
Spring 2016 :: CSE 502 – Computer Architecture

Caches

Nima Honarmand

Spring 2016 :: CSE 502 – Computer Architecture

1

10

100

1000

10000

1985 1990 1995 2000 2005 2010

P
e
rf

o
rm

a
n

c
e

Motivation

• Want memory to appear:
– As fast as CPU
– As large as required by all of the running applications

Processor

Memory

Spring 2016 :: CSE 502 – Computer Architecture

Storage Hierarchy
• Make common case fast:

– Common: temporal & spatial locality
– Fast: smaller more expensive memory

What is S(tatic)RAM vs D(dynamic)RAM?

Controlled

by Hardware

Controlled

by Software

(OS)

Bigger Transfers

Larger

Cheaper

More Bandwidth

Faster

Registers

Caches (SRAM)

Memory (DRAM)

[SSD? (Flash)]

Disk (Magnetic Media)

Spring 2016 :: CSE 502 – Computer Architecture

Caches
• An automatically managed hierarchy

• Break memory into blocks (several bytes)
and transfer data to/from cache in blocks

– spatial locality

• Keep recently accessed blocks
– temporal locality

Core

$

Memory

Spring 2016 :: CSE 502 – Computer Architecture

Cache Terminology
• block (cache line): minimum unit that may be cached

• frame: cache storage location to hold one block

• hit: block is found in the cache

• miss: block is not found in the cache

• miss ratio: fraction of references that miss

• hit time: time to access the cache

• miss penalty: time to replace block on a miss

Spring 2016 :: CSE 502 – Computer Architecture

Miss

Cache Example
• Address sequence from core:

(assume 8-byte lines)

Final miss ratio is 50%

Memory

0x10000 (…data…)

0x10120 (…data…)

0x10008 (…data…)Hit

Miss

Miss

Hit

Hit

Core

0x10000

0x10004

0x10120

0x10008

0x10124

0x10004

Spring 2016 :: CSE 502 – Computer Architecture

Average Memory Access Time (1/2)

• Or AMAT

• Very powerful tool to estimate performance

• If …
cache hit is 10 cycles (core to L1 and back)
memory access is 100 cycles (core to mem and back)

• Then …
at 50% miss ratio, avg. access: 0.5×10+0.5×100 = 55
at 10% miss ratio, avg. access: 0.9×10+0.1×100 = 19
at 1% miss ratio, avg. access: 0.99×10+0.01×100 ≈ 11

Spring 2016 :: CSE 502 – Computer Architecture

Average Memory Access Time (2/2)

• Generalizes nicely to hierarchies of any depth

• If …
L1 cache hit is 5 cycles (core to L1 and back)
L2 cache hit is 20 cycles (core to L2 and back)
memory access is 100 cycles (core to mem and
back)

• Then …
at 20% miss ratio in L1 and 40% miss ratio in L2 …

avg. access: 0.8×5+0.2×(0.6×20+0.4×100) ≈ 14

Spring 2016 :: CSE 502 – Computer Architecture

Processor

Memory Organization (1/3)
• L1 is split ― separate I$ (inst. cache) and D$ (data cache)

• L2 and L3 are unified

Registers

L1 I-Cache L1 D-Cache

L2 Cache

D-TLBI-TLB

Main Memory (DRAM)

L3 Cache (LLC)

Spring 2016 :: CSE 502 – Computer Architecture

Processor

Memory Organization (2/3)
• L1 and L2 are private

• L3 is shared

Multi-core replicates the top of the hierarchy

L3 Cache (LLC)

Core 0 Registers

L1 I-Cache L1 D-Cache

L2 Cache

D-TLBI-TLB

Core 1 Registers

L1 I-Cache L1 D-Cache

L2 Cache

D-TLBI-TLB

Main Memory (DRAM)

Spring 2016 :: CSE 502 – Computer Architecture

Memory Organization (3/3)

256K

L2

32K

L1-D

32K

L1-I

In
te

l
N

e
h
al

e
m

(3
.3

G
H

z,
 4

 c
o
re

s,
 2

 t
h
re

ad
s

p
e
r

co
re

)

Spring 2016 :: CSE 502 – Computer Architecture

SRAM Overview

• Chained inverters maintain a stable state
• Access gates provide access to the cell
• Writing to cell involves over-powering storage inverters

1 00 1

1 1

b b

“6T SRAM” cell

2 access gates

2T per inverter

Spring 2016 :: CSE 502 – Computer Architecture

8-bit SRAM Array

wordline

bitlines

Spring 2016 :: CSE 502 – Computer Architecture

8×8-bit SRAM Array

w
o
rd

lin
e
s

bitlines

Spring 2016 :: CSE 502 – Computer Architecture

=

=

=

Fully-Associative Cache
• Keep blocks in cache frames

– data
– state (e.g., valid)
– address tag

What happens when the cache runs out of space?

data

data

data

data

multiplexor

tag[63:6] block offset[5:0]

address

tag

tag

tag

tag

state

state

state

state =

063

hit?
Content Addressable

Memory (CAM)

Spring 2016 :: CSE 502 – Computer Architecture

The 3 C’s of Cache Misses
• Compulsory: Never accessed before

• Capacity: Accessed long ago and already replaced

• Conflict: Neither compulsory nor capacity (later today)

• Coherence: (Will discuss in multi-core lecture)

Spring 2016 :: CSE 502 – Computer Architecture

Cache Size
• Cache size is data capacity (don’t count tag and state)

– Bigger can exploit temporal locality better

– Not always better

• Too large a cache
– Smaller is faster bigger is slower

– Access time may hurt critical path

• Too small a cache
– Limited temporal locality

– Useful data constantly replaced
h

it
 r

a
te

working set

size

capacity

Spring 2016 :: CSE 502 – Computer Architecture

Block Size
• Block size is the data that is

– Associated with an address tag

– Not necessarily the unit of transfer between hierarchies

• Too small a block
– Don’t exploit spatial locality well

– Excessive tag overhead

• Too large a block
– Useless data transferred

– Too few total blocks
• Useful data frequently replaced
h

it
 r

a
te

block size

Spring 2016 :: CSE 502 – Computer Architecture

Direct-Mapped Cache
• Use middle bits as index

• Only one tag comparison

Why take index bits out of the middle?

data

data

data

tag

tag

tag

data tag

state

state

state

state

multiplexor

tag[63:16] index[15:6] block offset[5:0]

=
d
e
co

d
e
r

tag match

hit?

Spring 2016 :: CSE 502 – Computer Architecture

Cache Conflicts
• What if two blocks alias on a frame?

– Same index, but different tags

Address sequence:
0xDEADBEEF 11011110101011011011111011101111
0xFEEDBEEF 11111110111011011011111011101111
0xDEADBEEF 11011110101011011011111011101111

• 0xDEADBEEF experiences a Conflict miss
– Not Compulsory (seen it before)
– Not Capacity (lots of other indexes available in cache)

tag index block

offset

Spring 2016 :: CSE 502 – Computer Architecture

Associativity (1/2)
• Where does block index 12 (b’1100) go?

Fully-associative
block goes in any frame

(all frames in 1 set)

0
1

2
3
4
5

6
7

Frame

Direct-mapped
block goes in exactly

one frame
(1 frame per set)

0
1

2
3
4
5

6
7

Set

Set-associative
block goes in any frame

in one set
(frames grouped in sets)

0
1

0
1
0
1

0
1

Set/Frame

0

1

2

3

Spring 2016 :: CSE 502 – Computer Architecture

Associativity (2/2)
• Larger associativity

– lower miss rate (fewer conflicts)

– higher power consumption

• Smaller associativity
– lower cost

– faster hit time

~5

for L1-Dh
it
 r

a
te

associativity

holding cache and block
size constant

Spring 2016 :: CSE 502 – Computer Architecture

N-Way Set-Associative Cache

Note the additional bit(s) moved from index to tag

tag[63:15] index[14:6] block offset[5:0]

tag

tag

tag

tag

multiplexor

d
e
co

d
e
r

=

hit?

data

data

data

tag

tag

tag

data tag

state

state

state

state

multiplexor

d
e
co

d
e
r

=

multiplexor

way

set
data

data

data

data

state

state

state

state

Spring 2016 :: CSE 502 – Computer Architecture

Associative Block Replacement
• Which block in a set to replace on a miss?

• Ideal replacement (Belady’s Algorithm)
– Replace block accessed farthest in the future
– Trick question: How do you implement it?

• Least Recently Used (LRU)
– Optimized for temporal locality (expensive for >2-way)

• Not Most Recently Used (NMRU)
– Track MRU, random select among the rest
– Same as LRU for 2-sets

• Random
– Nearly as good as LRU, sometimes better (when?)

• Pseudo-LRU
– Used in caches with high associativity
– Examples: Tree-PLRU, Bit-PLRU

Spring 2016 :: CSE 502 – Computer Architecture

Victim Cache (1/2)
• Associativity is expensive

– Performance overhead from extra muxes

– Power overhead from reading and checking more tags
and data

• Conflicts are expensive
– Performance from extra mises

• Observation: Conflicts don’t occur in all sets

Spring 2016 :: CSE 502 – Computer Architecture

Fully-Associative

Victim Cache

4-way Set-Associative

L1 Cache +

Every access is a miss!

ABCDE and JKLMN

do not “fit” in a 4-way

set associative cache

X Y Z

P Q R

X Y Z

Victim Cache (2/2)

Provide “extra” associativity, but not for all sets

AB

JKLM

Victim cache provides

a “fifth way” so long as

only four sets overflow

into it at the same time

Can even provide 6th

or 7th … ways

A

B

C

D

E

J

N

K

L

M

Access

Sequence:

4-way Set-Associative

L1 Cache

A B C DA BE C

J K LJN L

B CE A B CD DA

J K L MN J LM

C

K K M

DC

L

P Q R

Spring 2016 :: CSE 502 – Computer Architecture

Parallel vs. Serial Caches
• Tag and Data usually separate (tag is smaller & faster)

– State bits stored along with tags
• Valid bit, “LRU” bit(s), …

hit?

= = = =

valid?

data

Parallel access to Tag and Data

reduces latency (good for L1)

hit?

= = = =

valid?

data

enable

Serial access to Tag and Data

reduces power (good for L2+)

Spring 2016 :: CSE 502 – Computer Architecture

Physically-Indexed Caches
• Assume 8KB pages & 512

cache sets
– 13-bit page offset
– 9-bit cache index

• Core requests are VAs

• Cache index is PA[14:6]
– PA[12:6] == VA[12:6]
– VA passes through TLB
– D-TLB on critical path
– PA[14:13] from TLB

• Cache tag is PA[63:15]

• If index falls completely
within page offset,

– can use just VA for index

Simple, but slow. Can we do better?

tag[63:15] index[14:6] block offset[5:0]

virtual page[63:13] page offset[12:0]

/ physical index[6:0]
(lower-bits of index from VA)

/

physical tag
(higher-bits of physical

page number)

physical

index[8:0]

/

= = = =

D-TLB

/

physical

index[8:7]
(lower-bit of physical

page number)

Virtual Address

Spring 2016 :: CSE 502 – Computer Architecture

Virtually-Indexed Caches
• Core requests are VAs

• Cache index is VA[14:6]

• Cache tag is PA[63:13]
– Why not PA[63:15]?

• Why not tag with VA?
– VA does not uniquely

determine the memory
location

– Would need cache flush
on ctxt switch

tag[63:15] index[14:6] block offset[5:0]

virtual page[63:13] page offset[12:0]

/ virtual index[8:0]

D-TLB

/

physical tag

= = = =

Virtual Address

Spring 2016 :: CSE 502 – Computer Architecture

Virtually-Indexed Caches
• Main problem: Virtual aliases

– Different virtual addresses for the
same physical location

– Different virtual addrs → map to
different sets in the cache

• Solution: ensure they don’t exist
by invalidating all aliases when a
miss happens

– If page offset is p bits, block offset
is b bits and index is m bits, an
alias might exist in any of 2m-(p-b)

sets.
– Search all those sets and remove

aliases (alias = same physical tag)

Fast, but complicated

tag m b

page number p

p - b

Same in VA1

and VA2

m - (p - b)

Different in

VA1 and

VA2

Spring 2016 :: CSE 502 – Computer Architecture

Multiple Accesses per Cycle
• Need high-bandwidth access to caches

– Core can make multiple access requests per cycle

– Multiple cores can access LLC at the same time

• Must either delay some requests, or…
– Design SRAM with multiple ports

• Big and power-hungry

– Split SRAM into multiple banks
• Can result in delays, but usually not

Spring 2016 :: CSE 502 – Computer Architecture

Multi-Ported SRAMs

b1 b1

Wordline1

b2 b2

Wordline2

Wordlines = 1 per port

Bitlines = 2 per port
Area = O(ports2)

Spring 2016 :: CSE 502 – Computer Architecture

Multi-Porting vs. Banking

How to decide which bank to go to?

D
e
co

d
e
r

D
e
co

d
e
r

D
e
co

d
e
r

D
e
co

d
e
r

SRAM

Array

Se
n
se

Se
n
se

Se
n
se

Se
n
se

Column

Muxing

S
D

e
co

d
e
r

SRAM

Array

S
D

e
co

d
e
r

SRAM

Array

S
D

e
co

d
e
r

SRAM

Array
S

D
e
co

d
e
r

SRAM

Array

4 banks, 1 port each

Each bank small (and fast)

Conflicts (delays) possible

4 ports

Big (and slow)

Guarantees concurrent access

Spring 2016 :: CSE 502 – Computer Architecture

Bank Conflicts
• Banks are address interleaved

– For block size b cache with N banks…

– Bank = (Address / b) % N
• Looks more complicated than is: just low-order bits of index

• Banking can provide high bandwidth

• But only if all accesses are to different banks
– For 4 banks, 2 accesses, chance of conflict is 25%

tag index offset

tag index bank offset

no banking

w/ banking

Spring 2016 :: CSE 502 – Computer Architecture

Write Policies
• Writes are more interesting

– On reads, tag and data can be accessed in parallel

– On writes, needs two steps

– Is access time important for writes?

• Choices of Write Policies
– On write hits, update memory?

• Yes: write-through (higher bandwidth)

• No: write-back (uses Dirty bits to identify blocks to write back)

– On write misses, allocate a cache block frame?
• Yes: write-allocate

• No: no-write-allocate

Spring 2016 :: CSE 502 – Computer Architecture

Inclusion
• Core often accesses blocks not present in any $

– Should block be allocated in L3, L2, and L1?
• Called Inclusive caches

• Waste of space

• Requires forced evict (e.g., force evict from L1 on evict from L2+)

– Only allocate blocks in L1
• Called Non-inclusive caches (why not “exclusive”?)

• Some processors combine both
– L3 is inclusive of L1 and L2

– L2 is non-inclusive of L1 (like a large victim cache)

