothing (steady, constant 
energy cost)

• Static Power ∝ 𝑉𝑑𝑑 and ∝ 𝑒−𝑐1𝑉𝑡ℎ and ∝ 𝑒𝑐2𝑇

– This is a first-order model
– 𝑐1, 𝑐2 : some positive constants
– 𝑉𝑡ℎ: Threshold Voltage
– 𝑇: Temperature
– About 30-50% of processor power

Channel Leakage

Sub-threshold Conductance

Gate Leakage
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Thermal Runaway
• Leakage is an exponential function of temperature

•  Temp leads to  Leakage

• Which burns more power

• Which leads to  Temp, which leads to…

Positive feedback loop will melt your chip
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Why Power Became an Issue? (1/2)

• Good old days of ideal scaling (aka Dennard scaling)
– Every new semiconductor generation:

• Transistor dimension: x 0.7

• Transistor area: x 0.49

• C and Vdd: x 0.7

• Frequency: 1 / 0.7 = 1.4

→Constant dynamic power density

– In those good old days, leakage was not a big deal

→ Faster and more transistors with constant power 
density 
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Why Power Became an Issue? (2/2)
• Recent reality: Vdd does not decrease much

– Switching speed is roughly proportional to Vdd - Vth

• If too close to threshold voltage (Vth) → slow transistor

• Fast transistor & low Vdd → low Vth → exponential increase in leakage 

→Dynamic power density keeps increasing
– Leakage power has also become a big deal today

• Due to lower Vth, smaller transistors, higher temperatures, etc.

→ We hit the power wall 

• Example: power consumption in Intel processors
– Intel 80386 consumed ~ 2 W
– 3.3 GHz Intel Core i7 consumes ~ 130 W
– Heat must be dissipated from 1.5 x 1.5 cm2 chip
– This is the limit of what can be cooled by air
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How to Reduce Processor Power? (1/3)

• Clock gating
– Stop switching in unused components

– Done automatically in most designs

– Near instantaneous on/off behavior

• Power gating
– Turn off power to unused cores/caches

– High latency for on/off
• Saving SW state, flushing dirty cache lines, turning off clock tree

• Carefully done to avoid voltage spikes or memory bottlenecks

– Issue: Area & power consumption of power gate

– Opportunity: use thermal headroom for other cores
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How to Reduce Processor Power? (2/3)

• Reduce Voltage (V): quadratic effect on dyn. power
– Negative (~linear) effect on frequency

• Dynamic Voltage/Frequency Scaling (DVFS): set 
frequency to the lowest needed

– Execution time = IC * CPI * f

• Scale back V to lowest for that frequency
– Lower voltage  slower transistors

– Dyn. Power ≈ C * V2 * F

Not Enough! Need Much More!
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How to Reduce Processor Power? (3/3)

• Design for E & P efficiency rather than speed

• New architectural designs:
– Simplify the processor, shallow pipeline, less speculation
– Efficient support for high concurrency (think GPUs)
– Augment processing nodes with accelerators
– New memory architectures and layouts
– Data transfer minimization
– …

• New technologies:
– Low supply voltage (Vdd) operation: Near-Threshold Voltage Computing
– Non-volatile memory (Resistive memory, STTRAM, …)
– 3D die stacking
– Efficient on-chip voltage conversion
– Photonic interconnects
– …
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Processor Is Not Alone

Need whole-system approaches to save energy

23%

20%

20% 4%
10%

9%

14%

Processor

Memory

I/O

Disk

Services

Fans

AC/DC Conversion

SunFire T2000

< ¼ System Power > ½ CPU Power

No single component dominates power consumption
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Instruction Set 
Architecture (ISA)
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ISA: A Contract Between HW and SW

• ISA: Instruction Set Architecture
– A well-defined hardware/software interface
– Old days: target language for human programmers
– More recently: target language for compilers

• The “contract” between software and hardware
– Functional definition of operations supported by hardware
– Precise description of how to invoke all features

• No guarantees regarding
– How operations are implemented
– Which operations are fast and which are slow (and when)
– Which operations take more energy (and which take less)
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Components of an ISA (1/2)
• Programmer-visible machine states

– Program counter, general purpose registers, control registers, etc.
– Memory
– Page table, interrupt descriptor table, etc.

• Programmer-visible operations
– Operations: ALU ops, floating-point ops, control-flow ops, string ops, etc.
– Type and size of operands for each op: byte, half-word, word, double 

word, single precision, double precision, etc.

• Addressing modes for each operand of an instruction
– Immediate mode (for immediate operands)
– Register addressing modes: stack-based, accumulator-based, general-

purpose registers, etc.
– Memory addressing modes: displacement, register indirect, indexed,  

direct, memory-indirect, auto-increment(decrement), scaled, etc.

ISAs last forever, don’t add stuff you don’t need
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Components of an ISA (2/2)
• Programmer-visible behaviors

– What to do, when to do it

• A binary encoding

ISAs last forever, don’t add stuff you don’t need

if imem[rip]==“add rd, rs, rt”

then

rip  rip+1

gpr[rd]=gpr[rs]+gpr[rt]

Example “register-transfer-
level” description of an 
instruction
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RISC vs. CISC
• Recall Iron Law:

– (instructions/program) * (cycles/instruction) * (seconds/cycle)

• CISC (Complex Instruction Set Computing)
– Improve “instructions/program” with “complex” instructions

– Easy for assembly-level programmers, good code density

• RISC (Reduced Instruction Set Computing)
– Improve “cycles/instruction” with many single-cycle instructions

– Increases “instruction/program”, but hopefully not as much
• Help from smart compiler

– Perhaps improve clock cycle time (seconds/cycle) 
• via aggressive implementation allowed by simpler instructions 

Today’s x86 chips translate CISC into ~RISC
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RISC ISA
• Focus on simple instructions

– Easy to use for compilers
• Simple (basic) operations, many registers

– Easy to design high-performance implementations
• Easy to fetch and decode, simpler pipeline control, faster caches

• Fixed-length
– MIPS and SPARCv8 all insts are 32-bits/4 bytes
– Especially useful when decoding multiple instruction simultaneously

• Few instruction formats
– MIPS has 3: R (reg, reg, reg), I (reg, reg, imm), J (addr)
– Alpha has 5: Operate, Op w/ Imm, Mem, Branch, FP

• Regularity across formats (when possible/practical)
– MIPS & Alpha opcode in same bit-position for all formats
– MIPS rs & rt fields in same bit-position for R and I formats
– Alpha ra/fa field in same bit-position for all 5 formats
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CISC ISA
• Focus on max expressiveness per min space

– Designed in era with fewer transistors
– Each memory access very expensive

• Pack as much work into as few bytes as possible

• Difficult to use for compilers
– Complex instructions are not compiler friendly → many instructions remain 

unused
– Fewer registers: register IDs take space in instructions
– For fun: compare x86 vs. MIPS backend in LLVM

• Difficult to build high-performance processor pipelines
– Difficult to decode: Variable length (1-18 bytes in x86), many formats
– Complex pipeline control logic
– Deeper pipelines

• Modern x86 processors translate CISC code to RISC first
– Called “μ-ops” by Intel and “ROPs” (RISC-ops) by AMD
– And then execute the RISC code


