Spring 2016 :: CSE 502 - Computer Architecture ‘\\\\ Stony Brook University

Caches

Nima Honarmand

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Motivation

10000

1000 M

Processor

100

Performance

10

1_
1985 1990 1995 2000 2005 2010

 Want memory to appear:
— As fast as CPU
— As large as required by all of the running applications

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Storage Hierarchy

* Make common case fast:
— Common: temporal & spatial locality
— Fast: smaller more expensive memory

. /7R eQISterS Controlled
: Bigger Transfers More BandWIdth by Hardware
Larger / Caches (SRAM) \ Faster Controlled
. by Software
; Cheaper . (OS)

Memory (DRAM)

/ [SSD? (Flash)] \

/ Disk (Magnetic Media) \

What is S(tatic)RAM vs D(dynamic)RAM?

Spring 2016 :: CSE 502 - Computer Architecture

Caches

* An automatically managed hierarchy

* Break memory into blocks (several bytes)
and transfer data to/from cache in blocks

— spatial locality

* Keep recently accessed blocks
— temporal locality

q\\\\ Stony Brook University

Memory

NN ., SRR, N —
Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Cache Terminology

 block (cache line): minimum unit that may be cached

e frame: cache storage location to hold one block
e hit: block is found in the cache
* miss: block is not found in the cache

* miss ratio: fraction of references that miss

e hit time: time to access the cache

* miss penalty: time to replace block on a miss

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Cache Example

* Address sequence from core:
(assume 8-byte lines)

0x10000 Miss 0x10000 (...data...)
0x 10004 Hit 0x10008 (...data...)
0x10120 Miss
0x 10008 Miss

0x10124 Hit
0x 10004 Hit

0x10120 (...data...)

A

Memory

Final miss ratio is 50%

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Average Memory Access Time (1/2)
* Or AMAT

* Very powerful tool to estimate performance

e If ...
cache hit is 10 cycles (core to L1 and back)
memory access is 100 cycles (core to mem and back)

* Then ...
at 50% miss ratio, avg. access: 0.5x10+0.5x100 = 55
at 10% miss ratio, avg. access: 0.9x10+0.1x100 =19
at 1% miss ratio, avg. access: 0.99x10+0.01x100 = 11

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Average Memory Access Time (2/2)

* Generalizes nicely to hierarchies of any depth

° If ...
L1 cache hit is 5 cycles (core to L1 and back)
L2 cache hit is 20 cycles (core to L2 and back)

memory access is 100 cycles (core to mem and
back)

 Then ...
at 20% miss ratio in L1 and 40% miss ratio in L2 ...
avg. access: 0.8x5+0.2x(0.6x20+0.4x100) = 14

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Memory Organization (1/3)
* L1is split — separate IS (inst. cache) and DS (data cache)
e L2 and L3 are unified

Processor

Registers

I-TLB | LI I-Cache | LI D-Cache |D-TLB

L2 Cache

L3 Cache (LLC)

Main Memory (DRAM)

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Memory Organization (2/3)
L1 and L2 are private

L3 is shared

Processor
Core 0 Registers Core | Registers
I-TLB LI I-Cache LI D-Cache | D-TLB I-TLB | LI I-Cache LI D-Cache |[D-TLB

L2 Cache L2 Cache

L3 Cache (LLC)

Main Memory (DRAM)

Multi-core replicates the top of the hierarchy

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

2

Memory Organization (3/3)

Intel Nehalem

—~~
]
o
(0]
O
[S
]
o
)
O |}
«
[
o
i
- B
N
7
[
o
(0]
O
v
N
I
O,
™
™M
~—

)

Spring 2016 :: CSE 502 - Computer Architecture ‘\\\\ Stony Brook University

SRAM Overview

® L T~
| |

\/ “6T SRAM” cel

b 2 access gates
2T per inverter

e Chained inverters maintain a stable state /

* Access gates provide access to the cell

* Writing to cell involves over-powering storage inverters

Spring 2016 :: CSE 502 - Computer Architecture ‘\\\\ Stony Brook University

8-bit SRAM Array

'_
'_
'_

wordline ;@,}11 A@A ;L@Jii g@g A@}j ;L@A i

bitlines

q\\\\ Stony Brook University

bitlines

sl il
sl
alcalcaicalalalcaliss
milclchalclclcls
ilcalcahalhcalaalcls
milclchalalalals
il
e e e e e e e e

SQu|pJom

8x%8-bit SRAM Array

Spring 2016 :: CSE 502 - Computer Architecture

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Fully-Associative Cache

§63 address 0:

- A\ 3 * Keep blocks in cache frames
tag[63:6] | block offset[5:0] — data
— state (e.g., valid)
— address tag
statel tag —> > data
statel tag data
tag data

data

multiplexor

What happens when the cache runs out of space?

Spring 2016 :: CSE 502 - Computer Architecture ‘\\\\ Stony Brook University

The 3 C’s of Cache Misses

e Compulsory: Never accessed before

* Capacity: Accessed long ago and already replaced

* Conflict: Neither compulsory nor capacity (later today)

e Coherence: (Will discuss in multi-core lecture)

NN ., SRR, N —
Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Cache Size

e Cache size is data capacity (don’t count tag and state)
— Bigger can exploit temporal locality better
— Not always better

* Too large a cache
— Smaller is faster = bigger is slower
— Access time may hurt critical path

O
E :
* Too small a cache = working set
— Limited temporal locality <
— Useful data constantly replaced .
- —
capacity

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Block Size

* Block size is the data that is

— Associated with an address tag
— Not necessarily the unit of transfer between hierarchies

* Too small a block
— Don’t exploit spatial locality well
— Excessive tag overhead

* Too large a block
— Useless data transferred

— Too few total blocks
e Useful data frequently replaced block size

hit rate

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Direct-Mapped Cache

 Use middle bits as index

* Only one tag comparison

tag[63:16]| index[15:6] |block offset[5:0]

data state ' tag
data state ' tag
data tag

Why take index bits out of the middle?

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Cache Contflicts

 What if two blocks alias on a frame?

— Same index, but different tags

Address sequence:

OxDEADBEEF 1Jop1110y0L01101j2011111011101111
OxFEEDBEEF 13101110941 01101j2011111011101111
OxDEADBEEF 1 111010011011 011111011]101111
o A\ ~~ J__\/_ v

tag index block

offset

* OXDEADBEEF experiences a Conflict miss
— Not Compulsory (seen it before)
— Not Capacity (lots of other indexes available in cache)

Spring 2016 :: CSE 502 - Computer Architecture ‘\\\\ Stony Brook University

Associativity (1/2)

* Where does block index 12 (b’1100) go?

Frame Set/Frame Set

0 0 0

3 | 3

4 0 4

5 2 5

6 0 6

7 3 7

Fully-associative Set-associative Direct-mapped
block goes in any frame block goes in any frame block goes in exactly
in one set one frame

(all frames in 1 set) (frames grouped in sets) (1 frame per set)

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Associativity (2/2)

* Larger associativity
— lower miss rate (fewer conflicts)
— higher power consumption

holding cache and block
size constant

* Smaller associativity
— lower cost
— faster hit time

for L1-D

associativity

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

N-Way Set-Associative Cache

tag[63:15]| index[14:6] |block offset[5:0]

way
A

N\

data state' tag
state| tag

data state' tag

A
@ data state| tag

set

Note the additional bit(s) moved from index to tag

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Associative Block Replacement

* Which block in a set to replace on a miss?

* |deal replacement (Belady’s Algorithm)
— Replace block accessed farthest in the future
— Trick question: How do you implement it?

Least Recently Used (LRU)
— Optimized for temporal locality (expensive for >2-way)

Not Most Recently Used (NMRU)

— Track MRU, random select among the rest
— Same as LRU for 2-sets

* Random
— Nearly as good as LRU, sometimes better (when?)

Pseudo-LRU

— Used in caches with high associativity
— Examples: Tree-PLRU, Bit-PLRU

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Victim Cache (1/2)

* Associativity is expensive
— Performance overhead from extra muxes

— Power overhead from reading and checking more tags
and data

* Conflicts are expensive
— Performance from extra mises

 Observation: Conflicts don’t occur in all sets

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Victim Cache (2/2)

Access 4-way Set-Associative 4-way Set-Associative + Fully-Associative
Sequence: L1 Cache L1 Cache Victim Cache

C

L

OESP= |00 (> |m

&
<«

ZHF‘ ~

. : ‘o :
Every access is a miss! Victim cache provides
ABCDE and JKLMN a “fifth way” so long as
do not “fit” in a 4-way only four sets overflow

set associative cache) into it at the same time

/

Can even provide 6%
or 7% ... ways

Provide “extra” associativity, but not for all sets

NN ., SRR, N —
Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Parallel vs. Serial Caches

e Tag and Data usually separate (tag is smaller & faster)

— State bits stored along with tags
* Valid bit, “LRU” bit(s), ...

Parallel access to Tag and Data Serial access to Tag and Data
reduces latency (good for L1) reduces power (good for L2+)

enable

w1917

hie?v W data¥

valid?

Spring 2016 :: CSE 502 - Computer Architecture

‘\\\\ Stony Brook University

Physically-Indexed Caches

* Assume 8KB pages & 512
cache sets

— 13-bit page offset
— 9-bit cache index

* Core requests are VAs

Cache index is PA[14:6]
— PA[12:6] == VA[12:6]
— VA passes through TLB
— D-TLB on critical path
— PA[14:13] from TLB

Cache tagis PA[63:15]

If index falls completely
within page offset,
— can use just VA for index

tag[63:15] |index[14:6] |block offset[5:0]

virtual page[63:13]| page offset[12:0]

v Virtual Address
[physical index[6:0]
lower-bits of index from VA)

physical

index[8:0]
F——+

physical

iIndex[8:7]

(lower-bit of physical
page number)

D-TLB

/

[
>

I
physical tag
(higher-bits of physical
page number)

Simple, but slow. Can we do better?

Spring 2016 :: CSE 502 - Computer Architecture

‘\\\\ Stony Brook University

Virtually-Indexed Caches

* Core requests are VAs
e Cache index is VA[14:6]

* Cache tagis PA[63:13]
— Why not PA[63:15]?

* Why not tag with VA?

— VA does not uniquely
determine the memory
location

— Would need cache flush
on ctxt switch

tag[63:15] | index|

14:6] |block offset[5:0]

virtual page[63:13]| page offset[12:0]

Virtual Address

[virtual index[8:0]

Vi —_—

- —ﬁ

I —

physical tag

77T

Spring 2016 :: CSE 502 - Computer Architecture

q\\\\ Stony Brook University

Virtually-Indexed Caches

* Main problem: Virtual aliases

— Different virtual addresses for the
same physical location

— Different virtual addrs - map to
different sets in the cache

 Solution: ensure they don’t exist
by invalidating all aliases when a

miss happens

— If page offset is p bits, block offset
is b bits and index is m bits, an
alias might exist in any of 27-(»-)
sets.

— Search all those sets and remove
aliases (alias = same physical tag)

Tag Data

VA, 1st Copy of Data at PA
VA, 2nd Copy of Data at PA
tag m b

page num!oer P i

| |

| ' p-b |

: -(p - b) 'Same in VA,

:Differentinl and VA, :

| VA, and | |
1 VA2 | 1

Fast, but complicated

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Multiple Accesses per Cycle

* Need high-bandwidth access to caches
— Core can make multiple access requests per cycle
— Multiple cores can access LLC at the same time

* Must either delay some requests, or...

— Design SRAM with multiple ports
* Big and power-hungry

— Split SRAM into multiple banks
* Canresult in delays, but usually not

Spring 2016 :: CSE 502 - Computer Architecture \\ Stony Brook University
pring

Multi-Ported SRAMs

Wordline,

Wordline,

1 J_I_A,sa_J_l_ 1
ipn L

.-

b, b, E F2

Wordlines = | per port mm)> Area = O(ports?)
Bitlines = 2 per port

Spring 2016 :: CSE 502 - Computer Architecture

q\\\\ Stony Brook University

Multi-Porting vs. Banking

Lolumn

IIU 1y

el

4 ports

Big (and slow)

Guarantees concurrent access

4 banks, | port each
Each bank small (and fast)
Conflicts (delays) possible

How to decide which bank to go to?

NN ., SRR, N —
Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Bank Conflicts

e Banks are address interleaved

— For block size b cache with N banks...
— Bank = (Address / b) % N

* Looks more complicated than is: just low-order bits of index

tag index offset | no banking

tag index | bank | offset | w/banking

* Banking can provide high bandwidth

e But only if all accesses are to different banks
— For 4 banks, 2 accesses, chance of conflict is 25%

Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Write Policies

* Writes are more interesting
— On reads, tag and data can be accessed in parallel
— On writes, needs two steps
— Is access time important for writes?

e Choices of Write Policies

— On write hits, update memory?

* Yes: write-through (higher bandwidth)

* No: write-back (uses Dirty bits to identify blocks to write back)
— On write misses, allocate a cache block frame?

* Yes: write-allocate

 No: no-write-allocate

NN ., SRR, N —
Spring 2016 :: CSE 502 - Computer Architecture q\\\\ Stony Brook University

Inclusion

* Core often accesses blocks not present in any S
— Should block be allocated in L3, L2, and L1?

* Called Inclusive caches

* Waste of space

* Requires forced evict (e.g., force evict from L1 on evict from L2+)
— Only allocate blocks in L1

» Called Non-inclusive caches (why not “exclusive”?)

* Some processors combine both
— L3 is inclusive of L1 and L2
— L2 is non-inclusive of L1 (like a large victim cache)

